Supporting Information

Voltammetric studies on the inter-relationship of the redox chemistry of TTF, TTF⁺⁺, TTF²⁺ and HTTF⁺ in acidic media

Shaimaa Adeel,^a Muhammad E. Abdelhamid,^b Ayman Nafady,^{a,c} Qi Li, Lisandra Martin^{a*} and

Alan Bond^a*

^a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.

^b School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, 3001, Australia.

^c Current address: King Saud University, College of Science, Department of Chemistry, PO Box
2455, Riyadh 11451, Saudi Arabia.

* To whom correspondence should be addressed, Email: Lisa.Martin@monash.edu, Alan.Bond@monash.edu

Technique	Equation used for determination of <i>D</i> ^a	$D_{TTF} imes 10^5$ cm ² s ⁻¹	$D_{TTF}^{+\bullet} imes 10^5$ cm ² s ⁻¹	$D_{TTF}^{2+} imes 10^5$ cm ² s ⁻¹
Linear sweep voltammetry	$I_p = 0.4463 \ nFAC \left(\frac{nF\nu D}{RT}\right)^{0.5}$	2.20	1.95	1.65
RDE voltammetry	$I_{lim} = 0.620 \ n \ F \ A \ D^{2/3} \ \omega^{1/2} \ v^{-1/6} \ C$	2.10	1.90	1.60
Microelectrode voltammetry	$I_{lim} = 4n F r_e D C$	2.10	1.90	1.60

Table S1 Diffusion coefficients (D) of TTF, TTF⁺, TTF²⁺ in acetonitrile (0.1 M Bu₄NPF₆).

^a I_p = oxidation peak potential, I_{lim} = limiting current, v = scan rate

w = angular rotation rate, v = kinematic viscosity (4.54 × 10⁻³ cm² s⁻¹),²² r_e = electrode radius, C = concentration, n = number of electrons transfered (1.0). Other symbols have there usual meaning or are defined in the text.

Figure S1 Cyclic voltammograms obtained for 1.0 mM TTF in CH₃CN (0.1 M Bu₄NPF₆) in the presence of 10 mM ethereal HBF₄ (0.1 M Bu₄NPF₆) at GC, Au and Pt electrodes with a scan rate of 100 mV s⁻¹.

Figure S2 Cyclic voltammograms obtained as a function of time for 1.0 mM TTF in CH₃CN (0.1 M Bu₄NPF₆) at a 3 mm diameter GC electrode (scan rate of 100 mV s⁻¹) in the presence of 10 mM ethereal HBF₄.

Figure S3 Cyclic voltammograms obtained at scan rate 100 mV s⁻¹ in acetonitrile (0.1 M Bu_4NPF_6) for 1 mM TTF²⁺ in the presence of 66 mM ethereal HBF₄ with a 3 mm GC electrode at designated switching potential values.

Figure S4 A cyclic voltammogram (2 cycles of potential) for $HTTF^+$ obtained after back reduction electrolysis of 0.91 mM TTF^{2+} in acetonitrile (0.1 M Bu_4NPF_6) in the presence of 66 mM ethereal HBF_4 with a 3 mm GC electrode at a scan rate of 100 mV s⁻¹.

Figure S5 Cyclic voltammograms of TTF obtained at scan rate 100 mV s⁻¹ in acetonitrile (0.1 M Bu_4NPF_6) for TTF in with a 3 mm GC electrode at designated TTF and TFA concentrations.

Figure S6 Cyclic voltammograms for 4.35 mM TTF in the presence of 1.5 M TFA obtained at a scan rate of 100 mV s⁻¹ in acetonitrile (0.1 M Bu_4NPF_6) with a 3 mm diameter GC electrode.

Figure S7 Dependence of peak currents, for the first $\binom{I^{ox1}}{p}$, second $\binom{I^{ox2}}{p}$ and third $\binom{I^{ox3}}{p}$ consecutive processes versus the square root of scan rate for 4.35 mM TTF in the presence of 1.5 M TFA in acetonitrile (0.1 M Bu₄NPF₆).

Figure S8 UV-vis spectra of obtained as a function of time after addition of 500 mM TFA to 0.25 mM TTF in CH₃CN (0.1 M Bu₄NPF₆).