Supplementary Information

The Effects of the Increasing Number of the Same Chromophore on Photosensitization of Water-Soluble Cyclen-based Europium Complexes with Potentials for Biological Applications

Zhenhao Liang,^[a] Chi-Fai Chan,^[c] Yurong Liu,^[a] Wing-Tak Wong,^{*,[b]} Chi-Sing Lee,^{*,[a]} Ga-Lai Law,^{*,[b]} and Ka-Leung Wong^{*,[c]}

[a] Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
[b] Department of Applied Biological and Chemical Technology, Hong Kong Polytechnic University, Hung Hum, Hong Kong SAR

[c] Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR

Table of Contents

¹ H and ¹³ C NMR spectra of compounds 2 and ligands 1-4L	S2–S7
¹ H NMR spectra of Eu-1L, Eu-o-2L and Eu-3L	S8
HMRS of 1L-4L and the corresponding Ln (Eu and Gd) complexes	S9– S13
Table S1 and Fig. S1 HPLC analysis of the Eu complexes	S14
FT-IR spectra of complexes Eu-nL (n = 1, o-2 p-2, 3 and 4)	S15–S16
Fig. S2 UV absorption spectra of ligands 1-4L	S17
Fig. S3-S7 Extinction coefficient of five Eu complexes	S17–S18
Fig. S8 Plot of intensity (${}^{5}D_{0}$ to ${}^{7}F_{2}$) versus pH of five europium complexes	S19

¹H NMR of Complexes Eu-nL (n = 1, o-2 and 3) in CD_3OD (500 MHz, 298 K) (top: Eu-1L, middle: Eu-o-2L and bottom: Eu-3L)

HRMS of Ln (Eu, Gd) complexes and the corresponding ligand (Top: the isotopic pattern of Eu-1L; Middle: the isotopic pattern of Gd-1L; Bottom: ligand 1L)

HRMS of Ln (Eu, Gd) complexes and the corresponding ligand (Top: the isotopic pattern of Eu-p-2L; Middle: the isotopic pattern of Gd-p-2L; Bottom: ligand p-2L)

HRMS of Ln (Eu, Gd) complexes and the corresponding ligand (Top: the isotopic pattern of Eu-3L; Middle: the isotopic pattern of Gd-3L; Down: ligand 3L)

HRMS of Ln (Eu, Gd) complexes and the corresponding ligand (Top: the isotopic pattern of Eu-4L; Middle: the isotopic pattern of Gd-4L; Bottom: ligand 4L)

Time /min	0.1% CHOOH in mQ water /%	0.1% CHOOH in CH ₃ CN /%
0.0	95	5
14.0	50	50
15.0	50	50
20.0	0	100

Table S1Solvent gradient for HPLC

Fig. S1 HPLC trace of Eu complexes. Experimental conditions: Agilent ZORBAX SB-C18 Stable Bond Analytical 4.6 X 150mm 5-micron, 1.0mL/min flow rate, Retention Time: Eu-1L in 10.48 min, Eu-p-2L in 10.93 min, Eu-o-2L in 11.04 min, Eu-3L in 10.62 min and Eu-4L in 11.33 min.

FT-IR Spectral of Complexes Eu-nL (n = 1, o-2 and p-2) (neat, 298 K) (top: Eu-1L, middle: Eu-o-2L and bottom: Eu-p-2L)

FT-IR Spectral of Complexes Eu-nL (3 and 4) (neat, 298 K) (upper: Eu-3L; down: Eu-4L)

Fig. S2 UV absorption spectra of ligand nL (n = 1, p-2, o-2, 3 and 4, 10 μ M) in aqueous solution.

Fig. S3 Left: UV absorption spectra of Eu-1L in various of concentrations in water. Right: linear fit of the Absorbance at 325nm *versus* concentration.

Fig. S4 Left: UV absorption spectra of Eu-p-2L in various of concentrations in water. Right: linear fit of the Absorbance at 325nm *versus* concentration.

Fig. S5 Left: UV absorption spectra of Eu-o-2L in various of concentrations in water. Right: linear fit of the Absorbance at 325nm *versus* concentration.

Fig. S6 Left: UV absorption spectra of Eu-3L in various of concentrations in water. Right: linear fit of the Absorbance at 325nm *versus* concentration.

Fig. S7 Left: UV absorption spectra of Eu-4L in various of concentrations in water. Right: linear fit of the Absorbance at 325nm *versus* concentration.

Fig. S8 Plot of intensity (${}^{5}D_{0}$ to ${}^{7}F_{2}$) *versus* pH of five europium complexes , showing the fit to the observed data for an apparent pKa. A): Eu-1L, pKa = 5.1; B): Eu-o-2L, pKa = 4.9; C): Eu-p-2L, pKa = 4.6; D): Eu-3L, pKa = 5.4; E): Eu-4L, pKa = 5.3.