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Table S1 Typical sequence motifs of SDR and AKR superfamily found in DhCR and CgCR.

Typical sequence motifs of SDR found in DhCR?

Sequence motif of Function Position in SDR Position in
SDR DhCR
(T)Gxx(x)Gx(G)xAL Coenzyme binding region, maintenance of central 3- 12-21 40-49
sheet
D Stabilization of adenine ring pocket, weak binding to 60 94
coenzyme
S, YxxxK Catalytic triad 138, 151-155 172, 187-191
N Connection of substrate binding loop and active site 179 212
PG Reaction direction 183-184 216-217
T H-bonding to carboxamide of nicotinamide ring 188 221

Typical sequence motifs of AKR found in CgCR¢

Sequence motif of Function Position in AKR Position in

AKR CgCR

G G G D,P,G,P Stabilization of the barrel core 20, 22, 45,112,119, 23, 25, 45, 106,
164, 186 113, 165, 187

A, W Substrate binding 52,118 52,112

D,Y,KH Catalytic tetrad 50, 55, 84, 117 50, 55, 80, 111

N, Q H-bonding with carboxamide moiety of the cofactor 167, 190 168, 191

T,D Interaction with nicotinamide ribose ring of the cofactor 23, 50 26, 50

S,R H-bonding to adenosine 2’-monophosphate of the 271, 276 263, 268

cofactor

a (Positions refers to residue numbering as in 38/173-hydroxysteroid dehydrogenases (PDB: 1HXH); © x represents any amino

acids; ¢ Positions refers to residue numbering as in 3a-hydroxysteroid dehydrogenases (PDB: 1RAL).



Table S2 The secondary structure elements motif in ‘classical’ SDR, ‘extended’ SDR and DhCR.

Secondary Conserved SDR motifs .
. Position
structure ) Function .
Classical Extended DhCR in DhCR
element
Coenzyme binding
B1+a1 TGxxxGhG TGxxGhaG TGSSGGIG ] B1+a1
region
Adenine ring binding of
B3+a3 Dhx[cp] DhxD DPED B3+a3
coenzyme
Structural role in
B4 GxhDhhhNNAGh [DElxhhHXAA GTIDVFVANAGV stabilizing central p- p4
sheet
B5 GxhhxhSSh hhhxSSxxhaG GSLVLTASMSG Part of active site B5
PYxx[AS]Kxx ) )
ad YX[AS][STIK h PYNAAKAGV Part of active site a6
H[KR]Jh[NS]xhxPG ARVNTISPGYIA  Structural role, reaction
6 h[KR]xxNGP o 6
XxXxT T direction

“In the motifs, ‘a’ denotes an aromatic residues, ‘c’ a charged residue, ‘h’ a hydrophobic residue, ‘p’ a polar
residue and ‘x’ any residue. Conserved amino acids are underlined. Alternative amino acids at a motif position
are given within brackets. The secondary elements of classical and extended SDR are based on 3a/2083-
hydroxysteroid dehydrogenase (PDB: 2HSD).



Table S3 Steady-state kinetic constants of stererocomplementary DhCR and CgCR.

DhCR CgCR
Substrate COBE NADPH COBE NADPH
K mM 1302001 00 505,008 0028
0.001 0.003
Vinax/umol-min~"-mg~* 29.7+0.3 - 42.1+0.6 -
Koot /5~ 16.6 + 0.3 - 27.9+0.4 -
Kead Ky s~1-mM-" 12.8 - 7.55 -




Table S4 Substrate specificities of stererocomplementary DhCR and CgCR.

DhCR CgCR
Substrate - . . —
Specific activity /lU-mg~' ee %/ (R/S)  Specific activity /lU'mg='  ee % / (RIS)
1 0.16 >99 (R) 0.32 92 (S)
2 0.11 >99 (R) 0.12 97 (S)
3 0.075 >99 (R) 0.17 86 (S)
4 2.1 >99 (S) 0.58 98 (R)
5 6.9 >99 (S) 2.0 56 (R)
6 0.06 >99 (R) 0.19 >99 (S)
7 <0.01 n.d.a 1.0 >99 (S)
8 5.3 >99 (R) 3.2 96 (S)
9 22 >99 (S) 2.6 >99 (R)
10 0.35 >99 (S) 2.4 >99 (R)
11 33 >99 (S) 2.9 >99 (R)
12 0.37 >99 (R) 0.28 >99 (S)
13 0.087 >99 (R) 0.50 >99 (S)
14 0.024 >99 (R) 0.034 >99 (S)
15 1.1 >99 (R) 0.15 >99 (S)
16 1.4 >99 (R) 0.12 >99 (S)
17 0.52 >99 (R) 0.02 >99 (S)
18 0.2 >99 (R) 0.01 >99 (S)
19 3.0 >99 (R) 0.38 >99 (S)
20 0.11 >99 (R) 0.56 >99 (S)
21 0.1 >99 (R) 0.64 >99 (S)
22 13 >99 (S) 8.0 >99 (R)
23 0.48 >99 (S) 3.8 >99 (R)
24 2.7 >99 (R) 9.3 >99 (S)
25 3.6 >99 (R) 19 >99 (S)

2 n. d.: no product was detected.



Table S5 Concentrations of NAD* and NADP* in the fresh wet cells and dry cells.

Cell NAD* NADP*
/pmol-g-* /pmol-g-

Fresh wet cells 0.44 £ 0.02 1.03 £ 0.06

Dry cells 0.62 +0.02 1.86 £ 0.13




Table S6 Optimization of DACR and CgCR catalyzed asymmetric reduction of COBE.

Catalyst Substrate S/IC  Time Conv. % ee
Name [g'L™7 [g] [M] [gL'] ratio® [h] [%] /(R/S)
DhCR 10 033 0.2 33 3.3 6 >99 >99 (S)

20 0.83 0.5 83 4.15 8 >99 >99 (S)
20 165 1.0 165 8.25 12 >99 >99 (S)
20 330 20 330 16.5 24 >99 >99 (S)
20 330 2.0 330 16.5 24 >09 (92.5) ¢ >99 (S)
CgCR 5 033 0.2 33 6.6 6 >99 >99 (R)
10 0.86 0.5 83 8.3 6 >99 >99 (R)
10 165 1.0 165 16.5 12 >99 >99 (R)
10 330 20 330 33 24 >99 >99 (R)
10 330 2.0 330 33 24 >99 (93.0)° >99 (R)

a Reactions were carried out at 1 L scale with mechanical agitation. ? S/C ratio: substrate to catalyst ratio. ¢ Numbers

in the bracket were isolation yield.



Table S7 Comparison of the characteristics of reported enzymes that produce optically active

CHBE.
. , S.T.Y.
_ Kuw Concn Cofacto Time Yield ee[%] o TTN of
Enzyme Family i [g-L-1-d™?
[mMM] [g'L'] r[mM] [h] [%] /(R/S) ] cofactor
1 300 0.081 13 96 100 (S) 538 21,550
S12a SDR 4.6

500™  0.167 34 85 100 (S) 304 21,600
2 ScCR SDR  0.49 600 0.3 22 92 >99 (S) 609 12,100
3 CmMR¢ MDR - 300 0.13 36 92  91.6(S) 186 12,900
4 CmCRY SDR - 493.8 0.3 14 99 >99 (S) - 10,000
5 PsCRI® SDR 4.9 230 0.10 30 90 99 (S) 168 12,600
6 PsCRIIT SDR 3.3 250 0.10 30 91 99 (S) 184 13,980

7 CPE ¢ SDR  0.19 3.3 0.25 20 91 >99 (S) 3.65 -
8 DhCR h SDR 1.3 660 " 0 24 925 >99(S) 305 53,800
9 SsCR' AKR 3.8 300 0.13 16 94 91.7(R) 419 13,500

10  YueD/ SDR 0.70 2157 1 5 92 996 (R) 961 1196

11 CgKR1% MDR - 330 0 24 89 96.5(R) 297 -

12  CgCR' AKR 3.7 660 " 0 12 93.0 >99(R) 614 108,000

a Candida magnolia (Kizaki et al., 2001), ® Streptomyces coelicolor (Wang et al., 2011), ¢ C. macedoniensis
(Kataoka et al., 2006), ¢ C. magnolia (He et al., 2014), ¢ Pichia stipites (Ye et al., 2009),  P. stipites (Ye et al.,
2010), 9 Candida parapsilosis (Wang et al., 2012)," D. hansenii (This work), ' Sporobolomyces salmonicolor
(Kataoka et al., 1999), / Bacillus subtilis (Ni et al., 2011), ¥ Candida glabrata (Ma et al., 2012), ! C. glabrata (This

work), ™ Reaction was carried out in n-butyl acetate/aqueous (1/1) phase (Kizaki et al., 2001), " Reactions were

carried out in toluene/aqueous (1/1) phase (Wang et al., 2011).
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Figure S1 SDS-PAGE analysis of the purified CgCR and DhCR. Lane 1: purified CgCR; Lane 2:

crude extract of CgCR; Lane 3: crude extract of DhCR; Lane 4: purified DhCR.



100 Q ( A)

80

60

Relative activity /%

40 |

20 1

0
15 25 35yeffperffureddC 75 85 95

&0
E12'
=y i
Z 10 F
(5}
<
v 8
=
)
4 m
N N
0
4 5 6

pH 7 8 9 10

Figure S2 Effect of temperature and pH on the activity of DhCR and CgCR. (A) Temperature-profile
of DhCR (e) and CgCR (o); (B) pH-profile of DhCR (solid symbols) and CgCR (Hollow symbols),
Cycle: Citrate buffer (pH 5.0-6.0), Diamond: Phosphate sodium buffer (pH 6.0-8.0), and Triangle:
Glycine-NaOH buffer (pH 8.0-9.0).
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Figure S4 Calibration curves of oxidized cofactors.
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Figure S5 Multiple sequences alignment of DhCR with several SDR members. PsCRI (Phichia
stipites ATCC58785, A3GF07), SOU1 (Candida albicans SC5314, P87219), SOU2 (Candida
albicans SC5314, P87218), SCR (Candida parapsilosis, D5G304), CmS1 (Candida magnolia,
Q9C4B3), LbADH (Lactobacillus brevis, Q84EXS5), 3B/17B-hydroxysteroid dehydrogenase,
(Comamonas testosterone ATCC11996, H1RW42). *: catalytic residues; m: cofactor binding
residues; A: substrate binding residues.
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Figure S6 Multiple sequences alignment of CgCR with several AKR members. YOR120Wp
(Saccharomyces cerevisiae AWRI1631, B5VS12), YOR368Wp (Saccharomyces cerevisiae
AWRI1631, B5VSP3), 1LWI (3a-hydroxysteroid dehydrogenase, Rattus norvegicus, P23457),
1RAL (3a-hydroxysteroid dehydrogenase, Rattus norvegicus, Q91WT7), 4JIH (Aldo-keto
reductase AKR1B10, Gorilla, G3S8S6). *: catalytic residues; o: structure-stabilizing residues; m:
cofactor-binding residues; A: substrate-binding residues.
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Figure S7 GC spectra of CHBE. (A) Ethylated (S)-CHBE produced by DhCR; (B) Ethylated (R)-
CHBE produced by CgCR.
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