Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Dayanne Chianca de Moura^a, Monica Cerro-Lopez^b, Marco Antonio Quiroz^b, Djalma Ribeiro da Silva^a and Carlos Alberto Martínez-Huitle^{*a}

^a Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova -CEP 59.072-970, RN, Brazil.

^b Universidad de las Américas Puebla. Grupo de Investigación en Energía y Ambiente. ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, México.

Electrochemical cell set-up using Ti disk for anodization process for preparing TiO₂ nanotubes:

Figure S1. Scheme representation of TiO_2 nanotubes growth at disk by applying 30 V during 2 h of anodization. A) Ti serving as anode (65 cm² of geometrical area); C) Steel serving as the cathode.

Electrodeposition of PbO₂ onto a Ti/TiO₂-nanotubes disk array:

a

С

Figure S2. Scheme representation of PbO_2 growth at different deposit times. SEM images: (left) synthetized nanotubes without PbO2 deposit, and (right) TiO₂ nanotubes completely filled after PbO₂ growth, as showed in the SEM image of lateral section.

Electrochemical flow cell with Ti/TiO₂-nanotubes/PbO₂ electrode for treating synthetic dye solution:

Figure S3. A: 1) Anodic part; 2) electric support to anode; 3) anode $(Ti/TiO_2-nanotubes/PbO_2)$; 4) reaction compartment, 5) cathode (steel disk); 6) Metallic support to electrical contact with cathode and 7) cathodic part. B) Electrochemical system: 1) Reservoir, 2) thermometer, 3) electrochemical cell e 4) peristaltic pump. C: Image of electrochemical cell and with the each one of the compartments.

References

(1) P.-A. Michaud, *PhD These* No. 2595, EPFL, Switzerland, 2002.

Atomic force microscopy (AFM) surface analysis

Figure S4. AFM image referent to the study of TiO_2 -nanotubes synthetized. A-B and C-D segments have been used to study the shape of TiO_2 nanotube (see Fig. S2).

Gas Chromatographic – Mass Spectroscopy conditions:

Samples of anolyte were extracted into non-aqueous medium (2 mL of acetonitrile HPLC grade with 20 μ L of electrolysis sample) and were subjected to GC-MS analysis using GC-FOCUS and MS-ISQ Thermo Scientific to identify the intermediates following the conditions: GC: Varian column VF5 ms with a composition of 5% de fenil-arylene and 95% de dimetilpolisiloxane. Temperature program: 40°C – 5 min; 12°C/min – 100°C; 10°C/min – 200 °C and 10°C/min - 270 °C – 5 min. Injector: 220°C. Mode: Splitless. Gas flow: 0.8 mL/min. MS: Transfer line: 270°C; ions source temperature: 220°C, Mass range: 40-500 m/z. Injection: 1 μ L.

Tetragonal PbO₂ crystals

Figure S5. Tetragonal crystals organized in tree form when the electrodeposition time is significantly increased.

Grown of PbO_2 crystals onto TiO_2 -nanotubes

Figure S6. The grown of PbO_2 crystals onto TiO_2 nanotubes after 30 min of electrodeposition time. Relevant amount of PbO_2 crystals was formed.

Crystalline phases determined by X-ray diffractometer (XRD Bruker model D8Discover) using Cu K α (λ = 1.54 Å) radiation.

Figure S7. XRD spectrum from PbO_2 deposit over TiO_2 nanotubes showing that β -PbO₂ is its predominant crystalline structure.

Large TiO₂-nanotubes/PbO₂ anode

Figure S8. Large Ti/TiO_2 -nanotubes/PbO₂ anode in disk format before its use to treat a synthetic dye effluent by electrochemical oxidation.

Deposition mechanisms:

The chemical equations involved for PbO₂ formation during electrochemical deposition can be described as follows:

$H_2O \rightarrow OH_{ad} + H^+ + e^-$	(1)
$Pb^{2+} + OH_{ad} \rightarrow Pb(OH)_2^+$	(2)
$Pb(OH)_2^+ + H_2O \rightarrow PbO_2 + 3H^+ + e^-$	(3)

References

(1) J. Lee, H. Varela, S. Uhm and Y. Tak, *Electrochem. Commun.*, 2000, 2, 646-652.
(2) A. B. Velichenko, D. U. Girenko and F. I. Danilov, *Electrochim. Acta*, 1995, 40, 2803-2807.

(3) A. B. Velichenko, D. U. Girenko and F. I. Danilov, *J.Electroanal. Chem.*, 1996, **405**, 127-132.

(4) D. Devilliers, T. Baudin, M.T. Dinh Thi and E. Mahé, *Electrochimica Acta*, 2004, **49**, 2369-2377.

(5) X. Li, D. Pletcher and F. C. Walsh. Chem. Soc. Rev., 2011, 40, 3879-3894.

(6) D. Pletcher and F. C. Walsh, *Industrial Electrochemistry*, Chapman and Hall, London, 2nd ed., 1990.

Decolorization, mineralization and energetic parameters

The decay in color of dyes wastewaters during electrochemical treatment is usually monitored from the decolorization efficiency or percentage of color removal by:

Color removal (%) = $([ABS^{M} - ABS_{t}^{M}]/ABS_{0}^{M}) \times 100$

where ABS_0^M and ABS_t^M are the average absorbances before electrolysis and after an electrolysis time *t*, respectively, at the maximum visible wavelength (λ_{max}) of the wastewater determined from UV-Vis spectrophotometry Varian, model Cary 50 Com. We also monitored the COD decay, as a function of time through a multiparameter HANNA photometer COD-HI 83099, after digestion procedure. From this data, the percentages of COD were calculated:

$$\% COD \ decay = \left(\frac{\left[COD_0 - COD_t\right]}{COD_0}\right) \times 100$$
(4)

The energy consumption per volume of treated effluent was estimated and expressed in kWh.m⁻³. The cell voltage during the electrolysis was taken for calculation of the energy consumption, as follows:

Energy consumption =
$$\left(\frac{V \times A \times t}{V_s}\right)$$
 (1)

where *t* is the time of electrolysis (h); V (volts) and A (amperes) are the cell voltage and the electrolysis current, respectively; and Vs is the sample volume (m³).

References

(1) C. A. Martínez-Huitle, E. Brillas, Appl. Catal., B Environ. 2009, 87, 105.

Electrochemical stability of the Ti/TiO2-nanotubes/PbO2 electrode

Figure S9. Variation of E_{appl} , as a function of time, during fixed current density measurements for prolonged electrolysis times at Ti/TiO₂-nanotubes/PbO₂ anode.