Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for RSC Advances.

This journal is © The Royal Society of Chemistry 2014

Electronic supplementary information for

The Stereochemistry of Cleistanthane Diterpenoids from *Phyllanthus emblica*

Jun-Jiang Lv,^a, Shan Yu,^{a,b} Ying Xin,^{a,b} Hong-Tao Zhu,^a Dong Wang,^a Rong-Rong Cheng,^a Chong-Ren Yang,^a Min Xu, *^a and Ying-Jun Zhang *^a

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China..

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China..

* Tel: +86-871-6522-3235. Fax: +86-871-6522-3235. E-mail: <u>zhangyj@mail.kib.ac.cn</u> (Ying-Jun Zhang) and <u>minxu@mail.kib.ac.cn</u> (Min Xu).

Tał 1.	ole of contents S1 Figure 1. Partial ¹ H NMR spectra of (<i>S</i>)- and (<i>R</i>)-MTPA esters 1s and 1r of 1B	4
2.	S2 Figure 2. Key ¹ H- ¹ H COSY () and HMBC () correlations of compounds 2-6	5
3.	S3 HRESIMS of compound 1	6
4.	S4 ¹ H NMR (500 MHz) spectrum of compound 1 in CD₃OD	7
5.	S5 13 C NMR (125 MHz) spectrum of compound 1 in CD ₃ OD	8
6.	S6 HSQC spectrum of compound ${f 1}$ in CD $_3$ OD	9
7.	S7 HMBC spectrum of compound 1 in CD_3OD	10
8.	S8 ¹ H- ¹ H COSY spectrum of compound 1 in CD ₃ OD	11
9.	S9 ROESY spectrum of compound ${f 1}$ in CD $_3$ OD	12
10.	S10 HRESIMS of compound 1A	13
11.	S11 ¹ H NMR (600 MHz) spectrum of compound 1A in C_5D_5N	14
12.	S12 13 C NMR (150 MHz) spectrum of compound 1A in C ₅ D ₅ N	15
13.	S13 HSQC spectrum of compound 1A in C_5D_5N	16
14.	S14 HMBC spectrum of compound 1A in C_5D_5N	17
15.	S15 ¹ H- ¹ H COSY spectrum of compound 1A in C₅D₅N	18
16.	S16 ROESY spectrum of compound 1A in C₅D₅N	19
17.	S17 HRESIMS of compound 2	20
18.	S18 ¹ H NMR (500 MHz) spectrum of compound 2 in CD ₃ OD	21
19.	S19 ¹³ C NMR (125 MHz) spectrum of compound 2 in CD ₃ OD	22
20.	S20 HSQC spectrum of compound 2 in CD₃OD	23
21.	S21 HMBC spectrum of compound 2 in CD₃OD	24
22.	S22 ¹ H- ¹ H COSY spectrum of compound 2 in CD ₃ OD	25
23.	S23 ROESY spectrum of compound 2 in CD₃OD	26
24.	S24 HRESIMS of compound 3	28
25.	S25 ¹ H NMR (600 MHz) spectrum of compound 3 in CD ₃ OD	29
26.	S26 ¹³ C NMR (150 MHz) spectrum of compound 3 in CD ₃ OD	30
27.	S27 HSQC spectrum of compound 3 in CD₃OD	31
28.	S28 HMBC spectrum of compound 3 in CD₃OD	32
29.	S29 ¹ H- ¹ H COSY spectrum of compound 3 in CD₃OD	33
30.	S30 ROESY spectrum of compound 3 in CD₃OD	35
31.	S31 HRESIMS of compound 4	36
32.	S32 ¹ H NMR (600 MHz) spectrum of compound 4 in CD ₃ OD	37
33.	S33 ¹³ C NMR (150 MHz) spectrum of compound 4 in CD ₃ OD	38
34.	S34 HSQC spectrum of compound 4 in CD₃OD	39

35.	S35 HMBC spectrum of compound 4 in CD₃OD	40
36.	S36 ¹ H- ¹ H COSY spectrum of compound 4 in CD ₃ OD	41
37.	S37 ROESY spectrum of compound 4 in CD₃OD	42
38.	S38 HRESIMS of compound 5	43
39.	S39 ¹ H NMR (600 MHz) spectrum of compound 5 in CD ₃ OD	44
40.	S40 13 C NMR (150 MHz) spectrum of compound 5 in CD ₃ OD	45
41.	S41 HSQC spectrum of compound 5 in CD₃OD	46
42.	S42 HMBC spectrum of compound 5 in CD ₃ OD	47
43.	S43 ¹ H- ¹ H COSY spectrum of compound 5 in CD ₃ OD	48
44.	S44 ROESY spectrum of compound 5 in CD₃OD	49
45.	S45 HRESIMS of compound 6	50
46.	S46 ¹ H NMR (600 MHz) spectrum of compound 6 in CD ₃ OD	51
47.	S47 13 C NMR (150 MHz) spectrum of compound 6 in CD ₃ OD	52
48.	S48 HSQC spectrum of compound 6 in CD₃OD	53
49.	S49 HMBC spectrum of compound 6 in CD₃OD	54
50.	S50 ¹ H- ¹ H COSY spectrum of compound 6 in CD₃OD	55
51.	S51 ROESY spectrum of compound 6 in CD ₃ OD	56
52.	S52 ESI MS spectrum of 1B	57
53.	S53 ¹ H NMR spectrum of (<i>S</i>)-MTPA ester derivative 1s of 1B (800 MHz, CDCl ₃)	58
54.	S54 1 H- 1 H COSY spectrum of (<i>S</i>)-MTPA ester derivative 1s of 1B (800 MHz, CDCl ₃)	59
55.	S55 ROESY spectrum of (S)-MTPA ester derivative 1s of 1B (800 MHz, CDCl ₃)	60
56.	S56 ¹ H NMR spectrum of (<i>R</i>)-MTPA ester derivative 1r of 1B (800 MHz, CDCl ₃)	61
57.	S57 ¹ H- ¹ H COSY spectrum of (<i>R</i>)-MTPA ester derivative 1r of 1B (800 MHz, CDCl ₃)	62
58.	S58 ROESY spectrum of (<i>R</i>)-MTPA ester derivative 1r of 1B (800 MHz, $CDCI_3$)	63
59.	S59 ECD calculations of compound 1A	64
60.	S60 ECD calculations of compound 1	66
61.	S61 ECD calculations of compound 3	68
62.	S62 ECD calculations of compound 4	70
63.	S63 ECD calculations of compound 5	72
64.	S64 OR calculations of compound 6	73

1. S1 Figure 1. Partial ¹H NMR spectra of (S)- and (R)-MTPA esters 1s and 1r of 1B

2. S2 Figure 2. Key ¹H-¹H COSY () and HMBC (\rightarrow) correlations of compounds 2-6

3. S3 HRESIMS of compound 1

Data File. D.1万丁重创建2013-01-241QCd40 1L31731 24.0	Data File	le: D:\分子	量测定\2013-	01-24\gca40	TLJ1751	24.lcd
--	-----------	-----------	-----------	-------------	---------	--------

Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Use Adduct
H	1	0	100	N	3	0	0	P	3	0	0	Br	1	0	0	H
B	3	0	0	0	2	0	30	S	2	0	0	- I	3	0	0	
С	4	0	50	F	1	0	0	CI	1	0	0					
Error Ma	argin (r HC I	mDa): Ratio:	20.0 unlimite	ed		D Apj	BE Ran ply N R	nge: 0.0 - ule: no (%): 1.00	30.0			Electro Use MS	n lons: In Info:	both yes	n	
MS	75.00		MSn Logic Mode: OR						Max Results: 800							

Event#: 2 MS(E-) Ret. Time : 0.260 -> 0.600 Scan# : 54 -> 122

4. S4 ¹H NMR (500 MHz) spectrum of compound **1** in CD_3OD

5. S5 13 C NMR (125 MHz) spectrum of compound **1** in CD₃OD

6. S6 HSQC spectrum of compound 1 in CD₃OD

7. S7 HMBC spectrum of compound $\mathbf{1}$ in CD₃OD

8. S8 1 H- 1 H COSY spectrum of compound **1** in CD₃OD

9. S9 ROESY spectrum of compound $\mathbf{1}$ in CD₃OD

(mqq) Ę

10. S10 HRESIMS of compound **1A**

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

11.S11 ¹H NMR (600 MHz) spectrum of compound **1A** in C_5D_5N

12.S12 13 C NMR (150 MHz) spectrum of compound **1A** in C₅D₅N

13. S13 HSQC spectrum of compound 1A in C_5D_5N

14. S14 HMBC spectrum of compound **1A** in C_5D_5N

15. S15 1 H- 1 H COSY spectrum of compound **1A** in C₅D₅N

16. S16 ROESY spectrum of compound 1A in C_5D_5N

17. S17 HRESIMS of compound 2

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

18. S18 ¹H NMR (500 MHz) spectrum of compound **2** in CD₃OD

19. S19 13 C NMR (125 MHz) spectrum of compound 2 in CD₃OD

20. S20 HSQC spectrum of compound **2** in CD₃OD

21. S21 HMBC spectrum of compound **2** in CD₃OD

22. S22 1 H- 1 H COSY spectrum of compound **2** in CD₃OD

23. S23 ROESY spectrum of compound 2 in CD₃OD

24. S24 HRESIMS of compound 3

Data File: D:\分子量测定\2013-01-24\gca40_TLJ1752A_25.lcd

Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Use Adduct
H	1	0	100	N	3	0	0	P	3	0	0	Br	1	0	0	Н
В	3	0	0	0	2	0	30	S	2	0	0	- I	3	0	0	
С	4	0	50	F	1	0	0	CI	1	0	0					
Error Margin (mDa): 20.0					DBE Range: 0.0 - 30.0							Electro				
HC Ratio: unlimited					Apply N Rule: no							Use MS				
M	all		Isotope RI (%): 1.00							Isotop)					
MSn Iso RI (%): 75.00						MSn Logic Mode: OR						Max R				

Event#: 2 MS(E-) Ret. Time : 0.240 -> 0.550 - 1.320 -> 2.167 Scan# : 50 -> 112 - 266 -> 436

25. S25 1 H NMR (600 MHz) spectrum of compound **3** in CD₃OD

26. S26 13 C NMR (150 MHz) spectrum of compound **3** in CD₃OD

27. S27 HSQC spectrum of compound 3 in CD₃OD

28. S28 HMBC spectrum of compound 3 in CD₃OD

29. S29 1 H- 1 H COSY spectrum of compound **3** in CD₃OD

S34

S35

31. S31 HRESIMS of compound 4

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions

19 formula(e) evaluated with 1 results within limits (up to 51 closest results for each mass) Elements Used: C: 0-200 H: 0-400 O: 9-11

32. S32 ¹H NMR (600 MHz) spectrum of compound 4 in CD_3OD

33. S33 13 C NMR (150 MHz) spectrum of compound 4 in CD₃OD

34. S34 HSQC spectrum of compound 4 in CD₃OD

35. S35 HMBC spectrum of compound 4 in CD₃OD

36. S36 ¹H-¹H COSY spectrum of compound **4** in CD₃OD

37. S37 ROESY spectrum of compound 4 in CD₃OD

38. S38 HRESIMS of compound 5

Formula Predictor Report - gca40_TLJ1728_23.lcd

Page 1 of 1

Data File: D:\分子量测定\2013-01-24\gca40_TLJ1728_23.lcd

se Adduct
H

Event#: 2 MS(E-) Ret. Time : 0.240 -> 0.550 - 1.380 -> 1.916 Scan# : 50 -> 112 - 278 -> 386

39. S39 ¹H NMR (600 MHz) spectrum of compound 5 in CD_3OD

40. S40 13 C NMR (150 MHz) spectrum of compound **5** in CD₃OD

S46

42. S42 HMBC spectrum of compound **5** in CD₃OD

S49

45. S45 HRESIMS of compound 6

MSn Iso RI (%): 75.00

Formula Predictor Report - gca40_TLJ192113_22.lcd

Data File: D:\分子量测定\2013-01-24\gca40_TLJ192113_22.lcd

Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Use Adduct
H	1	0	100	N	3	0	0	P	3	0	0	Br	1	0	0	Н
В	3	0	0	0	2	0	30	S	2	0	0	- I	3	0	0	HCOO
С	4	0	50	F	1	0	0	CI	1	0	0					
Error Ma	20.0		DBE Range: 0.0 - 30.0						Electron lons: both							
HC Ratio: unlimited					Apply N Rule: no					Use MSn Info: yes						
Max Isotopes: all				Isotope RI (%): 1.00						Isotope Res: 10000						

Max Results: 800

Event#: 2 MS(E-) Ret. Time : 0.250 -> 0.540 - 1.370 -> 2.040 Scan# : 52 -> 110 - 276 -> 410

MSn Logic Mode: OR

46. S46 ¹H NMR (600 MHz) spectrum of compound **6** in CD₃OD

47. S47 ¹³C NMR (150 MHz) spectrum of compound **6** in CD₃OD

S53

S56

52. S52 ESI MS spectrum of **1B**

53. S53 ¹H NMR spectrum of (*S*)-MTPA ester derivative **1s** of **1B** (800 MHz, CDCl₃)

54. S54 1 H- 1 H COSY spectrum of (*S*)-MTPA ester derivative **1s** of **1B** (800 MHz, CDCl₃)

S60

fl (ppm)

56. S56 ¹H NMR spectrum of (R)-MTPA ester derivative 1r of 1B (800 MHz, CDCl₃)

S62

fl (ppm)

58. S58 ROESY spectrum of (R)-MTPA ester derivative 1r of 1B (800 MHz, CDCl₃)

59. S59 ECD calculations of compound 1A

free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Figure 4. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of 3R, 5S, 10R- phyllanembloid A (**1A**), with Gaussian band shape 0.3ev.

60. S60 ECD calculations of compound 1

Figure 5. DFT optimized conformers of 3*R*,5*S*,10*R*- phyllanembloid A (1) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Figure 6. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of 3*R*,5*S*,10*R*-phyllanembloid A (**1**), with Gaussian band shape 0.3ev.

61. S61 ECD calculations of compound **3**

free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Figure 8. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of 3*S*,5*S*,10*R*- phyllanembloid C (**3**), with Gaussian band shape 0.5ev.

62. S62 ECD calculations of compound 4

energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Figure 10. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of 3*R*, 10*R*- phyllanembloid D (**4**), with Gaussian band shape 0.3ev.

63. S63 ECD calculations of compound 5

 $5a \Delta E (Kcal/mol) = 0.47 \qquad 5b \Delta E (Kcal/mol) = 0.08 \qquad 5c \Delta E (Kcal/mol) = 0.49 \qquad 5d \Delta E (Kcal/mol) = 0 \\ 16.3\% \qquad 31.6\% \qquad 15.8\% \qquad 36.2\% \\ Figure 11. DFT optimized conformers of the aglycon of <math>3R, 4R, 5S, 10R$ - phyllanembloid E (5) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Figure 12. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of 3*R*,4*R*,5*S*,10*R*- phyllanembloid E (**5**), with Gaussian band shape 0.5ev.
64. S64 OR calculations of compound 6

Figure 13. DFT optimized conformers of 3*R*,4*R*,5*S*,9*R*,10*S*,12*R*,13*R*- phyllanembloid F (**6**) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Table 1. Calculated optical rotations of conformers of 3R,4R,5S,9R,10S,12R,13R- phyllanembloid F (6)

conformers	6A	6B	6C	6D	6E	6F	6G
rotations	-64.8	-78.7	-88.7	-11.7	-110.5	-112.5	-97.6

Optical rotations were calculated with the basis set B3LYP 6-311G (++2d, p) at gas phase using the optimized conformers at B3LYP 6-311G (2d, p).