Two-Photon Absorption and Two-Photon Circular Dichroism of Hexahelicene Derivatives: A Study of the Effect of the Nature of Intramolecular Charge Transfer.

Carlos Díaz,¹ Yuly Vesga,¹ Lorenzo Echevarria,^{1,2} Irena G. Stará,³ Ivo Starỳ,³ Emmanuel Anger,⁴ Chengshuo Shen,⁴ Mehdi El Sayed Moussa,⁴ Nicolas Vanthuyne,⁵ Jeanne Crassous,⁴ Antonio Rizzo,⁶ Florencio E. Hernández ^{1,7,*}

¹ Department of Chemistry, University of Central Florida, P. O. Box 162366, Orlando, Florida 32816-2366, USA ² Departamento de Química, Universidad Simón Bolívar, Caracas 1020A, Venezuela

³ Institute of Organic Chemistry and Biochemistry ASCR, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic ⁴ Sciences Chimiaues de Rennes UMR 6226 CNRS. Université de Rennes 1, 35042 Rennes Cedex, France

-

⁵ Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France

⁶ CNR - Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico Fisici (IPCF-CNR), UOS di Pisa, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy

⁷The College of Optics and Photonics, CREOL, University of Central Florida, P. O. Box 162366, Orlando, Florida 32816-2366, USA

* Corresponding Authors: florencio.hernandez@ucf.edu

Supporting Information

I. Theoretical and computational approaches

OPA spectra were calculated from f_{0f} , and reported in molar absorptivity (${\ensuremath{\mathcal E}}$), $^{1,\,2}$

$$\varepsilon^{OPA}(\omega) = \frac{4\pi^2 \omega N_A}{3 \times 1000 \times Ln(10)(4\pi\epsilon_0)\hbar c_0} \times \frac{3}{2\hbar} \sum_f g(\omega, \omega_{0f}, \Gamma) \frac{f_{0f}}{\omega_{0f}}, \qquad (1)$$

$$\varepsilon^{OPA}(\omega) \approx 1.05495 \times 10^3 \times \omega \sum_f g(\omega, \omega_{0f}, \Gamma) \frac{f_{0f}}{\omega_{0f}}, \qquad (2)$$

where, $\omega = 2\pi c_0/\lambda$ is the circular frequency of the incident light (c_0 being the speed of light in

vacuo) and $f_{0f} = \frac{2m_e \omega_{0f} |\mu_{0f}|^2}{3\hbar e^2}$.

ECD spectra were computed from R_{0f}^{ECD} , and reported in molar absorptivity difference ($\Delta \varepsilon$),¹⁻³

$$\Delta \varepsilon^{ECD}(\omega) = \frac{64\pi^2 N_A \omega}{9 \times 1000 \times \ln(10)(4\pi\varepsilon_0)\hbar c_0^2} \sum_f g(\omega, \omega_{0f}, \Gamma) \cdot R_{0f}^{ECD}$$
(3)

$$\Delta \varepsilon^{ECD}(\omega) \approx 2.73719 \times 10^{1} \times \omega \sum_{f} g(\omega, \omega_{0f}, \Gamma) \cdot R_{0f}^{ECD}, \qquad (4)$$

where $R_{0f}^{ECD} = \frac{3}{4}\Im(\mathbf{\mu}_{ij} \cdot \mathbf{m}_{ij})$

OPA and ECD spectra have units of $mol^{-1}cm^{-1}l$, as long as all the elements in Equations (2) and (4) are introduced in atomic units.

TPA spectra were obtained from ^{2, 4}

$$\delta^{TPA}(\omega) = \frac{1}{30} \frac{(2\pi)^3 \omega^2}{c_0^2 (4\pi\varepsilon_0)^2} \times \sum_f g\left(2\omega, \omega_{0f}, \Gamma\right) \cdot \overline{\delta}_{0f}^{TPA}\left(\omega_{0f}\right),$$
(5)

$$\delta^{TPA}(\omega) \approx 8.35150 \times 10^{-4} \times \omega^2 \sum_f g\left(2\omega, \omega_{0f}, \Gamma\right) \cdot \overline{\delta}_{0f}^{TPA}\left(\omega_{0f}\right), \tag{6}$$

where $\overline{\delta}_{0f}^{TPA}(\omega_{0f})$ is the orientationally averaged two-photon probability for the degenerate case and is defined in terms of the molecular parameters A_1 and A_2 ,

$$\overline{\delta}_{0f}^{TPA}(\omega_{0f}) = F \times \mathcal{A}_{1}(\omega_{0f}) + (G + H) \times \mathcal{A}_{2}(\omega_{0f}), \qquad (7)$$

$$\mathcal{A}_{1}(\omega_{0f}) = \sum_{\rho\sigma} \mathcal{S}_{\rho\rho}^{0f}(\omega_{0f}) \mathcal{S}_{\sigma\sigma}^{0f,*}(\omega_{0f})$$
(8)

$$\mathcal{A}_{2}(\omega_{0f}) = \sum_{\rho\sigma} \mathcal{S}_{\rho\sigma}^{0f}(\omega_{0f}) \mathcal{S}_{\rho\sigma}^{0f,*}(\omega_{0f}), \qquad (9)$$

here S_{ii}^{0f} refers to the two-photon transition matrix elements and *F*, *G* and *H* are scalars that define the polarization of the excitation. For linearly polarized light F = G = H = 2.

TPCD spectra were simulated according to, ^{2, 5, 6}

$$\Delta\delta^{TPCD}\left(\omega\right) = \frac{4}{15} \frac{\left(2\pi\right)^3 \omega^2}{c_0^3 \left(4\pi\varepsilon_0\right)^2} \times \sum_f g\left(2\omega, \omega_{0f}, \Gamma\right) \cdot R_{0f}^{TPCD}\left(\omega_{0f}\right) \tag{10}$$

$$\Delta \delta^{TPCD}(\omega) \approx 4.87555 \times 10^{-5} \times \omega^2 \sum_f g\left(2\omega, \omega_{0f}, \Gamma\right) \cdot R_{0f}^{TPCD}(\omega_{0f}), \tag{11}$$

where $R_{0f}^{TPCD}(\omega_{0f})$ was obtained from,

$$R_{0f}^{TPCD}(\omega_{0f}) = -b_1 \mathcal{B}_1(\omega_{0f}) - b_2 \mathcal{B}_2(\omega_{0f}) - b_3 \mathcal{B}_3(\omega_{0f})$$
(12)

here b_1 , b_2 and b_3 are scalars that depend on the experiment. In the double L-scan setup⁷ two colinear right or left circularly polarized photons traveling in the same direction are employed, for such conditions $b_1 = 6$ and $b_2 = -b_3 = 2$. The molecular parameters $\mathcal{B}_i(\omega_{0f})$ were obtained from,

$$\mathcal{B}_{1}^{TI}(\omega_{0f}) = \frac{8}{\omega_{0f}^{3}} \sum_{\rho\sigma} \mathcal{M}_{\rho\sigma}^{p,0f}(\omega_{0f}) \mathcal{P}_{\rho\sigma}^{p^{*},0f}(\omega_{0f}), \qquad (13)$$

$$\mathcal{B}_{2}^{TI}(\omega_{0f}) = \frac{4}{\omega_{0f}^{3}} \sum_{\rho\sigma} \mathcal{T}_{\rho\sigma}^{+,0f}(\omega_{0f}) \mathcal{P}_{\rho\sigma}^{p^{*},0f}(\omega_{0f}), \qquad (14)$$

$$\mathcal{B}_{3}^{TI}(\omega_{0f}) = \frac{8}{\omega_{0f}^{3}} \sum_{\rho\sigma} \mathcal{M}_{\rho\rho}^{p,0f}(\omega_{0f}) \mathcal{P}_{\sigma\sigma}^{p^{*},0f}(\omega_{0f}), \qquad (15)$$

where $\mathcal{P}_{ii}^{p^*,0f}$ and $\mathcal{T}_{ii}^{+,0f}$ are the electric transition dipole and quadrupole matrix elements in the velocity formulation, respectively, and $\mathcal{M}_{ii}^{p,0f}$ is the magnetic transition dipole matrix element. TPA and TPCD spectra obtained from Equations (6) and (11) are given in Göppert-Mayer units (GM), i.e., 10^{-50} cm⁴·s·molecule⁻¹·photon⁻¹, as long as all the equation elements are introduced in atomic units.

In order to obtain the corresponding theoretical linear and nonlinear spectra of all the helicene derivatives we used normalized Lorentzian lineshape functions $g(\omega, \omega_{0f}, \Gamma)$, $g(2\omega, \omega_{0f}, \Gamma)$ for the one- and two-photon cases respectively, centered on the computed excitation circular frequency ω_{0f} for a $0 \rightarrow f$ transition. All the OPA and ECD spectra were obtained using a linewidth (Γ) of 0.5 eV (FWHM). For the TPA and TPCD spectra a value of $\Gamma = 0.15$ eV (FWHM) was used.

OPA, ECD, TPA and TPCD spectra of A6 and CN6 calculated with B3LYP

Rotatory Strength x 10² / (10⁻⁴⁰ erg.esu.cmGauss⁻¹ 6 22 0 $\Delta \epsilon \ge 10^2 / (1. \text{mol}^{-1}. \text{cm}^{-1})$ **Oscillator Strength** 0.4 ε x 10⁴ / (l.mol⁻¹.cm⁻¹ 6 12 -3 -6 12 -2 CN6 CN6 f_{0f} CN --- Theo. OPA 2 0.8 6 Exp. OPA 6 0 0.4 3 RECD Theo. ECD -2 Exp. ECD 0.0 0 300 350 400 **45**0 200 250 300 350 400 450 $\mathbf{200}$ 250**OPA** Wavelength (nm)

Figure SI-1. Experimental (black solid line) and theoretical (colored dotted lines) UV-vis (left column) and ECD (right column) spectra of A6 and CN6. Colored empty symbols display the oscillator strengths for each molecule. OPA for the lowest 60 electronic excited states were computed at the B3LYP/6-31G(d) level of theory using Gaussian 09 in THF using PCM. The theoretical spectra are only shown within the measurable spectral range (200 nm through 450 nm) with spectral shifts: A6 (-11 nm) and CN6 (-35 nm). $\Gamma = 0.5$ eV (FWHM) was used for all the spectra. Excited states contributing to 20 % or more of the total intensity of prominent spectral features observed in the theory and the experiment are highlighted. All the experimental spectra were taken in THF solutions.

OPA Wavelength (nm)

Figure SI-2. Experimental (black scattered squares) and theoretical TPA (left column) and TPCD (right column) spectra of A6 and CN6 calculated *in vacuo* using Dalton 2011. TPA was computed for the first 60 electronic excited states (colored scattered symbols) for both molecules. TPCD was computed for the first 48 and 40 electronic excited states (colored scattered symbols) for A6 and CN6, respectively. The Lorentzian convolution (colored dotted lines) was obtained using a linewidth $\Gamma = 0.15$ eV (FWHM). The theoretical spectra were calculated with B3LYP/ aug-cc-pVDZ for A6, and B3LYP/ 6-311++G(d,p) for CN6.. The theoretical spectral shifts are: A6 (0 nm) and CN6 (-10 nm). Excited states contributing to 20 % or more of the total intensity of prominent spectral features observed in the theory and the experiment are highlighted. All the experimental spectra were taken in THF solutions.

III. ASSIGNMENT OF THEORETICAL TRANSITIONS TO EXPERIMENTAL BANDS

Tables 1.a and 1.b. Assignment of theoretical (B3LYP and CAM-B3LYP) excited states (E.S.) to experimental (Exp.) bands. Only E.S. contributing to 20 % or more of the total intensity of the corresponding bands are shown. Tables for A6 and CN6 are labeled 1.a and 1.b, respectively. Each table contains data for the OPA, ECD, TPA and TPCD spectra of the corresponding helicenes. The theoretical OPA wavelengths are shown with the corresponding spectral shift (see figure captions of the corresponding band for its maximum amplitude, E.S = Excited State Number, $\varepsilon = \text{molar absorptivity in 1.mol}^{-1} \cdot \text{cm}^{-1}$, $\Delta \varepsilon = \text{difference in molar absorptivity in 1.mol}^{-1} \cdot \text{cm}^{-1}$, f = oscillator strength, $R^{ECD} = \text{rotatory strength in 10}^{-40} \text{ erg.esu.cm.Gauss}^{-1}$, TPA = two-photon probability in GM, $R^{TPCD} = \text{two-photon circular dichroism in GM}$.

1.0	Exp.	B3	LYP	CAM-	B3LYP		Exp.	B3I	LYP	CAM-	B3LYP
(A6)	λ^{MAX} (E)	λ^{MAX} (E)	<i>E.S.</i> (<i>f</i>)	λ^{MAX} (E)	<i>E.S.</i> (<i>f</i>)		λ ^{MAX} (Δε)	λ ^{MAX} (Δε)	$\frac{E.S.}{(R^{ECD})}$	λ ^{MAX} (Δε)	(\mathbf{R}^{ECD})
	321 (28,310)	328 (23,870)	3 (0.34) 4 (0.06)	310 (32,040)	3 (0.50) 5 (0.25) 6 (0.13)		325 (207)	334 (168)	3 (4.87)	328 (188)	3 (7.35)
OPA Bands	259 (72,160)	252 (48,860)	12 (0.21) 13 (0.20) 14 (0.23) 15 (0.13) 16 (0.16)	257 (87,390)	9 (0.23) 11 (0.24) 13 (0.19) 14 (0.48) 15 (0.32) 16 (0.26)	ECD (+) Bands	225 (70)	223 (53)	22 (1.10) 23 (0.89)	227 (52)	19 (1.88) 21 (1.22)
	230 (64,780)	215 (49,940)	24 (0.27) 25 (0.15) 26 (0.18)	220 (40,160)	22 (0.25) 25 (0.18)	ECD (-) Bands	256 (-225)	246 (-155)	12 (-0.77) 16 (-1.91) 18 (-0.94)	247 (-144)	8 (-1.07) 9 (-1.03) 15 (-1.95) 16 (-2.60)
				CAN]		Dat		C L L L	
	Exp.	eMAX		CAM-	BSLYP		Exp.	MAX B31		CAM-	BSLYP
	(TPA)	λ^{TPA} (TPA)	$(\boldsymbol{\delta}^{TPA})$	(TPA)	$(\boldsymbol{\delta}^{TPA})$		$\lambda^{}$ (TPCD)	$\lambda^{TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$	(\mathbf{R}^{TPCD})	λ^{-1} (TPCD)	(\mathbf{R}^{TPCD})
	280 (6.50)	295 (21.0)	7 (6.66) 9 (5.51) 10 (8.36) 11 (8.14)	292 (42.6)	9 (16.16) 12 (9.17) 13 (10.46) 14 (9.13)	TPCD (+) Bands	235 (0.76)	-	-	237 (0.13)	44 (0.07) 48 (0.03)
TPA Bands	235 (7.13)	247 (29.2)	17 (8.76) 19 (3.17) 21 (4.46) 23 (2.81) 26 (3.15)	234 (93.2)	26 (3.97) 28 (6.04) 29 (5.44) 35 (4.43) 45 (14.03) 55 (10.02)	TPCD (-) Bands	295 (-0.41)	295 (-0.15)	7 (-0.08) 9 (-0.04) 10 (-0.08) 11 (-0.06)	293 (-0.43)	9 (-0.18) 12 (-0.12) 13 (-0.11)
	215 (13.4)	216 (60.6)	40 (10.44) 46 (8.04)	-	-		250 (-0.20)	225 (-0.38)	35 (-0.10) 40 (-0.09)	249 (-0.10)	33 (-0.06) 34 (-0.08)

1 h	Exp.	B3I	LYP	CAM-	B3LYP		Exp.	B3I	LYP	CAM-	B3LYP
1.U (CN6)	λ^{MAX}	λ^{MAX}	E.S. (f)	λ^{MAX}	E.S. (f)		λ^{MAX}	λ^{MAX}	E.S.	λ^{MAX}	E.S.
	(3)	(3)	1.5. ()	(3)	L .5. ())		(Δε)	(Δε)	(\mathbf{R}^{ECD})	(Δε)	(\mathbf{R}^{ECD})
	333	376	1 (0.26)	345	1 (0.25)		305	295	7 (3 13)	296	4 (4.94)
	(39,127)	(25,962)	2 (0.18)	(40,810)	2 (0.42)		(103)	(121)	7 (3.13)	(206)	5 (1.65)
OPA Bands	280 (56,205)	297 (57,230)	4 (0.20) 5 (0.20) 7 (0.69)	297 (67,290)	3 (0.23) 4 (0.80) 5 (0.23) 6 (0.19) 7 (0.28)	ECD (+) Bands	246 (130)	214 (197)	27 (3.18)	220 (148)	21 (1.23) 22 (3.59)
	210 (76,345)	215 (46,940)	26 (0.14) 27 (0.25) 29 (0.20)	222 (55,016)	7 (0.28) 20 (0.21) 21 (0.25) 22 (0.33)	ECD (-) Bands	353 (-180)	376 (-157)	1 (-2.24) 2 (-3.00) 4 (-3.66)	345 (-254)	1 (-3.13) 2 (-4.73) 3 (-2.47)
	Exp.	B3I	LYP	CAM-	B3LYP		Exp.	B3I	LYP	CAM-	B3LYP
	λ^{MAX}	λ^{MAX}	E.S.	λ^{MAX}	E.S.		λ^{MAX}	λ^{MAX}	E.S.	λ^{MAX}	E.S.
	(TPA)	(TPA)	$(\boldsymbol{\delta}^{TPA})$	(TPA)	$(\boldsymbol{\delta}^{TPA})$		(TPCD)	(TPCD)	(\mathbf{R}^{TPCD})	(TPCD)	(\mathbf{R}^{TPCD})
	306 (14.9)	320 (178.8)	7 (77.79) 8 (139.1)	298 (196.8)	8 (155.34)	TROP	300 (1.80)	290 (1.12)	12 (0.34) 13 (1.06) 15 (0.58)	297 (1.35)	8 (1.13)
TPA Bands	280 (20.5)	278 (354.0)	13 (157.8) 17 (245.5)	-	-	(+) Bands	265 (0.70)	262 (0.48)	18 (0.22) 21 (0.36)	257 (3.51)	18 (1.80) 20 (1.20) 21 (1.08)
	237 (62.5)	-	-	256 (1208.8)	19 (699.0)		230 (1.20)	238 (0.82)	30 (0.39)	237 (2.62)	32 (0.55) 33 (0.97)

IV. RAW THEORETICAL DATA

Tables A6-1, A6-2, CN6-1 and CN6-2. Raw data for the B3LYP and CAM-B3LYP calculations for OPA, ECD, TPA and TPCD for A6 and CN6. The tables labeled as X-1 contain the oscillator strength (*f*) and the rotatory strength (R^{ECD}) for all the calculated excited states of the helicene "X". The tables labeled as X-2 contain the two-photon probability (δ^{TPA}) and the two-photon circular dichroism rotatory strength (R^{TPCD}) for all the calculated excited states of the helicene "X". The OPA wavelength (λ) is used for excited states in all the X-1 and X-2 tables. The units used are shown in the corresponding header of each column except for the case of R^{ECD} were the units are10⁻⁴⁰ erg.esu.cm.Gauss⁻¹. Calculations of the values in tables X-1 were performed in Gaussian 09 while those in tables X-2 were performed in Dalton 2011.

A6-1	B3	LYP/6-31G(0	l)	CAM-B3LYP/6-31G(d)			
Excited State	λ (nm)	f	R ^{ECD}	λ (nm)	f	R ^{ECD}	
1	383.8493	0.0299	31.9944	362.4670	0.0201	21.1000	
2	369.6361	0.0049	-2.0448	344.0547	0.0138	11.8000	
3	342.4481	0.3370	486.5820	324.4329	0.5044	735.0000	
4	327.5303	0.0615	-71.6155	305.2487	0.0253	4.5325	
5	313.9852	0.0358	6.2104	298.0082	0.2504	-317.8760	
6	311.0080	0.0347	-33.2799	294.5789	0.1289	-56.0258	
7	300.8720	0.1321	61.1488	288.0257	0.0651	96.1980	
8	297.1440	0.0276	28.8598	271.9679	0.0999	-107.1200	
9	290.1213	0.0018	-0.4479	264.6685	0.2278	-103.1310	
10	288.6018	0.0104	26.2499	262.8047	0.1319	7.4937	
11	285.9658	0.0459	-27.0694	261.2315	0.2399	-24.3476	
12	276.5140	0.2120	-76.5799	259.7527	0.0329	2.5996	
13	270.1751	0.1952	34.7556	256.7857	0.1923	-50.7176	
14	263.5476	0.2252	-71.8864	255.8129	0.4874	109.0203	
15	260.3543	0.1257	-41.6449	247.5717	0.3210	-195.0000	
16	255.9577	0.1564	-190.6840	242.3518	0.2604	-258.9580	
17	253.1512	0.0897	-11.3075	235.7095	0.0367	25.1375	
18	244.3070	0.1006	-93.6114	231.6334	0.0108	7.3625	
19	241.5228	0.0617	38.5629	228.3228	0.0904	187.7094	
20	240.1149	0.1302	14.7367	226.5666	0.0498	6.6348	
21	239.8362	0.0254	13.3179	225.1482	0.1098	121.6693	
22	232.6753	0.0421	109.9029	221.0595	0.2485	-28.2072	
23	232.0048	0.0043	36.1537	219.2853	0.0166	10.3000	
24	228.5660	0.2731	-98.3775	216.5961	0.0186	10.9512	
25	225.7896	0.1516	89.3951	216.2631	0.1753	-203.2640	
26	223.5747	0.1810	12.1399	213.4580	0.0633	-48.2560	
27	222.1287	0.1179	-100.3100	212.5297	0.0953	-81.8469	
28	219.4007	0.0042	-10.3609	210.5179	0.0255	-18.9000	
29	215.2563	0.0070	-4.7123	207.7170	0.0082	18.6838	
30	213.8197	0.1656	42.1417	206.0411	0.0225	3.4196	

A6-1 (cont.)	B3L	YP/6-31G(d))	CAM-B3LYP/6-31G(d)			
Excited State	λ (nm)	f	R ^{ECD}	λ (nm)	f	R ^{ECD}	
31	210.0736	0.0371	-34.8616	203.2013	0.0171	30.3746	
32	208.6629	0.1100	-105.9810	201.1219	0.0365	4.3316	
33	206.1819	0.2459	-161.5840	200.0435	0.0850	79.8726	
34	205.1821	0.0582	-46.1860	199.1278	0.1317	17.2864	
35	204.7247	0.0619	5.6543	198.0091	0.1569	-79.4301	
36	203.4982	0.0433	-0.8139	197.8023	0.0857	13.2392	
37	201.9931	0.0095	46.4539	196.5968	0.0726	34.6459	
38	201.5563	0.0070	-19.2163	195.8853	0.0147	25.7737	
39	200.2897	0.0289	21.7335	194.8757	0.0180	-14.8585	
40	199.7540	0.0213	-21.4638	194.5998	0.0734	2.1300	
41	198.4781	0.0624	-16.4580	193.5635	0.0534	15.4218	
42	197.2812	0.0443	4.0291	192.8858	0.0255	-10.3269	
43	196.4528	0.0971	-14.0167	191.9030	0.0288	14.6782	
44	194.9056	0.0775	-19.9429	190.8819	0.0392	2.2263	
45	194.1760	0.0168	3.8906	189.5522	0.0017	-8.7754	
46	193.4097	0.0268	25.2834	188.3321	0.0337	-5.6122	
47	192.1716	0.0047	12.5531	188.2430	0.1312	42.7722	
48	190.4360	0.0239	-15.6655	187.0394	0.0299	-14.9016	
49	189.7830	0.0306	31.8045	186.5592	0.0523	2.0942	
50	188.2071	0.0300	29.6835	185.3045	0.0498	-28.8560	
51	187.1051	0.0868	10.3974	185.1482	0.0096	5.3992	
52	184.8428	0.0389	31.4701	182.9901	0.0487	24.6249	
53	183.9980	0.0308	-11.9482	182.8360	0.0190	9.8560	
54	182.5728	0.1364	35.8981	182.4967	0.0546	16.1728	
55	181.8097	0.0019	4.1482	180.9609	0.0190	6.0398	
56	181.2225	0.0590	130.7983	180.7126	0.1324	-55.4119	
57	180.3027	0.0635	37.7378	179.4395	0.0290	13.7060	
58	179.8841	0.0211	29.9612	178.5019	0.0431	22.6407	
59	178.6581	0.0540	-33.2511	176.8496	0.0568	-7.8536	
60	178.3702	0.0574	10.4427	175.7893	0.0406	-12.9415	

A6-2	B3LYP/aug-ccpVDZ			CAM-B3LYP/aug-cc-pVDZ			
Excited State	λ (nm)	$\boldsymbol{\delta}^{TPA}$ (GM)	$\begin{array}{c} R^{IPCD} \\ (GM) \end{array}$	λ (nm)	$\boldsymbol{\delta}^{TPA}$ (GM)	$\frac{R^{IPCD}}{(\mathbf{GM})}$	
1	394.8543	1.27000	-0.01929	351.2301	0.14782	-0.00270	
2	382.6674	0.55496	-0.00102	334.1893	0.39210	-0.00030	
3	351.2301	5.93794	-0.03153	310.7374	1.85404	-0.00907	
4	337.8317	2.20480	-0.04397	293.1070	0.69526	-0.00797	
5	322.0370	1.21139	-0.00863	286.3377	0.32696	0.00007	
6	319.5470	2.05448	0.00281	282.4242	0.50485	-0.00793	
7	309.1876	6.66452	-0.07773	276.1342	0.08506	-0.00366	
8	306.8917	0.47980	0.00180	259.9250	5.01092	-0.04873	
9	297.3243	5.51201	-0.04130	252.0005	16.16021	-0.18182	
10	296.6130	8.35570	-0.07505	249.4653	3.41995	-0.05208	
11	291.7276	8.14274	-0.05743	248.4654	0.51988	-0.01182	
12	283.7168	4.53000	-0.03320	247.4735	9.16998	-0.12015	
13	276.7505	3.54522	-0.01721	243.5840	10.46029	-0.10813	
14	270.1182	3.34479	-0.00426	241.2145	9.13240	-0.04457	
15	266.6328	0.62261	0.01411	233.4920	4.72279	0.01242	
16	262.6785	1.77888	-0.01046	228.7532	1.40306	-0.01530	
17	259.3813	8.75658	0.01282	227.9122	1.01346	-0.03824	
18	254.5878	0.45975	-0.01210	223.7983	1.00344	-0.01116	
19	250.4732	3.16941	-0.01231	222.1940	2.41777	0.00905	
20	248.9643	1.60349	0.02837	221.4004	0.48731	0.00459	
21	247.9685	4.45972	0.02239	217.8985	7.64165	-0.01487	
22	247.9685	1.02473	-0.01556	216.7557	0.58502	0.00143	
23	247.4735	2.81864	0.07415	216.0004	4.19664	0.02102	
24	245.5133	1.12620	-0.03143	215.6248	1.34042	-0.01469	
25	245.0281	0.53116	-0.01577	213.7659	0.52615	-0.00122	
26	243.1064	3.15688	-0.07519	212.3018	3.97115	0.01664	
27	240.2795	0.47478	-0.01202	210.4996	0.34701	0.02074	
28	237.9736	4.52235	0.09125	209.4328	6.03816	-0.00151	
29	237.5177	0.38960	0.00708	209.0797	5.43685	-0.03276	
30	236.1605	3.80830	0.00249	206.6404	1.55338	0.00835	
31	234.8186	1.09113	-0.01735	206.2966	0.34575	0.01981	
32	233.0531	2.56000	-0.03841	205.6123	0.63513	0.01016	
33	232.1802	1.89162	0.02551	204.9326	1.60349	-0.05550	
34	229.6004	1.39053	-0.04503	202.9202	1.19510	-0.07543	
35	229.1760	2.68084	-0.10427	202.5886	4.43466	-0.02056	
36	227.9122	0.90447	-0.04254	201.2731	2.76853	0.04818	
37	226.6622	0.76792	-0.01408	199.9746	1.74129	-0.01044	
38	225.4259	1.71624	-0.00904	199.3316	0.64891	0.00664	
39	224.2030	0.87065	-0.02497	198.6927	0.36454	0.03203	
40	222.1940	10.43523	-0.08556	197.7420	0.67021	-0.00776	

A6-2	B3LYP/aug-ccpVDZ			CAM-B3LYP/aug-cc-pVDZ			
Excited State	λ (nm)	$\boldsymbol{\delta}^{TPA}$ (GM)	$\frac{R^{IPCD}}{(GM)}$	λ (nm)	δ^{TPA} (GM)	R ^{TPCD} (GM)	
41	221.4004	3.34479	-0.01526	197.4271	2.14217	0.00976	
42	220.6125	0.94080	-0.01627	195.8677	0.68274	0.00567	
43	219.8302	4.20917	-0.04847	194.6377	3.58281	-0.03247	
44	219.4411	1.20763	0.00057	193.4232	3.73313	0.07446	
45	217.5162	2.79359	-0.03416	193.1219	14.03057	-0.00135	
46	217.1353	8.04252	-0.02958	191.3337	2.10459	0.01111	
47	215.2504	5.22388	-0.05972	191.0389	1.65360	0.00315	
48	214.8774	4.37203	0.05850	190.4520	4.15906	0.03409	
49	214.1351	0.82805		189.8687	3.47006		
50	213.0313	1.39053		189.2889	2.40524		
51	212.6659	3.36000		188.4259	5.73750		
52	211.9389	1.55338		188.1400	2.95644		
53	211.9389	1.18000		187.5707	1.65360		
54	211.5772	1.08987		186.7233	6.85243		
55	210.4996	0.65392		186.1625	10.02183		
56	210.1428	0.26057		185.6052	0.40338		
57	209.7872	4.59752		185.3277	0.68900		
58	209.4328	3.38237		184.7753	3.38237		
59	209.0797	2.19228		183.9529	3.84588		
60	208.3769	0.95207		183.6804	3.95862		

CN6-1	B31	L YP/6-31G (d	l)	CAM-B3LYP/6-31G(d)			
Excited State	λ (nm)	f	R ^{ECD}	λ (nm)	f	R ^{ECD}	
1	413.0850	0.2605	-224.3103	351.6360	0.2496	-312.7565	
2	409.1859	0.1810	-299.9886	344.9155	0.4168	-473.1605	
3	371.1743	0.0971	85.7189	322.0681	0.2257	-246.6560	
4	360.8783	0.2014	-366.2307	300.6531	0.7991	493.8419	
5	351.7457	0.1961	36.5134	297.9581	0.2256	165.2079	
6	341.7402	0.0654	94.7993	284.6200	0.1934	73.0071	
7	329.4188	0.6885	313.0046	277.1630	0.2828	-12.1014	
8	327.7208	0.0625	49.0672	267.5168	0.0530	-31.1877	
9	313.9852	0.1182	-92.8447	263.3293	0.2926	14.8910	
10	306.1922	0.0860	-12.0795	257.1788	0.0150	-31.2452	
11	300.1945	0.0314	-2.4993	254.8947	0.2557	64.4046	
12	297.9939	0.0246	-40.2860	254.0798	0.0048	0.0757	
13	295.8818	0.1746	70.3055	251.5232	0.0094	-0.4300	
14	291.8148	0.0515	8.4334	247.1806	0.1085	15.4467	
15	284.3655	0.0084	-2.0336	242.2165	0.1551	-0.5010	
16	281.2306	0.1099	-67.8264	239.2669	0.1247	-31.3011	
17	280.7403	0.0015	3.7972	234.7236	0.1096	46.8440	
18	277.4732	0.0002	-0.1544	231.3165	0.1365	127.5695	
19	272.8326	0.1737	4.2144	226.5902	0.0597	-6.2689	
20	267.5976	0.1181	27.9440	223.8370	0.2096	-181.0844	
21	263.7719	0.1192	-76.3986	222.6193	0.2537	122.6683	
22	262.2598	0.0001	0.0116	218.1883	0.3364	359.3828	
23	259.4228	0.0822	73.3694	217.5223	0.0267	-75.6681	
24	256.6837	0.0211	-3.2626	213.6060	0.0481	59.9085	
25	254.6434	0.0028	-5.8270	208.9407	0.1847	-7.0017	
26	251.9526	0.1362	46.0876	206.6217	0.0348	-26.3946	
27	248.5084	0.2505	317.5084	206.3431	0.0022	-8.5636	
28	245.4095	0.0755	-28.9192	204.7924	0.0521	-49.7379	
29	243.6588	0.2041	55.8883	204.3434	0.0752	40.4847	
30	242.1597	0.0198	17.9935	201.8352	0.0158	-30.6210	
31	239.3131	0.0449	2.7475	199.1444	0.0062	-3.9081	
32	236.5011	0.0154	-11.7069	198.2750	0.0275	-4.1987	
33	233.8999	0.0553	-14.5338	197.3786	0.1346	-26.9690	
34	233.5651	0.0599	7.3640	196.6023	0.0078	13.1800	
35	232.0786	0.0127	4.4386	194.4898	0.0247	22.8200	
36	230.7268	0.0001	0.0342	193.0032	0.0734	118.3548	
37	230.4694	0.0084	2.4079	192.4072	0.0592	22.4782	
38	228.2714	0.0099	-41.8456	191.1170	0.0016	-1.2014	
39	226.8680	0.0022	0.6319	189.8702	0.0260	23.4941	
40	226.4784	0.0787	-22.9982	188.7860	0.0050	1.7189	

CN6-1 (cont.)	B3	LYP/6-31G(d	1)	CAM-B3LYP/6-31G(d)			
Excited State	λ (nm)	f	R ^{ECD}	λ (nm)	f	R ^{ECD}	
41	224.9988	0.0016	-1.4341	188.2500	0.0662	60.1178	
42	223.1481	0.0709	-84.4783	187.6091	0.0002	-4.5005	
43	222.6952	0.0156	-5.6236	187.2549	0.0256	29.8030	
44	221.9100	0.1414	146.3171	185.6121	0.0752	-68.5416	
45	220.6031	0.0790	-23.8800	185.5816	0.0413	60.1034	
46	219.7273	0.1024	109.6089	182.9310	0.0353	21.4315	
47	219.4862	0.0006	0.7182	182.1650	0.0165	-63.8994	
48	217.8395	0.0092	-5.1052	181.9912	0.0082	-7.7402	
49	215.6645	0.0767	27.3114	181.3921	0.0026	5.6976	
50	215.1405	0.0568	55.8714	180.8102	0.1811	-81.3842	
51	213.8307	0.0764	-38.3731	180.7206	0.0176	-20.7916	
52	212.0098	0.0318	125.1603	179.8867	0.3512	-184.0033	
53	211.4349	0.0515	9.9544	179.2055	0.0385	-47.4507	
54	211.1685	0.0537	-34.1161	178.1651	0.2542	199.2258	
55	209.4101	0.0094	-3.5030	178.0347	0.3509	-139.9201	
56	207.8514	0.0131	-4.8020	177.7208	0.0093	-9.4533	
57	206.5528	0.0002	-1.7731	176.9623	0.0104	-5.5484	
58	205.3248	0.0312	-1.3186	176.2679	0.0395	55.2400	
59	205.0091	0.0353	19.0356	175.6088	0.0175	-0.1892	
60	204.8228	0.0004	1.5980	174.1706	0.0388	-5.6931	

CN6-2	B3LYP/6-311++G(d,p)			CAM-B3LYP/6-311++G(d,p)			
Excited State	λ (nm)	$\boldsymbol{\delta}^{TPA}$ (GM)	R^{IPCD} (GM)	λ (nm)	$\boldsymbol{\delta}^{TPA}$ (GM)	R^{IPCD} (GM)	
1	414.6630	16.6613	-0.0098	357.3033	2.9063	0.0010	
2	407.8429	70.9045	0.3175	348.2703	18.7909	0.0539	
3	375.7098	44.9730	0.1763	328.0006	10.0093	-0.0077	
4	365.7352	6.5643	-0.0139	305.3799	4.3595	0.0895	
5	355.2557	65.1419	0.7197	301.6648	10.3977	0.0575	
6	346.3247	14.6569	0.0312	289.6828	3.3949	0.0172	
7	334.1893	77.7945	0.4078	282.4242	10.2849	-0.0282	
8	330.6246	139.0530	0.2877	273.0930	155.3384	1.1258	
9	318.7256	27.1842	-0.1110	267.2074	21.1711	0.1822	
10	312.3029	6.5017	0.1422	263.7963	9.2326	0.0752	
11	306.8917	37.8324	0.0421	259.9250	16.4108	0.2643	
12	303.8829	23.9271	0.3410	257.7635	1.4908	0.0045	
13	300.2040	157.8439	1.0630	254.5878	0.0410	0.0097	
14	297.3243	4.4347	0.0247	253.0291	17.6635	0.3448	
15	290.3612	44.0961	0.5835	247.4735	1.6787	0.0621	
16	289.0076	3.0942	0.0582	245.5134	33.5731	0.4448	
17	287.0006	245.5349	-0.9255	240.2795	5.9505	-0.0429	
18	281.7824	4.4973	0.2175	236.6112	129.0311	1.7996	
19	277.9916	91.4492	-0.1073	231.7462	699.0229	0.2074	
20	274.3014	0.4635	0.0231	228.7532	88.0669	1.2002	
21	273.6959	15.0328	0.3622	226.6622	136.5475	1.0764	
22	268.9463	31.4435	0.0600	224.6091	9.5458	-0.0078	
23	264.9236	123.1433	-0.0806	223.7983	75.4143	-0.4924	
24	263.2362	0.4598	-0.0006	222.9932	61.1332	-0.3568	
25	259.9250	44.8477	0.1011	221.7965	41.0895	0.2599	
26	257.2287	53.3663	-0.0940	219.4411	16.1602	-0.0405	
27	253.0291	3.7206	0.0678	217.5162	0.3332	-0.0177	
28	250.4732	83.6823	0.0106	216.7557	0.7191	0.1054	
29	249.9682	6.9151	0.1205	216.3774	3.0191	-0.0445	
30	249.9682	13.7800	0.3907	213.0313	10.2599	0.0531	
31	247.9685	12.9031	0.1225	211.9389	34.0742	0.2216	
32	247.4735	2.2173	0.0024	211.5772	276.8532	0.5505	
33	246.4895	0.1791	0.0075	209.4328	49.8586	0.9684	
34	242.1567	1.5409	0.0355	209.0797	17.6635	0.0220	
35	240.7461	0.0271	0.0001	207.3315	21.9228	-0.3651	
36	240.2795	1.3404	0.0514	206.9854	52.8652	0.2605	
37	239.8148	0.7266	-0.0011	205.9539	6.2135	-0.0224	
38	239.3518	2.2674	0.0103	205.2719	25.5557	-0.1060	
39	239.3518	2.8813	0.0236	204.9326	3.0817	0.0712	
40	238.4312	2.7184	0.0689	204.2574	6.4265	0.0104	

CN6-2 (cont.)	B3L	B3LYP/6-311++G(d,p)			CAM-B3LYP/6-311++G(d,p)			
Excited State	λ (nm)	$\boldsymbol{\delta}^{TPA}$ (GM)	$\frac{R^{IPCD}}{(GM)}$	λ (nm)	$\boldsymbol{\delta}^{TPA}$ (GM)	R ^{IPCD} (GM)		
41	236.6111	0.3658		202.9202	5.5245			
42	236.6111	16.6613		201.9287	40.2126			
43	235.2642	1.7664		201.6004	4.3470			
44	234.3747	3.6830		201.6004	5.5371			
45	231.7462	4.2342		200.6218	1.9417			
46	230.4540	0.5424		199.9746	18.6657			
47	230.0264	0.3683		199.3316	40.0873			
48	229.6004	1.4532		198.6927	5.2114			
49	229.1760	6.3889		197.7420	0.5988			
50	227.4940	9.8339		196.8004	18.9162			
51	227.0774	0.1992		196.1776	1.1625			
52	226.6622	0.4660		195.5587	9.7838			
53	226.2486	14.0306		195.2508	3.5828			
54	225.4259	0.4735		194.6377	4.4472			
55	225.4259	1.9292		194.3327	43.8455			
56	224.6091	1.3530		193.7254	1.6411			
57	224.6091	7.6291		192.8215	13.2789			
58	223.7983	0.5963		192.5221	5.9630			
59	223.3950	5.5245		191.3337	1.2653			
60	221.7965	0.7729		191.0389	4.2342			

References

- 1. M. Guillaume, K. Ruud, A. Rizzo, S. Monti, Z. Lin and X. Xu, *J. Phys. Chem. B*, 2010, **114**, 6500-6512.
- 2. A. Rizzo, S. Coriani and K. Ruud, in *Computational Strategies for Spectroscopy*, John Wiley & Sons, Inc., 2011, DOI: 10.1002/9781118008720.ch2, pp. 77-135.
- 3. T. Thirunamachandran and D. P. Craig, *Molecular Quantum Electrodynamics, An Introduction to Radiation Molecule Interaction*, Dover Publ., Inc., Mineaol, NY, 1998.
- 4. W. M. McClain, J. Chem. Phys., 1971, 55, 2789-2796.
- 5. I. Tinoco, J. Chem. Phys., 1975, **62**, 1006-1009.
- 6. B. Jansik, A. Rizzo and H. Agren, *Chem. Phys. Lett.*, 2005, **414**, 461-467.
- 7. L. De Boni, C. Toro and F. E. Hernandez, *Opt. Lett.*, 2008, **33**, 2958-2960.