A label-free amperometric immunosensor for detection of carcinoembryonic antigen based on gold nanoparticles functionalized magnetic multi-walled carbon nanotubes loaded with lead ions

Faying Li¹, Liping Jiang¹, Jian Han¹, Yulan Wang², Qing Liu¹, Yunhui Dong¹, Yueyun Li^{1*}, Qin Wei²

a. School of Chemical Engineering, Shandong University of Technology,Zibo, 255049, P.R. China

b. Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P.R. China

*: Corresponding author: Email address: liyueyun71@163.com Fax: +86-533-2781664 Tel: +86-533-2781225

Methods	Linear range	Limit of detection	References
FL quenching method	0.257~12.9 ng/mL	5 pg/mL	[1]
ECL immunosensor	20 fg/mL~1.0 ng/mL	6.7 fg/mL	[2]
Electrochemical immunosensor	0.01~80 ng/mL	2.36 pg/mL	[3]
Paper-based microfluidic electrochemical immunodevice	0.01~100 ng/mL	0.01 ng/mL	[4]
Electrochemical	5 fg/mL~50 ng/mL	1.7 fg/mL	This method

 Table S1 Comparison of different methods for the detection of CEA.

Initial CEA concentration in sample (ng/mL)	Added CEA concentration (ng/mL)	Measured concentration after addition (ng/mL)	Average value (ng/mL)	RSD (%,n=5)	Recover y (%, n=5)
0.53	1.00	1.58, 1.49, 1.53, 1.39, 1.44	1.49	4.38	97.5
	3.00	3.80, 3.42, 3.60, 3.55, 3.67	3.61	3.90	102.2
	5.00	5.28, 5.58, 5.43, 5.29, 5.82	5.48	4.12	99.1

Table S2Determination of CEA in human serum sample.

References

[1] Zhou Z-M, Zhou J, Chen J, Yu R-N, Zhang M-Z, Song J-T and Zhao Y-D. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide[J]. *Biosensors and Bioelectronics*, 2014, 59(397-403.

[2] Zhuo Y, Gui G, Chai Y, Liao N, Xiao K and Yuan R. Sandwichformat electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-l-cysteine-hollow gold nanosphere nanocomposites[J]. *Biosensors and Bioelectronics*, 2014, 53(0): 459-464.

[3] Miao J, Wang X, Lu L, Zhu P, Mao C, Zhao H, Song Y and Shen J. Electrochemical immunosensor based on hyperbranched structure for carcinoembryonic antigen detection[J]. *Biosensors and Bioelectronics*, 2014, 58(0): 9-16.

[4] Wu Y, Xue P, Hui K M and Kang Y. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers[J]. *Biosensors and Bioelectronics*, 2014, 52(180-187.