PdO Nanoparticles Enhancing the Catalytic Activity of Pd/Carbon Nanotubes for 4-Nitrophenol Reduction

Chunxia Wang, ${ }^{\text {a } \ddagger}$ Fan Yang, ${ }^{\text {b } \ddagger *}$ Wang Yang, ${ }^{\text {b }}$ Liang Ren, ${ }^{\text {b }}$ Yunhan Zhang, ${ }^{\text {b }}$ Xilai Jia, ${ }^{\text {b }}$ Liqiang Zhang, ${ }^{\text {b }}$ and Yongfeng Li $^{\text {b* }}$
${ }^{\text {a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for }}$ Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.
${ }^{\mathrm{b}}$ State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China. Phone/Fax: +86-010-89739028. E-mail: yangfan@cup.edu.cn, yfli@cup.edu.cn.
*These authors contributed equally.

1. Materials

All chemicals were used as received without further purification: Palladium (II) nitrate dihydrate, Potassium tetrachloropalladate, (Sinopharm Chemical Reagent Beijing Co., Ltd). Palladinum (II) acetate, Palladium dichloride, 1-Butyl-3methylimidazolium tetrafluoroborate ($\left[\mathrm{BMIM}^{2} \mathrm{BF}_{4}\right.$), (Tokyo Chemical Co., Ltd). Ethanol, methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, Acetone, acetic ether, tetrahydrofuran, toluene, N,N-Dimethylformamide (DMF), (Beijing chemical works).

2. Experimental setup

Figure S1 shows the experimental setup of the gas-liquid interfacial plasma. The glow discharge plasma was generated between the top flat stainless steel (SUS) and bottom ionic liquid electrode by using a DC power source (KIKUSUI PMC500-0.1A). Argon gas was introduced and used as the plasma-forming gas. The chamber was a stainless steel with inner diameter of 70 mm and four glass windows, and the gap between electrodes is 4 mm .

Figure S1. A schematic illustration of plasma system.

3. The TEM images of Pd-1, Pd-2, Pd-3, Pd-4

Figure S2. TEM images of Pd-1 (a), Pd-2 (b), Pd-3 (c), Pd-4 (d).
4. The size distribution of Pd nanoparticles decorated on the surface of OCNTs

Figure S3. Particle size distribution of Pd-1 (a), Pd-2 (b), Pd-3 (c), Pd-4 (d) from the TEM images in Fig. S2.

5. The TEM images of Pd-5

Figure S4. TEM images of Pd-5.

6. The characterization results of $\operatorname{Pd}-5$.

Figure S5. XPS spectra of Pd-5 (a), (b); (c) the enlarged XPS spectra of Pd3d of Pd-5 (magenta), Pd-1 (black curve), Pd-2 (olive curve), Pd-3 (red curve) and Pd-4 (blue curve); (d) The XRD patterns of Pd-5.
7. High-resolution XPS spectra of C1s of Pd-1

Figure S6. High-resolution XPS spectra of C1s of Pd-1.

8. UV-vis spectra of Pd-n catalysts for 4-NP reduction reaction

Figure S7. UV-vis spectra of $4-\mathrm{NP}$ in water after the addition of NaBH_{4} and successive absorption spectra of the conversion from 4-NP to 4-AP with Pd-n catalysts: Pd-1 (a), Pd-2 (b), Pd-3 (c), Pd-4 (d).

9. UV-vis spectra of Pd-5 catalysts for 4-NP reduction reaction

Figure S8. Successive absorption spectra of the conversion from 4-NP to 4-AP with PdO catalysts (a); (f) plots of $\ln \left(C / C_{0}\right)$ versus time for the conversion from 4-NP to 4AP with Pd-5 catalysts.

10. Apparent rate constant of Pd-n catalysts for 4-NP reduction reaction

Figure S9. Plots of $\ln \left(C / C_{0}\right)$ versus time for the conversion from 4-NP to 4-AP with Pd-n catalysts.
11. The TEM images of the reused Pd-1 catalyst

Figure S10. TEM image of Pd-1 catalyst after 10 cycles

Table S1. Pd nanoparticle size (nm) ${ }^{\mathrm{a}}$ and Pd loading on OCNTs (wt. $\left.\%\right)^{\mathrm{b}}$.

Sample	Pd-1	Pd-2	Pd-3	Pd-4
Pd-n size (nm)	3.5	3.7	8.6	3.6
Pd loading (wt.\%)	9.5	10.0	5.1	8.5

${ }^{\text {a }}$ Average size obtained from the size distribution histogram.
${ }^{\mathrm{b}}$ Calculated by ICP.

Table S2. Apparent reaction rates $k_{a p p}$ values for the Pd-n catalysts for 4-NP reduction.

Sample	Pd-1	Pd-2	Pd-3	Pd-4
Apparent reaction rate $\left(\mathrm{min}^{-1}\right)^{\mathrm{a}}$	0.60	0.25	0.15	0.1
Apparent reaction rate $\left(\mathrm{min}^{-1}\right)^{\mathrm{b}}$	1.00	0.56	0.50	0.21
a In quartz cuvette (method A). ${ }^{\mathrm{b}}$ In micro-reaction vial (method B).				

