Supporting information

Enantioselectively bioreductive preparation of chiral halohydrins employing two newly identified stererocomplementary reductases

Guo-chao Xu,^{1,2} Hui-lei Yu,^{1,*} Yue-peng Shang,¹ Jian-he Xu¹

¹ State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, and Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China.

² The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan

University, Wuxi 214122, China.

*Corresponding authors. E-mail: huileiyu@ecust.edu.cn; jianhexu@ecust.edu.cn.

Table S1 Typical sequence motifs of SDR and AKR superfamily found in DhCR and CgCR2
Table S2 The secondary structure elements motif in 'classical' SDR, 'extended' SDR and DhCR.3
Table S3 Steady-state kinetic constants of stererocomplementary <i>Dh</i> CR and <i>Cg</i> CR4
Table S4 Substrate specificities of stererocomplementary DhCR and CgCR. 5
Table S5 Concentrations of NAD ⁺ and NADP ⁺ in the fresh wet cells and dry cells. 6
Table S6 Optimization of <i>Dh</i> CR and <i>Cg</i> CR catalyzed asymmetric reduction of COBE
Table S7 Comparison of the characteristics of reported enzymes that produce optically active
CHBE
Figure S1 SDS-PAGE analysis of the purified CgCR and DhCR9
Figure S2 Effect of temperature and pH on the activity of <i>Dh</i> CR and <i>Cg</i> CR10
Figure S4 Calibration curves of oxidized cofactors
Figure S5 Multiple sequences alignment of <i>Dh</i> CR with several SDR members12
Figure S6 Multiple sequences alignment of CgCR with several AKR members
Figure S7 GC spectra of CHBE14
Reference

Typical sequence motifs of SDR found in <i>Dh</i> CR ^a									
Sequence motif of	Function	Position in SDR	Position in						
SDR			<i>Dh</i> CR						
(T)Gxx(x)Gx(G)xA ^b	Coenzyme binding region, maintenance of central β -	12–21	40–49						
	sheet								
D	Stabilization of adenine ring pocket, weak binding to	60	94						
	coenzyme								
S, YxxxK	Catalytic triad	138, 151–155	172, 187–191						
Ν	Connection of substrate binding loop and active site	179	212						
PG	Reaction direction	183–184	216–217						
Т	H-bonding to carboxamide of nicotinamide ring	188	221						
Typical sequence moti	fs of AKR found in CgCR⁰								
Typical sequence moti Sequence motif of	fs of AKR found in <i>Cg</i> CR [。] Function	Position in AKR	Position in						
Typical sequence moti Sequence motif of AKR	fs of AKR found in <i>Cg</i> CR [∞] Function	Position in AKR	Position in <i>Cg</i> CR						
Typical sequence motif Sequence motif of AKR G, G, G, D, P, G, P	fs of AKR found in CgCR [∞] Function Stabilization of the barrel core	Position in AKR 20, 22, 45, 112, 119,	Position in CgCR 23, 25, 45, 106,						
Typical sequence moti Sequence motif of AKR G, G, G, D, P, G, P	fs of AKR found in <i>Cg</i> CR [∞] Function Stabilization of the barrel core	Position in AKR 20, 22, 45, 112, 119, 164, 186	Position in CgCR 23, 25, 45, 106, 113, 165, 187						
Typical sequence moti Sequence motif of AKR G, G, G, D, P, G, P A, W	fs of AKR found in CgCR ^c Function Stabilization of the barrel core Substrate binding	Position in AKR 20, 22, 45, 112, 119, 164, 186 52, 118	Position in CgCR 23, 25, 45, 106, 113, 165, 187 52, 112						
Typical sequence moti Sequence motif of AKR G, G, G, D, P, G, P A, W D, Y, K, H	fs of AKR found in <i>Cg</i> CR ^c Function Stabilization of the barrel core Substrate binding Catalytic tetrad	Position in AKR 20, 22, 45, 112, 119, 164, 186 52, 118 50, 55, 84, 117	Position in CgCR 23, 25, 45, 106, 113, 165, 187 52, 112 50, 55, 80, 111 111						
Typical sequence moti Sequence motif of AKR G, G, G, D, P, G, P A, W D, Y, K, H N, Q	fs of AKR found in CgCR ^c Function Stabilization of the barrel core Substrate binding Catalytic tetrad H-bonding with carboxamide moiety of the cofactor	Position in AKR 20, 22, 45, 112, 119, 164, 186 52, 118 50, 55, 84, 117 167, 190	Position in CgCR 23, 25, 45, 106, 113, 165, 187 52, 112 50, 55, 80, 111 168, 191						
Typical sequence moti Sequence motif of AKR G, G, G, D, P, G, P A, W D, Y, K, H N, Q T, D	fs of AKR found in CgCR ^c Function Stabilization of the barrel core Substrate binding Catalytic tetrad H-bonding with carboxamide moiety of the cofactor Interaction with nicotinamide ribose ring of the cofactor	Position in AKR 20, 22, 45, 112, 119, 164, 186 52, 118 50, 55, 84, 117 167, 190 23, 50	Position in CgCR 23, 25, 45, 106, 113, 165, 187 52, 112 50, 55, 80, 111 168, 191 26, 50						
Typical sequence moti Sequence motif of AKR G, G, G, D, P, G, P A, W D, Y, K, H N, Q T, D S, R	fs of AKR found in CgCR ^c Function Stabilization of the barrel core Substrate binding Catalytic tetrad H-bonding with carboxamide moiety of the cofactor Interaction with nicotinamide ribose ring of the cofactor H-bonding to adenosine 2'-monophosphate of the	Position in AKR 20, 22, 45, 112, 119, 164, 186 52, 118 50, 55, 84, 117 167, 190 23, 50 271, 276	Position in CgCR 23, 25, 45, 106, 113, 165, 187 52, 112 50, 55, 80, 111 168, 191 26, 50 263, 268						

Table S1 Typical sequence motifs of SDR and AKR superfamily found in *Dh*CR and *Cg*CR.

^a (Positions refers to residue numbering as in $3\beta/17\beta$ -hydroxysteroid dehydrogenases (PDB: 1HXH); ^b x represents any amino acids; ^c Positions refers to residue numbering as in 3α -hydroxysteroid dehydrogenases (PDB: 1RAL).

Secondary	Cor	nserved SDR mot	_	Position	
structure element	Classical	Extended	<i>Dh</i> CR	Function	in <i>Dh</i> CR
β1+α1	<u>TG</u> xxx <u>G</u> h <u>G</u>	<u>TG</u> xx <u>G</u> ha <u>G</u>	<u>TG</u> SS <u>G</u> GIG	Coenzyme binding region	β1+α1
β3+α3	Dhx[cp]	<u>D</u> hx <u>D</u>	<u>D</u> PE <u>D</u>	Adenine ring binding of coenzyme	β3+α3
β4	<u>G</u> xh <u>D</u> hhh <u>NNAG</u> h	[DE]xhh <u>H</u> X <u>AA</u>	<u>G</u> TI <u>D</u> VFVA <u>NAG</u> V	Structuralroleinstabilizingcentralβ-sheet	β4
β5	<u>G</u> xhhxh <u>SS</u> h	hhhx <u>SS</u> xxha <u>G</u>	GSLVLTASMSG	Part of active site	β5
α5	Yx[AS][ST]K	P <u>Y</u> xx[AS] <u>K</u> xx h	PYNAAKAGV	Part of active site	α6
β6	<u>H[</u> KR]h[NS]xhx <u>PG</u> xxxT	h[KR]xx <u>NGP</u>	ARVNTISPGYIA T	Structural role, reaction direction	β6

Table S2 The secondary structure elements motif in 'classical' SDR, 'extended' SDR and *Dh*CR.

^{*}In the motifs, 'a' denotes an aromatic residues, 'c' a charged residue, 'h' a hydrophobic residue, 'p' a polar residue and 'x' any residue. Conserved amino acids are underlined. Alternative amino acids at a motif position are given within brackets. The secondary elements of classical and extended SDR are based on $3\alpha/20\beta$ -hydroxysteroid dehydrogenase (PDB: 2HSD).

	Dh	CR	Cg	CR
Substrate	COBE	NADPH	COBE	NADPH
K _M /mM	1.30 ± 0.01	0.035 ± 0.001	3.70 ± 0.08	0.028 ± 0.003
V _{max} /µmol⋅min ⁻¹ ⋅mg ⁻¹	29.7 ± 0.3	-	42.1 ± 0.6	-
k _{cat} /s⁻¹	16.6 ± 0.3	-	27.9 ± 0.4	-
k _{cat} /K _M s ^{−1} ·mM ^{−1}	12.8	_	7.55	-

Table S3 Steady-state kinetic constants of stererocomplementary *Dh*CR and *Cg*CR.

Substrata	<i>Dh</i> CR		CgCR		
Substrate	Specific activity /U·mg ⁻¹	ee % / (R/S)	Specific activity /U·mg ⁻¹	ee % / (R/S)	
1	0.16	>99 (<i>R</i>)	0.32	92 (S)	
2	0.11	>99 (<i>R</i>)	0.12	97 (S)	
3	0.075	>99 (<i>R</i>)	0.17	86 (S)	
4	2.1	>99 (S)	0.58	98 (<i>R</i>)	
5	6.9	>99 (S)	2.0	56 (<i>R</i>)	
6	0.06	>99 (<i>R</i>)	0.19	>99 (S)	
7	<0.01	n. d. ª	1.0	>99 (S)	
8	5.3	>99 (<i>R</i>)	3.2	96 (S)	
9	22	>99 (S)	2.6	>99 (<i>R</i>)	
10	0.35	>99 (S)	2.4	>99 (<i>R</i>)	
11	33	>99 (S)	2.9	>99 (<i>R</i>)	
12	0.37	>99 (<i>R</i>)	0.28	>99 (S)	
13	0.087	>99 (<i>R</i>)	0.50	>99 (S)	
14	0.024	>99 (<i>R</i>)	0.034	>99 (S)	
15	1.1	>99 (<i>R</i>)	0.15	>99 (S)	
16	1.4	>99 (<i>R</i>)	0.12	>99 (S)	
17	0.52	>99 (<i>R</i>)	0.02	>99 (S)	
18	0.2	>99 (<i>R</i>)	0.01	>99 (S)	
19	3.0	>99 (<i>R</i>)	0.38	>99 (S)	
20	0.11	>99 (<i>R</i>)	0.56	>99 (S)	
21	0.1	>99 (<i>R</i>)	0.64	>99 (S)	
22	13	>99 (S)	8.0	>99 (<i>R</i>)	
23	0.48	>99 (S)	3.8	>99 (<i>R</i>)	
24	2.7	>99 (<i>R</i>)	9.3	>99 (S)	
25	3.6	>99 (<i>R</i>)	19	>99 (S)	

Table S4 Substrate specificities of stererocomplementary *Dh*CR and *Cg*CR.

^a n. d.: no product was detected.

Cell	NAD⁺	NADP ⁺
	/µmol∙g ^{_1}	/µmol∙g ^{_1}
Fresh wet cells	0.44 ± 0.02	1.03 ± 0.06
Dry cells	0.62 ± 0.02	1.86 ± 0.13

Table S5 Concentrations of NAD $^+$ and NADP $^+$ in the fresh wet cells and dry cells.

Cata	Catalyst		Substrate		S/C	Time	Conv.	% ee
Name	[g·L⁻¹]	[g]	[M]	[g·L⁻¹]	ratio ^b	[h]	[%]	/(R/S)
<i>Dh</i> CR	10	0.33	0.2	33	3.3	6	>99	>99 (S)
	20	0.83	0.5	83	4.15	8	>99	>99 (S)
	20	1.65	1.0	165	8.25	12	>99	>99 (S)
	20	3.30	2.0	330	16.5	24	>99	>99 (S)
	20	330 <mark>a</mark>	2.0	330	16.5	24	>99 (92.5) ^c	>99 (S)
CgCR	5	0.33	0.2	33	6.6	6	>99	>99 (<i>R</i>)
	10	0.86	0.5	83	8.3	6	>99	>99 (<i>R</i>)
	10	1.65	1.0	165	16.5	12	>99	>99 (<i>R</i>)
	10	3.30	2.0	330	33	24	>99	>99 (<i>R</i>)
	10	330 <mark>a</mark>	2.0	330	33	24	>99 (93.0) ^c	>99 (<i>R</i>)

Table S6 Optimization of DhCR and CgCR catalyzed asymmetric reduction of COBE.

^a Reactions were carried out at 1 L scale with mechanical agitation. ^b S/C ratio: substrate to catalyst ratio. ^c Numbers in the bracket were isolation yield.

Table S7 Comparison of the characteristics of reported enzymes that produce optically active

CHBE.

E	Enzyme	Family	<i>К</i> м [mM]	Concn [g·L⁻¹]	Cofacto r [mM]	Time [h]	Yield [%]	ee [%] /(R/S)	S.T.Y. [g·L ⁻¹ ·d ⁻¹]	TTN of cofactor
1	Q1 a	SUD	16	300	0.081	13	96	100 (S)	538	21,550
	51 "	SDR	4.0	500 <i>"</i> "	0.167	34	85	100 (S)	304	21,600
2	ScCR ^b	SDR	0.49	600	0.3	22	92	>99 (S)	609	12,100
3	CmMR ^c	MDR	_	300	0.13	36	92	91.6 (S)	186	12,900
4	CmCR d	SDR	_	493.8	0.3	14	99	>99 (S)	-	10,000
5	PsCRI ^e	SDR	4.9	230	0.10	30	90	99 (S)	168	12,600
6	PsCRII ^f	SDR	3.3	250	0.10	30	91	99 (S)	184	13,980
7	CPE ^g	SDR	0.19	3.3	0.25	20	91	>99 (S)	3.65	_
8	DhCR ^h	SDR	1.3	660 <mark>"</mark>	0	24	92.5	>99 (S)	305	53,800
9	SsCR ⁱ	AKR	3.8	300	0.13	16	94	91.7 (<i>R</i>)	419	13,500
10	YueD ^j	SDR	0.70	215 <mark>"</mark>	1	5	92	99.6 (<i>R</i>)	961	1196
11	CgKR1 ^k	MDR	_	330	0	24	89	96.5 (<i>R</i>)	297	_
12	CgCR [/]	AKR	3.7	660 <mark>n</mark>	0	12	93.0	>99 (<i>R</i>)	614	108,000

^a Candida magnolia (Kizaki et al., 2001), ^b Streptomyces coelicolor (Wang et al., 2011), ^c C. macedoniensis (Kataoka et al., 2006), ^d C. magnolia (He et al., 2014), ^e Pichia stipites (Ye et al., 2009), ^f P. stipites (Ye et al., 2010), ^g Candida parapsilosis (Wang et al., 2012), ^h D. hansenii (This work), ⁱ Sporobolomyces salmonicolor (Kataoka et al., 1999), ^j Bacillus subtilis (Ni et al., 2011), ^k Candida glabrata (Ma et al., 2012), ^l C. glabrata (This work), ^m Reaction was carried out in n-butyl acetate/aqueous (1/1) phase (Kizaki et al., 2001), ⁿ Reactions were carried out in toluene/aqueous (1/1) phase (Wang et al., 2011).

Figure S1 SDS-PAGE analysis of the purified *Cg*CR and *Dh*CR. Lane 1: purified *Cg*CR; Lane 2: crude extract of *Cg*CR; Lane 3: crude extract of *Dh*CR; Lane 4: purified *Dh*CR.

Figure S2 Effect of temperature and pH on the activity of *Dh*CR and *Cg*CR. (A) Temperature-profile of *Dh*CR (\bullet) and CgCR (\circ); (B) pH-profile of *Dh*CR (solid symbols) and *Cg*CR (Hollow symbols), Cycle: Citrate buffer (pH 5.0–6.0), Diamond: Phosphate sodium buffer (pH 6.0–8.0), and Triangle: Glycine-NaOH buffer (pH 8.0–9.0).

Figure S4 Calibration curves of oxidized cofactors.

Figure S5 Multiple sequences alignment of *Dh*CR with several SDR members. PsCRI (*Phichia stipites* ATCC58785, A3GF07), SOU1 (*Candida albicans* SC5314, P87219), SOU2 (*Candida albicans* SC5314, P87218), SCR (*Candida parapsilosis*, D5G304), CmS1 (*Candida magnolia*, Q9C4B3), LbADH (*Lactobacillus brevis*, Q84EX5), $3\beta/17\beta$ -hydroxysteroid dehydrogenase, (*Comamonas testosterone* ATCC11996, H1RW42). \star : catalytic residues; \bullet : cofactor binding residues; \wedge : substrate binding residues.

Figure S6 Multiple sequences alignment of *Cg*CR with several AKR members. YOR120Wp (*Saccharomyces cerevisiae* AWRI1631, B5VS12), YOR368Wp (*Saccharomyces cerevisiae* AWRI1631, B5VSP3), 1LWI (3α-hydroxysteroid dehydrogenase, *Rattus norvegicus*, P23457), 1RAL (3α-hydroxysteroid dehydrogenase, *Rattus norvegicus*, Q91WT7), 4JIH (Aldo-keto reductase AKR1B10, *Gorilla*, G3S8S6). ★: catalytic residues; •: structure-stabilizing residues; •: cofactor-binding residues; ▲: substrate-binding residues.

Figure S7 GC spectra of CHBE. (A) Ethylated (*S*)-CHBE produced by *Dh*CR; (B) Ethylated (*R*)-CHBE produced by *Cg*CR.

Reference

- Kizaki, N., Yasohara, Y., Hasegawa, J. Wada, M., Kataoka, M., Shimizu, S., 2001. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by *Escherichia coli* transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 55, 590–595.
- Kataoka, M., Hoshino-Hasegawa, A., Thiwthong, R., Higuchi, N., Ishige, T., Shimizu, S., 2006. Gene cloning of an NADPH-dependent menadione reductase from *Candida macedoniensis*, and its application to chiral alcohol production. Enzyme Microb. Technol. 38, 944–951.
- He, Y.C., Tao, Z.C., Zhang, X., Yang, Z.X., Xu, J.H., 2014. Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate and its derivatives by a robust NADH-dependent reductase from *E. coli* CCZU-K14. Bioresour. Technol. 161, 461–464.
- Ye, Q., Yan, M., Yao, Z., Xu, L., Cao, H., Li, Z.J., Chen, Y., Li, S.Y., Bai, J.X., Xiong, J., Ying, H.J., Ouyang, P.K., 2009. A new member of the short-chain dehydrogenase/reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from *Pichia stipites*. Bioresour. Technol. 100, 6022–6027.
- Ye, Q., Cao, H., Mi, L., Yan, M., Wang, Y., He, Q.T., Li, J., Xu, L., Chen, Y.J., Xiong, J., Ouyang, P.K., Ying, H.J., 2010. Biosynthesis of (S)-4-chloro-3hydroxybutanoate ethyl using *Escherichia coli* co-expressing a novel NADHdependent carbonyl reductase and a glucose dehydrogenase. Bioresour. Technol. 101, 8911–8914.
- Wang, Q.Y., She, L.H., Ye, T.T., Cao, D., Chen, R., Pei, X.L., Xie, T., Li, Y., Gong, W.B., Yin, X.P., 2012. Overexpression and characterization of a novel (S)-specific extended short-chain dehydrogenase/reductase from *Candida parapsilosis*. Bioresour. Technol. 123, 690–694.
- Kataoka, M., Rohani, L.P., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., Shimizu, S., 1999. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by *Escherichia coli* transformant cells coexpressing the aldehyde reductase and glucose dehydeogenase genes. Appl. Microbiol. Biotechnol. 41, 486–490.
- Ni, Y., Li, C.X., Wang, L.J., Zhang, J., Xu, J.H., 2011. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Org. Biomol. Chem. 9, 5463–5468.
- Ma, H.M., Yang, L.L., Ni, Y., Zhang, J., Li, C.X., Zheng, G.W., Yang, H.Y., Xu, J.H., 2012. Stereospecific reduction of methyl *o*-chlorobenzoylformate at 300 g·L⁻¹ without addition cofactor using a carbonyl reductase mined from *Candida glabrata*. Adv. Synth. Catal. 354, 1765–1772.
- Kizaki, N., Yasohara, Y., Hasegawa, J. Wada, M., Kataoka, M., Shimizu, S., 2001. Synthesis of optically pure ethyl (*S*)-4-chloro-3-hydroxybutanoate by *Escherichia*

coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 55, 590–595.