Supporting Information for:

Hierarchical Three-Dimensional NiCo₂O₄ nanoneedle arrays

supported on Ni foam for high-performance supercapacitors

Jian Wu^{a,b}, Rui Mi^b, Shaomin Li^b, Pan Guo^a, Jun Mei^b, Hao Liu^{*,b}, Woon-Ming

Lau^{a,b}, and Li-Min Liu^{*,a}

^aBeijing Computational Science Research Center, Beijing 100084, China ^bChengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, China

*Corresponding author: mliuhao@gmail.com, limin.liu@csrc.ac.cn

Fig. S1: SEM images of clean Ni foam.

Fig. S2: SEM images of NiCo₂O₄ nanoneedle arrays grow on Ni foam.

Fig. S3: XRD pattern of the as-prepared precursor.

Fig. S4: EDX pattern of the NiCo₂O₄ nanoneedle arrays.

Fig. S5: BET isotherm plots and corresponding BJH pore distributions (insets) of the $NiCo_2O_4$ nanoneedle arrays.

Fig. S6: Cyclic voltammetry curves of the hierarchical $NiCo_2O_4$ array electrodes in a three-electrode cell with 2 M KOH aqueous solution at various scan rates: (a) nanosheet (1 h); (b) nanosheet (2 h); (c) nanosheet-nanoneedle (4 h); (d) nanoneedle (8 h) arrays.

Table S1. Comparison of the electrochemical performances of the 3D hierarchical $NiCo_2O_4$ nanoneedle arrays with other reported ones.

Nanostructures	Areal capacitance	Special capacitance	Mass loading	Refs
<i>NiCo₂O₄</i> nanoneedle arrays	3.71 F/cm^2 at 1 mA/cm ²	2193 F/g at 1 A/g	1.64 mg/cm ²	This work
<i>NiCo₂O</i> ₄ nanoneedle arrays	3.12 F/cm ² at 1.1 mA/cm ²	1118.6 F/g at 5.56 mA/cm ²	0.9 mg/cm ²	[1]
<i>NiCo₂O₄</i> nanoneedle arrays	0.41 F/cm ² at 10 mA/cm ²		0.3 mg/cm ²	[2]
Co _{0.5} Ni _{0.5} DHs/NiC composites	$2.3 \text{ F/}cm^2 \text{ at } 2 \text{ mA/}$ cm^2		1.0 mg/cm ²	[2]

<i>NiCo₂O₄</i> nanoneedle arrays	0.66 F/cm ² at 2 mA/cm ²	660 F/g at 2 A/g		[3]
NiCo ₂ O _{4 nanowire} arrays	2.01 F/cm^2 at 2 mA/cm ²	~900 F/g at 10 mA/cm ²	1.15 mg/cm ²	[4]
<i>NiCo</i> ₂ <i>O</i> _{4@} <i>MnO</i> ₂ core/shell nanowire arrays	3.31 F/cm ² at 2 mA/cm ²	1471.4 F/g at 10 mA/cm ²	1.4 mg/cm ²	[4]
<i>NiCo₂O₄</i> nanosheet arrays	3.51 F/cm ² at 1.8 mA/cm ²	1743.4 F/g at 7.08 A/g	1.2 mg/cm ²	[5]
<i>Co</i> ₃ <i>O</i> _{4@} <i>NiO</i> nanowire arrays	2.56 F/cm ² at 2 A/g	853 F/g at 2 A/g	~ 2.1 mg/cm ² for Co_3O_4 and ~ 0.9 mg/cm ² for NiO	[6]
$NiCo_2O_4$ $NiCo_2O_4$ core/shell nanoflake arrays	2.20 F/cm ² at 5 mA/cm ²	1115.6 F/g at 5 mA/cm ²	1.34 mg/cm ² for core and 0.63 mg/cm ² for shell	[7]

Fig. S7: Charge and discharge curves of (a) nanosheets-1, (b) nanosheets-2, (c) nanosheets-nanoneedles, and (d) nanoneedles at different current densities of 1, 2, 5, and 10 A/g.

Fig. S8: Charge and discharge curves of (a) nanosheets-1, (b) nanosheets-2, (c) nanosheets-nanoneedles, and (c) nanoneedles at different current densities of 1, 2, 5, 10, and 20 mA/cm².

Fig. S9: Ragone plot of the power and energy density of (a) nanosheets-1, (b) nanosheets-2, (c) nanosheets-nanoneedles, and (d) nanoneedles at different current densities of 1, 2, 5, 10 and 20 A/g.

Fig. S10: SEM image of NiCo₂O₄ nanoneedle arrays after 2000 cycles.

- [1] G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park and X. W. Lou, *Energy Environ. Sci.*, 2012, 5, 9453-9456.
- [2] L. Huang, D. C. Chen, Y. Ding, S. Feng, Z. L. Wang and M. L. Liu, Nano Lett.,
- 2013, **13**, 3135-3139.

- [3] D. Y. Zhang, H. L. Yan, Y. Lu, K. W. Qiu, C. L. Wang, C. C. Tang, Y. H. Zhang,
- C. W. Cheng, Y. S. Luo, Nanoscale Res Lett., 9 (2014) 139-148.
- [4] L. Yu, G. Q. Zhang, C. Z. Yuan and X. W. Lou, *Chem. Commun.*, 2013, 49, 137-139.
- [5] G. Q. Zhang, X. W. Lou, Adv. Mater., 25 (2013) 976-979.
- [6] X. H. Xia, J. P. Tu, Y. Q. Zhang, X. H. Wang, C. D. Gu, X.-b. Zhao, H.J. Fan, ACS Nano, 6 (2012) 5531-5538.
- [7] X. Y. Liu, S. J. Shi, Q. Q. Xiong, L. Li, Y. J. Zhang, H. Tang, C. D. Gu, X. L.
- Wang and J. P. Tu, ACS Appl. Mater. Interfaces, 2013, 5, 8790-8795.