Stereoselective synthesis of 1,6-dioxaspirolactones from spiro-cyclopropanecarboxylated sugars: Total synthesis of dihydro-pyrenolide D

Bandi Ramakrishna and Perali Ramu Sridhar*

Supporting Information

Contents:

1. General
2. Experimental procedures and spectral data

S2

S2-S21

1. General:

All the reactions were carried out under nitrogen or argon atmosphere and monitored by thin layer chromatography (TLC) using silica gel GF_{254} plates with detection by charring with $5 \%(\mathrm{v} / \mathrm{v})$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol or by phosphomolybdic acid (PMA) stain or by ultra violet (UV) detection. All the chemicals were purchased from local suppliers and Sigma-Aldrich Chemicals Company. Solvents used in the reactions were distilled over dehydrating agents. Dry toluene was prepared by using sodium and benzophenone. Silica-gel (100-200 mesh) was used for column chromatography. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, COSY, NOESY spectra were recorded on Bruker 400 MHz and 500 MHz spectrometer in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR chemical shifts were reported in $\mathrm{ppm}(\delta)$ with TMS as internal standard ($\delta 0.00$) and ${ }^{13} \mathrm{C}$ NMR were reported in chemical shifts with solvent reference $\left(\mathrm{CDCl}_{3}, \delta 77.00\right)$. Infrared (IR) spectra were recorded with a JASCO FT/IR-5300 pulse Fourier transform infrared spectrometer. High resolution mass spectra (HRMS) were recorded with a Bruker maXis ESI-TOF spectrometer.

Compound 3: To a stirred solution of spiro-cyclopropanecarboxylated sugar $2(400 \mathrm{mg}, 1.07$ $\mathrm{mmol})$ in THF (10 mL), aqueous $0.2 \mathrm{~N} \mathrm{LiOH}(5.3 \mathrm{~mL})$ was added. The reaction mixture was stirred for 3 h at room temperature, then poured into water, neutralized with $1 \mathrm{~N} \mathrm{HCl},(2 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water (100 mL), brine (100 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The obtained crude product was further purified by the silica-gel column chromatography provided carboxylic acid $\mathbf{3}(365 \mathrm{mg})$ in 95% yield as a mixture of diastereomers (please see the supporting
spectra). IR (neat): $v_{\max } 2980,2964,2925,2865,1703,1451,1380,1248,1122,1002,832,782$ cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na} 381.1709$, found 381.1710.

Compound 4: To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of spiro-cyclopropanecarboxylic acid $\mathbf{3}(80 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ in dry dichloromethane $(4 \mathrm{~mL})$, was added borontrifluoride-diethyletherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)(5.4$ $\mu \mathrm{L}, 0.04 \mathrm{mmol})$. The reaction mixture was stirred for 1 h while allowing the temperature to come to $25^{\circ} \mathrm{C}$. During the reaction, the colour was changed to pale red colour. After completion of the reaction (monitored by TLC), it was quenched with triethylamine. Removal of solvent under reduced pressure followed by silica-gel column chromatography afforded compound 4 (60 mg , 75%) as a colourless solid. IR (neat): $v_{\max }$ 2975, 2942, 2931, 2881, 2848, 1774, 1385, 1243, 1210, 1122, 1078, 1056, 914, 848, $788 \mathrm{~cm}^{-1} .^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.24-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{t}$, $1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 4.15(\mathrm{t}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 4.08(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 3.68(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.65-$ $2.74(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{ddd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, J=14.0 \mathrm{~Hz}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 175.7,109.1$, 108.3, 77.1, 74.2, 73.2, 61.9, 29.8, 28.2, 27.8, 26.2, 25.7, 18.0, -3.8, -5.2. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na} 381.1709$, found 381.1712. $[\alpha]_{D}^{25}=-90.2\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Compound 6: Compound 6 was synthesized from 5 following the procedure described for compound 3, yield 93%. IR (neat): $v_{\max } 3029,2925,2870,1725,1692,1456,1210,1100,1067$, $744,700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{Na} 391.1521$, found 391.1521.

Compound 7: Compound 7 was synthesized from 6 following the procedure described for compound 4, yield 80%. IR (neat): $v_{\text {max }} 3024,2920,1780,1456,1363,1215,1095,908,733,700$ $\mathrm{cm}^{-1}{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.28-7.36(\mathrm{~m}, 10 \mathrm{H}), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 3.99(\mathrm{ddd}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=9.5$
$\mathrm{Hz}, J=14.0 \mathrm{~Hz}), 3.82-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{ddd}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}), 3.42(\mathrm{~d}$, $1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.54-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, J=18.0 \mathrm{~Hz}), 2.21$ $(\mathrm{ddd}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, J=17.0 \mathrm{~Hz}), 2.11-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, J=$ $10.0 \mathrm{~Hz}, J=15.5 \mathrm{~Hz}$), 1.71-1.79 (m, 1H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 175.8,138.2,137.9$, 128.4, 127.8, 127.7, 109.1, 81.7, 77.5, 75.2, 71.8, 61.4, 31.1, 30.8, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{Na} 391.1521$, found 391.1522. $[\alpha]_{D}^{25}=-71.7\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Compound 9: Compound 9 was synthesized from $\mathbf{8}$ by following the procedure described for compound 3, yield 94\%. IR (neat): $v_{\max }$ 2985, 2925, 1703, 1456, 1385, 1221, 1111, 1084, 848, $744,706 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}+\mathrm{Na} 357.1314$, found 357.1312.

Compound 10: Compound 10 was synthesized from 9 by following the procedure described for compound 4, yield 85%. IR (neat): $v_{\max } 3030,2986,2931,2871,2849,1780,1457,1375,1205$, 1117, 1084, 909, $745 \mathrm{~cm}^{-1} \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.29-7.34(\mathrm{~m}, 5 \mathrm{H}), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.43(\mathrm{dd}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}), 4.27(\mathrm{ddd}, 1 \mathrm{H}, J=1.0$ $\mathrm{Hz}, J=3.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, J=13.5 \mathrm{~Hz}), 4.08(\mathrm{~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 3.51$ (d, 1H, $J=7.5 \mathrm{~Hz}$), 2.51-2.65 (m, 2H), 2.36 (ddd, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}$), 2.01 $(\mathrm{ddd}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, J=15.5 \mathrm{~Hz}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 175.6,137.6,128.4,128.0,127.9,109.3,107.4,78.1,77.1,73.2,72.7,61.9,30.3,28.2$, 28.1, 26.2. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}+\mathrm{Na} 357.1314$, found 357.1315. $[\alpha]_{D}^{25}=-71.5(c=$ $1.0, \mathrm{CHCl}_{3}$).

Compound 11: To a solution of (3S)-3-(benzyloxy)-2-(iodomethyl)tetrahydro-2H-pyran (8.0 g , $24 \mathrm{mmol})$ in toluene $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{DBU}(9 \mathrm{~mL}, 60.24 \mathrm{mmol})$, drop wise over a period of 10 min . The reaction mixture was brought to $25^{\circ} \mathrm{C}$ and heated at reflux for 1.5 h . After completion of the reaction, the mixture was diluted with ethyl acetate. The solution was taken into a separating funnel and washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the obtained residue was purified by column chromatography to give the exo-cyclic olefin (4.2 g) as a colourless liquid in 85% yield. IR (neat): $v_{\text {max }} 2958,2920,2849,1720,1452,1364,1271,1172$, 1117, 1035, $723 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.29-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.70(\mathrm{dd}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}$, $J=12.0 \mathrm{~Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 4.46(\mathrm{dd}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=2.8$ $\mathrm{Hz}), 4.00-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.66(\mathrm{~m}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 158.4,138.6,128.3,127.9,127.6,127.5,94.6,73.4,70.0$, 69.2, 29.5, 21.7. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{H}$ 205.1229, found 205.1227.

To a stirred suspension of exo-cyclic glycal $(1.0 \mathrm{~g}, 4.9 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(43.0 \mathrm{mg}, 0.098$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, a solution of methyl diazoacetate ($1.36 \mathrm{~mL}, 14.70 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added drop wise, over a period of 1 h , After completion of the reaction, the reaction mixture was concentrated in vacuo and the obtained crude product was purified by silicagel column chromatography (eluent: 10-20\% EtOAc in Hexane) to give desired spirocyclopropanecarboxylate $11(0.78 \mathrm{~g})$ in 58% yield as a mixture of diastereomers. IR (neat): $v_{\max }$ 3057, 3019, 2958, 2838, 1726, 1490, 1430, 1358, 1265, 1254, 1194, 1156, 1073, 882, 739, 706 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{H} 277.1440$, found 277.1443.

Compound 12: Compound 12 was synthesized from 11 by following the procedure described for compound 3, yield 95\%. IR (neat): $v_{\max } 3063,3030,2926,1742,1506,1452,1358,1227,1079$, 1024, 745, $690 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{H} 263.1283$, found 263.1280.

Compound 13: Compound 13 was synthesized from 12 by following the procedure described for compound 4 , yield 85%. Compound 13 was obtained as an inseparable mixture of S, S and R, S diastereomers in 55:45 ratio respectively (please see the supporting spectra). IR (neat): $v_{\max } 3063$, $3024,2942,2887,1786,1501,1457,1358,1271,1221,1194,1095,1063,909,734,701 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{H} 263.1283$, found 263.1282.

14

Compound 14: Compound 14 was synthesized from 2,6-Anhydro-3,4,5,7-tetra- O-benzyl-1-deoxy-D-glucohept-1-enitol ${ }^{1}$ by following the procedure described for compound 11, yield 62%. IR (neat): $v_{\max } 3091,3056,3029,2942,2869,1736,1627,1496,1453,1343,1249,1210,1164$, 1094, 1066, 1025, 913, 844, $822 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{O}_{7}+\mathrm{Na} 631.2672$, found 631.2672.

Compound 15: To a solution of spiro-cyclopropanecarboxylated sugar 14 ($350 \mathrm{mg}, 0.574 \mathrm{mmol}$) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL}, 2: 1)$ was added $\mathrm{KOH}(226 \mathrm{mg}, 4.04 \mathrm{mmol})$ and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h , after completion of the reaction (by TLC), $1 / 3$ of the solvent was removed in vacuo at $50^{\circ} \mathrm{C}$. The obtained suspension was diluted with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$, and extracted with ethyl acetate $(100 \mathrm{~mL})$. The aqueous phase was acidified with 1 N HCl , and the solution was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine solution $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure provided the crude product which was purified by the silica-gel column chromatography to obtain the spirocyclopropanecarboxylic acid 15 ($324 \mathrm{mg}, \mathbf{9 5 \%}$) as a colourless thick oil. IR (neat): $v_{\max } 3085$,

3056, 3029, 2920, 2863, 1696, 1496, 1453, 1360, 1205, 1094, 1026, $911 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{O}_{7}+\mathrm{Na} 617.2515$, found 617.2517 .

Compound 16: To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of spiro-cyclopropanecarboxylic acid $\mathbf{1 5}(100 \mathrm{mg}$, $0.16 \mathrm{mmol})$ in dry dichloromethane (5 mL) was added $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(20.5 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ and the mixture was stirred for 5 h at the room temperature. After completion of the reaction (by checking TLC), the reaction was quenched by the addition of triethylamine. The reaction mixture was concentrated under reduced pressure, followed by silica-gel column chromatography afforded the compound 16 ($70 \mathrm{mg}, 70 \%$) as colourless solid. IR (neat): $v_{\max } 3090,3063,3030,2926,2865$, 1780, 1501, 1452, 1364, 1265, 1210, 1106, 909, $734,701 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ 7.28-7.39 (m, 20H), $5.05(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.77(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz})$, $4.74(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.46$ $(\mathrm{d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.14(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.97-4.09(\mathrm{~m}, 3 \mathrm{H}), 3.51-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.63(\mathrm{~m}$, $2 \mathrm{H}), 2.19$ (ddd, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}, J=11.6 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}$), 2.05 (ddd, $1 \mathrm{H}, J=6.4 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}$, $J=16.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $175.7,138.4,138.0,137.8,137.8,128.5,128.3,128.2$, $127.9,127.8,127.7,127.6,108.9,80.9,77.5,75.3,74.8,74.2,73.4,72.9,72.6,68.2,30.7,28.5$. HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{O}_{7}+\mathrm{Na} 617.2515$, found 617.2518. $[\alpha]_{D=+28.1}^{25}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Compound 17: To a solution of methyl 6-deoxy-6-iodo-2,3,4-tri- O-benzyl- α-D-glucopyranoside ${ }^{2}$ $(4.0 \mathrm{~g}, 6.96 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{DBU}(3.12 \mathrm{~mL}, 20.90 \mathrm{mmol})$, drop wise over a period of 10 min . The reaction mixture was brought to $25^{\circ} \mathrm{C}$ and heated at reflux for 1.5 h . After completion of the reaction, the mixture was diluted with ethyl acetate. The solution was taken into a separating funnel and washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the obtained residue was purified by silica-gel column chromatography to give methyl 2,3,4-tri- O-benzyl- α-D-xylo-hex-5-enopyranoside ${ }^{2}$ ($2.65 \mathrm{~g}, 85 \%$) as a colourless semisolid. IR (neat): $v_{\max } 3068,3035,2920,1731,1501,1452,1353,1090,1024,734,701 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR
($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.27-7.39(\mathrm{~m}, 15 \mathrm{H}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, 1 \mathrm{H}, J$ $=10.8 \mathrm{~Hz}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.79(\mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}), 4.69(\mathrm{~d}$, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 3.99(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.91(\mathrm{dt}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}, J=$ $8.8 \mathrm{~Hz}), 3.62(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 153.6$, $138.6,138.0,137.9,128.5,128.4,128.1,128.0,127.9,127.8,127.7,127.6,99.0,96.9,81.2,79.5$, 79.2, 75.8, 74.5, 73.6, 55.4. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5}+\mathrm{H} 447.2171$, found 447.2173.

To a stirred suspension of methyl 2,3,4-tri- O-benzyl- α-D-xylo-hex-5-enopyranoside (1.1 g, 2.46 $\mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(10.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added drop wise, over a period of 1 h , a solution of methyl diazoacetate ($0.68 \mathrm{~mL}, 7.39 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After completion of the reaction, the reaction mixture was concentrated in vacuo and the obtained crude product was purified by silica gel column chromatography (eluent: 10-20\% EtOAc in Hexane) to give desired spiro-cyclopropanecarboxylate $17(0.80 \mathrm{~g}, 62 \%)$ as a mixture of diastereomers. IR (neat): $v_{\max } 3084,3057,3029,2920,2854,1719,1500,1451,1358,1199,1166$, 1051, 914, 739, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{7}+\mathrm{Na} 541.2202$, found 541.2204.

Compound 18: Compound 18 was synthesized from 17 following the procedure described for compound 3, yield 93\%. IR (neat): $v_{\max } 3062,3024,2920,2859,1698,1495,1451,1358,1166$, 1100, 1056, 733, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{7}+\mathrm{Na} 527.2046$, found 527.2045.

Compound 19: Compound 19 was synthesized from 18 following the procedure described for compound 4, yield 79\%. IR (neat): $v_{\max } 3057,3024,2926,2849,1786,1495,1457,1358,1221$, 1073, 915, 739, $701 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.27-7.36(\mathrm{~m}, 15 \mathrm{H}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.6 \mathrm{~Hz}), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.78-4.80(\mathrm{~m}, 2 \mathrm{H}),(4.74(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.6 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.01(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.52(\mathrm{~m}, 2 \mathrm{H})$, 2.46-2.66 (m, 2H), 2.04-2.16 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 175.2,138.4,138.2,137.5$, $128.5,128.4,128.3,128.0,127.9,127.8,127.6,106.5,102.1,82.0,80.9,80.2,76.0,75.3,74.6$,
57.6, 30.6, 28.1. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{7}+\mathrm{Na} 527.2046$, found 527.2048. $[\alpha]_{D}^{25}=-15.9$ ($\mathrm{C}=1.0, \mathrm{CHCl}_{3}$).

Compound 20: To a solution of methyl 5-deoxy-5-iodo-2,3-di-O-benzyl- α-D-rybofuranoside ${ }^{3}$ ($1.3 \mathrm{~g}, 2.38 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{DBU}(0.89 \mathrm{~mL}, 5.97 \mathrm{mmol})$, drop wise over a period of 10 min . The reaction mixture was brought to $25^{\circ} \mathrm{C}$ and heated at reflux for 1.5 h . After completion of the reaction (by monitoring TLC), the mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$. The solution was taken into a separating funnel and washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the obtained residue was purified by column chromatography to give methyl 5-deoxy-2,3-di-O-benzyl- α-D-erythro-pent-4-eno-furanoside ${ }^{4}(0.66 \mathrm{~g}, 85 \%)$ as a colourless liquid. IR (neat): $v_{\max } 3090,3068,3035,2926,2865,1720,1501,1457,1353,1112$, 1024, 745, $695 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.32-7.40(\mathrm{~m}, 10 \mathrm{H}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 4.66(\mathrm{~d}, 2 \mathrm{H}, J=2.8 \mathrm{~Hz}), 4.63(\mathrm{~d}, 2 \mathrm{H}, J=3.6 \mathrm{~Hz}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.28$ (s, 1H), $3.84(\mathrm{dd}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, J=4.8), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.5$, 137.6, 137.4, 128.5, 128.1, 128.0, 127.9, 106.8, 85.0, 78.7, 75.9, 72.2, 71.5, 56.5. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{H} 327.1596$, found 327.1593.

The above methylenated product ($0.326 \mathrm{~g}, 1 \mathrm{mmol}$) was cyclopropanated following the procedure described for compound $\mathbf{1 7}$ to obtain the spiro-cyclopropanecarboxylate $20(0.24 \mathrm{~g}, 60 \%)$ as a mixture of diastereomers (please see the supporting spectra). IR (neat): $v_{\max } 3095,3068$, 3035, 2953, 2925, 1725, 1495, 1456, 1374, 1325, 1215, 1155, 739, $706 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{H} 399.1808$, found 399.1809.

Compound 21: Compound 21 was synthesized from 20 by following the procedure described for compound 3, yield 96\%. IR (neat): $v_{\text {max }} 3035,2920,2859,1703,1451,1407,1265,1210,1150$, 1111, 1040, 739, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{Na} 407.1471$, found 407.1473.

Compound 22: Compound 22 was synthesized from 21 by following the procedure described for compound 4, yield 80%. IR (neat): $v_{\max } 3068,3035,2920,2860,1786,1731,1501,1452,1265$, 1030, 882, 739, $695 \mathrm{~cm}^{-1} .^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.31-7.39$ (m, 10H), $5.00(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.5 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=12.0$ $\mathrm{Hz}), 4.32(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 4.00(\mathrm{dd}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.76(\mathrm{~m}$, 2 H), 2.49 (ddd, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}, J=13.0 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}$), 2.18-2.24 (m, 1H). ${ }^{13} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 175.6,137.5,137.2,128.5,128.5,127.9,127.8,127.7,115.4,106.3,81.3,80.3$, 73.3, 72.6, 55.6, 29.6, 28.1. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{Na} 407.1471$, found 407.1474. $[\alpha]_{D}^{25}=+21.6\left(c=0.78, \mathrm{CHCl}_{3}\right)$.

23

Compound 23: To a solution of methyl 5-deoxy-5-iodo-2,3-di-O-benzyl- α-D-xylofuranoside ($0.80 \mathrm{~g}, 1.47 \mathrm{mmol})$ in dimethyl sulfoxide (DMSO) (12 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{DBU}(0.54 \mathrm{~mL}$, 3.67 mmol), drop wise over a period of 5 min . The reaction mixture was brought to $25^{\circ} \mathrm{C}$ and heated at reflux for 3 h in presence of $3 \AA$ molecular sieves. After completion of the reaction, water (20 mL) was added and thereaction mixture was extracted with diethyl ether. The solution
was taken into a separating funnel and washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the obtained residue was purified by column chromatography to give methyl 5-deoxy-2,3-di-O-benzyl- α-D-threo-pent-4-eno-furanoside ($0.40 \mathrm{~g}, 83 \%$) as a colourless liquid. IR (neat): $v_{\text {max }} 3057,3024,2926,2871,1731,1704,1660,1501,1452,1205,1090,734,706 \mathrm{~cm}^{-1}$. ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.31-7.41(\mathrm{~m}, 10 \mathrm{H}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.62$ $(\mathrm{d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.61(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{t}$, $1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}), 3.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right):$ $\delta 159.6,137.6,137.2,128.5,128.5,128.0,128.0,127.9,108.3,86.4,85.0,79.7,72.0,71.2,56.3$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{H} 327.1596$, found 327.1592.

The above methylenated product ($270 \mathrm{mg}, 0.82 \mathrm{mmol}$) was cyclopropanated following the procedure described for compound $\mathbf{1 7}$ to obtain spiro-cyclopropanecarboxylate 23 ($195 \mathrm{mg}, 59 \%$) as a mixture of diastereomers (please see the supporting spectra). IR (neat): $v_{\max } 3062,3029,2920$, 2854, 1741, 1500, 1451, 1369, 1265, 1100, 1018, 739, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na} 421.1627$, found 421.1626 .

Compound 24: Compound 24 was synthesized from 23 by following the procedure described for compound 3, yield 91\%. IR (neat): $v_{\max } 3029,2920,2848,1698,1500,1451,1407,1308,1210$, 1095, 1023, 952, 739, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{Na} 407.1471$, found 407.1472.

Compound 25: Compound 25 was synthesized from 24 by following the procedure described for compound 4, yield 79\%. IR (neat): $v_{\text {max }} 3029,2920,2848,1785,1730,1643,1451,1402,1248$, 1084, 908, 739, $695 \mathrm{~cm}^{-1} .^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.29-7.41(\mathrm{~m}, 10 \mathrm{H}), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.6 \mathrm{~Hz}), 4.82(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}$, $J=11.6 \mathrm{~Hz}), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}), 3.96(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.60-$ $\left.2.68(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.7,137.4$,
137.3, 128.4, 128.1, 127.9, 111.4, 108.1, 85.7, 83.8, 72.7, 72.4, 55.9, 29.9, 28.2. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{Na} 407.1471$, found 407.1471. $[\alpha]_{D}^{25}=-10.3\left(c=0.73, \mathrm{CHCl}_{3}\right)$.

Compound 26: To a solution of methyl 5-deoxy-5-iodo-2,3-di- O-benzyl- β-D-arabinofuranoside $(1.8 \mathrm{~g}, 3.47 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DBU $(1.46 \mathrm{~mL}, 10.42 \mathrm{mmol})$, drop wise over a period of 10 min . The reaction mixture was brought to $25^{\circ} \mathrm{C}$ and heated at reflux for 1.5 h . After completion of the reaction, the mixture was diluted with ethyl acetate, taken into a separating funnel and washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the obtained residue was purified by silica gel column chromatography to give the exo-cyclic-olefin (0.93 g , 82%) as colourless liquid. IR (neat): $v_{\max } 3084,3068,3030,2931,2876,1715,1501,1457,1358$, 1210, 1112, 1024, 739, $706 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.32-7.39(\mathrm{~m}, 10 \mathrm{H}), 5.11(\mathrm{~d}$, $1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.61(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.6 \mathrm{~Hz}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{t}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}), 3.24(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ 159.6, 137.6, 137.2, 128.5, 128.5, 128.0, 127.9, 127.8, 108.3, 86.4, 84.9, 79.7, 72.0, 71.2, 56.2. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{H} 327.1596$, found 327.1596 .

The above obtained methylenated product (600 mg 1.84 mmol) was cyclopropanated by following the procedure described for compound $\mathbf{1 7}$ to obtain the spiro-cyclopropanecarboxylate 26 (450 $\mathrm{mg}, 61 \%$) as a mixture of diastereomers (please see the supporting spectra). IR (neat): $v_{\max } 3057$, $3035,2953,2920,2848,1719,1500,1456,1440,1380,1265,1199,1155,1100,739,700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{H} 399.1808$, found 399.1808.

Compound 27: Compound 27 was synthesized from 26 following the procedure described for compound 3, yield 93\%. IR (neat): $v_{\text {max }} 3068,3029,2920,2859,1703,1500,1456,1270,1210$, 1100, 1029, 952, 733, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{H} 385.1651$, found 385.1654.

Compound 28: Compound 28 was synthesized from 27 following the procedure described for compound 4, yield 80%. IR (neat): $v_{\max } 3084,3057,3030,2920,2854,1780,1501,1452,1369$, $1210,904,739,701 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.28-7.37(\mathrm{~m}, 10 \mathrm{H}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.6 \mathrm{~Hz}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}$, $J=12.0 \mathrm{~Hz}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}), 3.94(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.44-$ $2.66(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.20(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 174.8,137.4,137.3,128.5$, 128.1, 127.9, 127.8, 111.4, 108.1, 85.7, 83.8, 72.7, 72.4, 55.9, 29.9, 28.2. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{Na} 407.1471$, found 407.1472. $[\alpha]_{D=+14.9}^{25}\left(c=0.76, \mathrm{CHCl}_{3}\right)$.

Compound 29: 2,3,5-tri- O-benzyl-L-arabinoic acid γ-lactone ${ }^{5}(1.0 \mathrm{~g}, 2.39 \mathrm{mmol})$ was dissolved in dry toluene $(20 \mathrm{~mL})$ and cyclopentadienyldimethyl titanocene $(4.0 \mathrm{~mL}$ of a $20 \% \mathrm{w} / \mathrm{w}$ solution in toluene) was added slowly at room temperature, then the reaction mixture was stirred in the dark
at $70^{\circ} \mathrm{C}$ under argon for 24 h or until TLC showed disappearance of the starting material. The brown reaction mixture was concentrated, and subjected to silica-gel column chromatography, using hexane/ethyl acetate (containing 1% triethylamine) to give the corresponding exo-cyclic enol ether product ($0.72 \mathrm{~g}, 72 \%$) as a colourless liquid. IR (neat): $v_{\max } 3066,3028,2936,2875,2249$, 1723, 1496, 1453, 1350, 1271, 1205, 1089, 1026, 906, $726 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta$ 7.29-7.33 (m, 15 H), 4.64-4.76 (m, 4H), 4.58-4.61 (m, 2H), 4.46-4.50 (m, 2H), 4.09-4.10 (m, 1H), 4.01-4.05 (m, 2H), 3.81-3.83(m, 1H), 3.75-3.77 (m, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 155.9$, $138.5,138.2,138.1,128.4,128.4,127.7,127.7,97.9,76.9,76.2,72.6,72.5,71.6,71.4,66.9$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{H} 417.2066$, found 417.2062.

The obtained methylenated product (830 mg 1.98 mmol) was cyclopropanated by following the procedure described for compound 17 to provide spiro-cyclopropanecarboxylate 29 (620 mg , 64\%) as a mixture of diastereomers (please see the supporting spectra). IR (neat): $v_{\text {max }}$ 2923, 2852, 1722, 1496, 1453, 1364, 1264, 1209, 1164, 1071, 1027, 888, 843, 804, $733 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6}+\mathrm{Na} 511.2097$, found 511.2100.

Compound 30: To a solution of spiro-cyclopropanecarboxylated sugar 29 ($200 \mathrm{mg}, 0.41 \mathrm{mmol}$) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, 2: 1)$ was added $\mathrm{KOH}(161 \mathrm{mg}, 2.88 \mathrm{mmol})$ at room temperature, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . After completion of the reaction (by TLC) $1 / 3$ of the solvent was removed in vacuo. The obtained residue was diluted with water (40 mL), and once extracted with ethyl acetate (50 mL). The aqueous phase was acidified with 1 N HCl and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine solution (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The obtained crude product was purified by the silicagel column chromatography to furnish the spiro-cyclopropanecarboxylic acid $\mathbf{3 0}$ ($183 \mathrm{mg}, 94 \%$).

IR (neat): $v_{\max } 3059,3018,2926,2853,1693,1496,1453,1317,1264,1186,1069,1026,882 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{6}+\mathrm{Na} 497.1940$, found 497.1945.

Compound 31: To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of spiro-cyclopropanecarboxylic acid $\mathbf{3 0}(30 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ in dry dichloromethane $(3 \mathrm{~mL})$ was added $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(7.76 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and stirred the reaction mixture for 5 h at the room temperature. After completion of the reaction by checking TLC, the reaction mixture was quenched by addition of triethylamine, then concentrated by using rotary evaporator. Purification of the obtained residue over silica-gel column chromatography gave the spirolactone 31 ($22 \mathrm{mg}, 72 \%$) as a single diastereomer. IR (neat): $v_{\text {max }} 2922,2853,1781,1741$, 1602, 1496, 1453, 1365, 1263, 1208, 1124, 1095, 1051, 1027, 910, 858, 801, $737 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.28-7.43(\mathrm{~m}, 15 \mathrm{H}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz})$, $4.74(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=12$ $\mathrm{Hz}), 4.04(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.00(\mathrm{dd}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 3.89(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, J$ $=12.4 \mathrm{~Hz}), 3.84(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 3.81(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.57-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{ddd}, 1 \mathrm{H}$, $J=7.2 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, J=17.2 \mathrm{~Hz}$), 2.09 (ddd, $1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=16.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 175.7,138.0,128.4,127.9,127.8,109.2,79.4,77.6,75.5,73.2,72.2$, 71.8, 63.7, 30.7, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{6}+\mathrm{Na} 497.1940$, found 497.1942. $[\alpha]_{D}^{25}=$ $+57.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Compound 34: Compound $\mathbf{3 4}$ was synthesized from 33^{6} by following the procedure described for compound 3, yield 95\%. IR (neat): $v_{\max } 3063,3024,2926,2854,1726,1682,1501,1452,1413$, 1128, 1101, 1056, 914, 843, 728, $701 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na} 433.1627$, found 433.1626.

Compound 35: Compound 35 was synthesized from 34 by following the procedure described for compound $\mathbf{4}$, as mixture of inseparable diastereomers in $1: 1$ ratio. Yield 57\%. IR (neat): $v_{\max } 3084$,

3062, 3029, 2920, 2854, 1780, 1500, 1456, 1281, 1144, 1095, 1045, 903, 744, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na} 433.1627$, found 433.1629.

Compound 37: Compound $\mathbf{3 7}$ was synthesized from $\mathbf{3 6}^{6}$ following the procedure described for compound 3, yield 92%. IR (neat): $v_{\text {max }} 3068,3035,2931,2865,1786,1682,1490,1452,1216$, 1073, 1030, 909, 838, $739 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na} 433.1627$, found 433.1628 .

Compound 38a, 38b: Compounds 38a and 38b were synthesized from 37 by following the procedure described for compound $\mathbf{4}$, yield 75%. Obtained as a mixture of diastereomers in 8:7 ratio, respectively.

Compound 38a: IR (neat): $v_{\max } 3062,3024,2953,2914,2859,1785,1725,1456,1270,1078$, 897, $744,689 \mathrm{~cm}^{-1} .^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.28-7.36(\mathrm{~m}, 10 \mathrm{H}), 5.06-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.76$ (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.66(\mathrm{dd}, 2 \mathrm{H}, J=12.0 \mathrm{~Hz}, J=20.4 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}$, $J=12.0 \mathrm{~Hz}), 4.20-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 3.73(\mathrm{~d}, 1 \mathrm{H}, J$ $=4.0 \mathrm{~Hz}), 2.67-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{ddd}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=18.0 \mathrm{~Hz}), 2.34-2.38(\mathrm{~m}$, 2H), 2.17-2.21 (m, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 175.6,137.9,137.4,128.5,128.4,127.9$, 127.8, 127.7, 116.7, 86.2, 81.6, 81.0, 79.4, 73.6, 71.9, 68.1, 43.5, 31.4, 28.7. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na} 433.1627$, found 433.1627. $[\boldsymbol{\alpha}]_{D}^{25}=-11.2\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Compound 38b: IR (neat): $v_{\max } 3068,3029,2920,2865,1774,1725,1500,1451,1352,1265$, 1193, 1078, 908, 733, $706 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.28-7.35(\mathrm{~m}, 10 \mathrm{H}), 4.98(\mathrm{t}, 1 \mathrm{H}$, $J=5.6 \mathrm{~Hz}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.68(\mathrm{q}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.62(\mathrm{~d}$, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.54(\mathrm{~d}, 2 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 3.69(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz})$, $2.71-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 2.52(\mathrm{ddd}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, J=18.0 \mathrm{~Hz})$, 2.27-2.37(m, 2H), 2.15-2.20 (m, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 175.6,137.9,137.4,128.5$, 128.4, 127.9, 127.8, 127.7, 116.7, 86.2, 81.6, 81.0, 79.4, 73.6, 71.9, 68.1, 43.5, 31.4, 28.7. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na} 433.1627$, found 433.1628. $[\alpha]_{D}^{25}=-5.7\left(c=0.85, \mathrm{CHCl}_{3}\right)$.

Compound 40: Compound 40 was synthesized from 39^{6} by following the procedure described for compound 3, yield 74\%. IR (neat): $v_{\max } 3030,2926,2854,1780,1720,1682,1446,1347,1271$, 1178, 1084, 1079, 909, 739, $701 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{H} 305.1389$, found 305.1388 .

Compound 41a and 41b: Compounds 41 a and 41b were synthesized from 40 by following the procedure described for compound $\mathbf{4}, 77 \%$ yield. $\mathbf{4 1 a}$ and $\mathbf{4 1 b}$ were obtained a as a mixture of diastereomers in 3:2 ratio, respectively.

Compound 41a: IR (neat): $v_{\max } 3057,3030,2926,2871,1780,1452,1347,1090,1057,898,739$, $701 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$): $\delta 7.29-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.01-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=$ $5.2 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.07-409(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, 1 \mathrm{H}, J=$
$3.6 \mathrm{~Hz}), 2.65-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{ddd}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}), 2.32-2.37(\mathrm{~m}, 2 \mathrm{H})$, $\left.2.08(\mathrm{dd}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}), 1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 175.6, 137.6, 128.4, 127.8, 127.6, 116.6, 86.7, 82.4, 80.3, 75.8, 71.7, 43.5, 31.2, 28.7, 13.4. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{Na} 327.1208$, found 327.1208. $[\alpha]_{D}^{25}=-9.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Compound 41b: IR (neat): $v_{\max } 3068,3030,2931,1780,1495,1457,1347,1189,1073,904,838$, 745, $706 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.29-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.02-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 4.03-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, 1 \mathrm{H}$, $J=3.2 \mathrm{~Hz}), 2.65-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{ddd}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=18.0 \mathrm{~Hz}), 2.32-2.37(\mathrm{~m}$, 2 H), 2.08 (dd, $1 \mathrm{H}, J=4.0 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}$), $1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z , ~}$ $\mathbf{C D C l}_{3}$): $\delta 175.7,137.8,128.4,127.8,127.5,116.4,89.8,84.0,80.2,76.5,72.1,44.3,33.1,28.6$, 14.0. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{Na} 327.1208$, found 327.1211. $[\boldsymbol{\alpha}]_{D}^{25}=-8.3(c=1.0$, $\left.\mathrm{CHCl}_{3}\right)$.

42

Compound 42: 3,6-anhydro-5-O-benzyl-2,7-di-deoxy-D-ido-heptono-2,4-lactone ($3.5 \mathrm{~g}, 14.11$ mmol) was dissolved in dry toluene (70 mL) and cyclopentadienyldimethyl titanocene (23.48 mL of a $20 \% \mathrm{w} / \mathrm{w}$ solution in toluene) was added slowly at room temperature, then the reaction mixture was stirred in the dark at $70^{\circ} \mathrm{C}$ under argon for a period of 24 h or until TLC showed disappearance of the starting material. The brown reaction mixture was concentrated, and subjected to column chromatography using neutral alumina in hexane/ethyl acetate without adding triethylamine to give the unsaturated methyl product ($2.0 \mathrm{~g}, 57 \%$). (If the column has done in presence of triethylamine, methylenated product was obtained). IR (neat): $v_{\text {max }}$ 2958, 2926, 2849, 1736, 1671, 1463, 1391, 1205, 1079, 1024, $734 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.39$ $(\mathrm{d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.88(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.72-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{dd}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=12.4$
$\mathrm{Hz}), 3.78-3.81(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta$ 159.7, 137.9, 128.4, 127.8, 127.7, 96.4, 86.8, 84.4, 83.4, 73.3, 71.7, 13.4, 13.0. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}+\mathrm{Na} 269.1154$, found 269.1155 .

The obtained endo-cyclic olefin ($1.0 \mathrm{~g}, 4.06 \mathrm{mmol}$) was cyclopropanated, by following the procedure described for compound 17 , to obtain the corresponding cyclopropane carboxylate 42 ($0.8 \mathrm{~g}, 62 \%$). IR (neat): $v_{\max } 3057,2926,2860,1731,1446,1331,1216,1156,1079,854,734 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}+\mathrm{Na} 341.1365$, found 341.1364 .

Compound 43: Compound 43 was synthesized from 42 by following the procedure described for compound 3, yield 95\%. IR (neat): $v_{\max } 3063,3030,2926,2865,1720,1687,1463,1331,1227$, $1084,860,734 \mathrm{~cm}^{-1}{ }^{\mathbf{1}} \mathbf{H}^{\mathbf{H}}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $4.94(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=4.4$ $\mathrm{Hz}), 4.09(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.0 \mathrm{~Hz}), 0.88(\mathrm{t}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 175.6,137.7,128.4,127.9$, 127.6, 85.7, 84.3, 83.5, 76.4, 74.1, 71.9, 34.2, 27.9, 13.5, 13.3. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{Na} 327.1208$, found 327.1206.

Compound 44: Compound 44 was synthesized from 43 following the procedure described for compound 4, in 83% yield. IR (neat): $v_{\max } 3068,3024,2931,2849,1775,1501,1446,1386,1243$, 1090, 1030, $909,843,728 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.29-7.36(\mathrm{~m}, 5 \mathrm{H}), 4.76(\mathrm{~d}, 1 \mathrm{H}$, $J=4.0 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.23-$ $4.27(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 2.96(\mathrm{dd}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, J=18.5 \mathrm{~Hz}), 2.88(\mathrm{dd}, 1 \mathrm{H}, J=$ $2.5 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}), 2.60(\mathrm{dd}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, J=18.5 \mathrm{~Hz}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 173.5,137.4,128.5,127.9,127.6,118.2,88.1,86.1,82.1,72.2$,
51.1, 33.8, 24.0, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{Na} 327.1208$, found 327.1210. $[\alpha]_{D}^{25}=-$ $44.1\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Synthesis of 2,3-dihydro-pyrenolide D (Compound 45):

2,3-dihydro-pyrenolide D

To a stirred solution of compound 41a ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$), in $\mathrm{MeOH}(5 \mathrm{~mL})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$, under hydrogen atmosphere for 4 h at $25^{\circ} \mathrm{C}$. The catalyst was filtered off and the filtrate was concentrated. The crude product was purified by silica-gel column chromatography using hexane/ethyl acetate (containing 1\% triethylamine) to give 2,3-dihydropyrenolide D 45 ($20 \mathrm{mg}, 71 \%$) as colourless solid. IR (neat): $v_{\max } 3424,2942,2871,1780,1649$, 1446, 1194, 1052, 898, $816 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $)_{3}$: $\delta 5.01-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}), 4.02-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{ddd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, J=17.6$ $\mathrm{Hz}), 2.34-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dd}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}), 1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 175.7,116.6,89.4,79.9,76.0,75.4,43.4,31.1,28.7,12.8$. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}+\mathrm{Na} 237.0739$, found 237.0741. $[\alpha]_{D=+10.1}^{25}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

4-epi-2,3-dihydro-pyrenolide D (Compound 46):

To a stirred solution of compound $\mathbf{4 1 b}(20 \mathrm{mg}, 0.06 \mathrm{mmol})$, in $\mathrm{MeOH}(3 \mathrm{ml})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(4 \mathrm{mg})$ under hydrogen atmosphere for 4 h at $25^{\circ} \mathrm{C}$. The catalyst was filtered off
and the filtrate was concentrated. The crude product was purified by silica-gel column chromatography using hexane/ethyl acetate (containing 1\% triethylamine) to give the 4-epi-2,3-dihydro-pyrenolide D 46 ($10 \mathrm{mg}, 72 \%$) as colourless solid. IR (neat): $v_{\max } 3419,2936,2871,1764$, 1736, 1643, 1441, 1276, 1194, 1057, 893, $816 \mathrm{~cm}^{-1} \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 4.93(\mathrm{t}, 1 \mathrm{H}$, $J=5.6 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.59-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 2.77(\mathrm{dt}, 1 \mathrm{H}, J$ $=10.0 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}), 2.60(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 2.53(\mathrm{ddd}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, J=17.6$ $\mathrm{Hz}), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 2.32(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.18-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}$, $3 \mathrm{H}, J=6.4 \mathrm{~Hz}$) ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 175.8,116.5,92.2,80.2,77.1,76.4,44.3,33.2$, 28.6, 13.4. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}+\mathrm{Na} 237.0739$, found 237.0739. $[\alpha]_{D=+6.1}^{25}(c=1.0$, $\left.\mathrm{CHCl}_{3}\right)$.

Compound 47:

To a stirred solution of compound $44(30 \mathrm{mg}, 0.09 \mathrm{mmol})$, in $\mathrm{MeOH}(4 \mathrm{~mL})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ under hydrogen atmosphere for 4 h at $25^{\circ} \mathrm{C}$. The catalyst was filtered off and the filtrate was concentrated. The crude product was purified by silica-gel column chromatography using hexane/ethyl acetate (containing 1\% triethylamine) to give the product 47 ($20 \mathrm{mg}, 94 \%$) as colourless solid. IR (neat): $v_{\max } 3424,2926,2865,2854,1775,1501,1452,1386$, 1249, 1084, 1035, 920, 838, 734, $701 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 4.63(\mathrm{~d}, 1 \mathrm{H}, J=4.60$ $\mathrm{Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 4.17-4.23(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, J=18.4 \mathrm{~Hz}), 2.87(\mathrm{dd}$, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}), 2.61(\mathrm{dd}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, J=18.4 \mathrm{~Hz}), 2.23(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 173.7,118.4,88.7,87.9$, 77.4, 75.6, 51.2, 33.9, 24.0, 13.2. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}+\mathrm{Na} 237.0739$, found 237.0735. $[\alpha]_{D}^{25}=-11.9\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

References:

[1] D. Waschke, J. Thimm, J. Thiem, Org. Lett. 2011, 13, 3628-3631.
[2] (a) C. Jaramillo, J.-L. Chiara, M. Martín-Lomas, J. Org. Chem. 1994, 59, 3135-3141. (b) S. Hosokawa, M. Isobe, J. Org. Chem. 1999, 64, 37-48.
[3] A. E. Håkansson, A. Palmelund, H. Holm, R. Madsen, Chem. Eur. J. 2006, 12, 3243-3253.
[4] G.-N. Wang, Y. Xiong, J. Ye, L.-H. Zhang, X.-S. Ye, ACS Med. Chem. Lett. 2011, 2, 682-686.
[5] A. C. Araújo, A. P. Rauter, F. Nicotra, C. Airoldi, B. Costa, L. Cipolla, J. Med. Chem. 2011, 54, 1266-1275.
[6] B. Ramakrishna, P. R. Sridhar, Org. Lett. 2013, 15, 4474-4477.

