Supplementary Materials: Phase-change-induced martensitic deformation and slip system in GeSbTe
 Moon Hyung Jang ${ }^{* * \ddagger}$, Kwang Sik Jeong ${ }^{* \ddagger}$, Seung Jong Park ${ }^{*}$, Sung Jin Park ${ }^{*}$, Mann-Ho Cho ${ }^{*}$, Jae Yong Song ${ }^{\text {" }}$
 *Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
 ${ }^{\top}$ Center for Nanocharacterization, Korea Research Institute of Standards and Science, Daejeon, 305-340, Republic of Korea

[^0]
Supplementary Figure Captions

Figure S1. HRTEM image of an as-grown GST film with no crystallized regions.

Figure S2. (a) HRTEM images of the monoclinic phase, which has an FCC angle of 90°, after annealing at $220^{\circ} \mathrm{C}$. (b) Corresponding FFT diffraction patterns of this crystal, showing γ of 80.7° and monoclinic (200) and (020) lattice spacings of 3.06 and $2.99 \AA$, respectively. (c) HRTEM image of another monoclinic phase, showing an FCC angle of 90°, after annealing at $220^{\circ} \mathrm{C}$. (d) FFT diffraction patterns obtained from the crystal shown in (c), showing γ of 81.0° and monoclinic (200) and (020) lattice spacings of 3.18 and $3.10 \AA$, respectively.

Figure S3. (a) HRTEM images of the monoclinic phase, which has an FCC angle of 90°, after annealing at $220{ }^{\circ} \mathrm{C}$. (b) Corresponding FFT diffraction patterns of this crystal, showing γ of 81.1° and monoclinic (200) and (020) lattice spacings of 3.03 and $3.02 \AA$, respectively. (c) HRTEM image of another monoclinic phase, showing an FCC angle of 90°, after annealing at $220{ }^{\circ} \mathrm{C}$. (d) FFT diffraction patterns from the crystal shown in (c) with a γ angle of 87.8° and monoclinic (200) and (020) lattice spacings of 3.18 and $3.00 \AA$, respectively.

Figure S4. Volume shrinkage (δv) of the crystallized region of radius R_{a} within an amorphous matrix of radius R_{b}. The crystallized region and the amorphous matrix are concentrically spherical in shape.

Figure S5. Images of the geometrically optimized $4 \mathbf{a} \times 4 \mathbf{b} \times 4 \mathbf{c}$ GST structure with deformation angles (γ) of (a) 86°, (b) 78°, (c) 74°, and (d) 66°, which have the same configurations as those shown in Figs. 4(c)-(e). The red-dashed boxes correspond to a $2 \mathbf{a} \times 2 \mathbf{b}$ cell of the GST structure.

Figure S6. (a) HRTEM images of FCC crystal with slip system in the FCC (111) plane along the [$\overline{1} 10]$ direction. (b) Corresponding Fourier-transformed diffraction patterns, showing FCC[100] and FCC[010] interplanar spacings of 2.99 and $3.07 \AA$, respectively, and an angle of 88.6° between these planes. (c) Side view of successive atomic motion in the FCC crystal during slip along [$\overline{1} 10]$ in the (111) plane from 1 to 10 . The green arrow indicates the direction of the slip.

Figure S7. Total DOS of GST materials for various values of γ ranging from 90 to 66°, as obtained by VASP simulation. The vertical dotted line indicates the Fermi level $\left(\mathrm{E}_{\mathrm{F}}\right)$ of the DOS.

The gap below E_{F} at 90° indicates the semimetallicity of the FCC crystal structure. After deformation, this gap is filled by electron states except at the angle of 70°.

Figure S1

Fig. S1 Jang et al.

Figure S2

Fig. S2 Jang et al.

Figure S3

Fig. S3 Jang et al.

Figure S4

Fig. S4 Jang et al.

Figure S5

Fig. S5 Jang et al.

Figure S6

(c) (111)

Fig. S6 Jang et al.

Figure S7

Fig. S7 Jang et al.

[^0]: Current affiliation: Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
 ${ }^{\text {§ }}$ To whom correspondence should be addressed. E-mail: mh.cho@yonsei.ac.kr
 ${ }^{\ddagger}$ M.H.J. and K.S.J. contributed equally to this work.

