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Electrochemical cell set-up using Ti disk for anodization process for preparing 
TiO2 nanotubes:

Figure S1. Scheme representation of TiO2 nanotubes growth at disk by applying 30 V 
during 2 h of anodization. A) Ti serving as anode (65 cm2 of geometrical area) ; C) Steel 
serving as the cathode.
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Electrodeposition of PbO2 onto a Ti/TiO2-nanotubes disk array:

 
   a b c

Figure S2. Scheme representation of PbO2 growth at different deposit times. SEM 
images: (left) synthetized nanotubes without PbO2 deposit, and (right) TiO2 nanotubes 
completely filled after PbO2 growth, as showed in the SEM image of lateral section.



Electrochemical flow cell with Ti/TiO2-nanotubes/PbO2 electrode for treating 
synthetic dye solution:

 

Figure S3. A: 1) Anodic part; 2) electric support to anode; 3) anode (Ti/TiO2-
nanotubes/PbO2); 4) reaction compartment, 5) cathode (steel disk); 6) Metallic support 
to electrical contact with cathode and 7) cathodic part. B) Electrochemical system: 1) 
Reservoir, 2) thermometer, 3) electrochemical cell e 4) peristaltic pump. C: Image of 
electrochemical cell and with the each one of the compartments.
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Atomic force microscopy (AFM) surface analysis

Figure S4. AFM image referent to the study of TiO2-nanotubes synthetized. A-B and C-
D segments have been used to study the shape of TiO2 nanotube (see Fig. S2).



Gas Chromatographic – Mass Spectroscopy conditions:

Samples of anolyte were extracted into non-aqueous medium (2 mL of acetonitrile 
HPLC grade with 20 µL of electrolysis sample) and were subjected to GC-MS analysis 
using GC-FOCUS and MS-ISQ Thermo Scientific to identify the intermediates 
following the conditions: GC: Varian column VF5 ms with a composition of 5% de 
fenil-arylene and 95% de dimetilpolisiloxane. Temperature program: 40ºC – 5 min; 
12°C/min – 100ºC; 10ºC/min – 200 ºC and 10ºC/min - 270 ºC – 5 min. Injector: 220ºC. 
Mode: Splitless. Gas flow: 0.8 mL/min. MS: Transfer line: 270ºC; ions source 
temperature: 220ºC, Mass range: 40-500 m/z. Injection: 1µL.



Tetragonal PbO2 crystals

Figure S5. Tetragonal crystals organized in tree form when the electrodeposition time is 
significantly increased. 



Grown of PbO2 crystals onto TiO2-nanotubes

Figure S6. The grown of PbO2 crystals onto TiO2 nanotubes after 30 min of 
electrodeposition time. Relevant amount of PbO2 crystals was formed.



Crystalline phases determined by X-ray diffractometer (XRD Bruker model 
D8Discover) using Cu Kα (λ= 1.54 Å) radiation.

Figure S7. XRD spectrum from PbO2 deposit over TiO2 nanotubes showing that β-
PbO2 is its predominant crystalline structure.

Large TiO2-nanotubes/PbO2 anode

Figure S8. Large Ti/TiO2-nanotubes/PbO2 anode in disk format before its use to treat a 
synthetic dye effluent by electrochemical oxidation. 



Deposition mechanisms:

The chemical equations involved for PbO2 formation during electrochemical deposition 
can be described as follows:
H2O→OHad +H+ + e- (1)
Pb2+ + OHad→Pb(OH)2

+ (2)
Pb(OH)2

+ + H2O → PbO2 + 3H+ + e- (3)
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Decolorization, mineralization and energetic parameters

The decay in color of dyes wastewaters during electrochemical treatment is usually 

monitored from the decolorization efficiency or percentage of color removal by:

Color removal (%)  = ([ABSM – ABSt
M]/ABS0

M)  100

where ABS0
M and ABSt

M are the average absorbances before electrolysis and after an 

electrolysis time t, respectively, at the maximum visible wavelength (max) of the 

wastewater determined from UV-Vis spectrophotometry Varian, model Cary 50 Com.

We also monitored the COD decay, as a function of time through a multiparameter 

HANNA photometer COD-HI 83099, after digestion procedure. From this data, the 

percentages of COD were calculated:
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The energy consumption per volume of treated effluent was estimated and expressed in 

kWh.m-3. The cell voltage during the electrolysis was taken for calculation of the energy 

consumption, as follows:
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where t is the time of electrolysis (h); V (volts) and A (amperes) are the cell voltage and 

the electrolysis current, respectively; and Vs is the sample volume (m3). 
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Electrochemical stability of the Ti/TiO2-nanotubes/PbO2 electrode

Figure S9. Variation of Eappl, as a function of time, during fixed current density 
measurements for prolonged electrolysis times at Ti/TiO2-nanotubes/PbO2 anode. 


