RSC Advances

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Use of deuterium labelling – evidence of graphene hydrogenation by reduction of graphite oxide using aluminium in sodium hydroxide

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

SUPPORTNIG INFORMATION

Ondřej Jankovský^a, Petr Šimek^a, Michal Nováček^a, Jan Luxa^a, David Sedmidubský^a,

Martin Pumera^b, Anna Macková^{c,d}, Romana Mikšová^{c,d} and Zdeněk Sofer^{*a}

Fig. SI1 The Survey spectra of starting graphite oxide (upper images) and the corresponding high resolution XPS spectra of C 1s peak (lower images).

Table SI A The results of C 1s peak deconvolution with aquantification of different carbon bonding states for thestarting graphite oxide material.

Sample	HO-GO	HU-GO
C=C	24.6	28.3
C-C/C-H	2.5	8.4
C-O	36.3	22.5
C=O	18.4	19.5
O-C=O	14.6	14.5
$\pi - \pi^*$	3.6	6.8

Fig. SI3 ERDA (left) and RBS (right) spectra of the starting graphite oxide. The composition of HO-GO is 71.4 at.% C, 19.9 at.% O and 8.7 at.% H. The composition of HU-GO is 72.9 at.% C, 17.8 at.% O and 9.3 at.% H.