Supplementary Information

A Meta-Molecular Tailoring Strategy Towards Efficient Violet-Blue Organic

Electroluminescent Material

Wen-Cheng Chen,^{*a,b*} Guang-Fu Wu,^{*a*} Yi Yuan,^{*a,b*} Huai-Xin Wei,^{*b*} Fu-Lung Wong,^{*b*} Qing-Xiao Tong^{**a*} and Chun-Sing Lee^{**b*}

^a Department of Chemistry, Shantou University, Guangdong 515063, China

^b Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University

of Hong Kong, Hong Kong SAR, China

Synthesis:

Scheme S1 Synthetic procedures for *m*-BBTPI.

[1,1':3',1"-terphenyl]-4,4"-dicarbaldehyde (*m*-BBCHO): 60 mL toluene, 20 mL ethanol and 30 mL 2 M Na₂CO₃ aqueous were added to a mixture of 1.65 g 1,3-dibromobenzene (7 mmol), 1.6 g (4-formylphenyl)boronic acid (10.68 mmol) and 0.61g Pd(PPh₃)₄ (0.56 mmol). Then the mixture was heated at 90 °C with stirring under an argon atmosphere. After 24 h, the mixture was cooled to room temperature and extracted with CH₂Cl₂ and dried over MgSO₄, then removed the solvent. At last, the residue was purified by column chromatography on silica gel using CH₂Cl₂ and petroleum ether (2:1) as eluent to give a white solid, with a 91.5 % yield (1.83 g). ¹H NMR (400 MHz, CDCl₃): δ 10.09 (s, 2H), 8.04-7.97 (m, 4H), 7.88 (t, *J* = 1.6 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 4H), 7.72-7.66 (m, 2H), 7.61 (dd, *J* = 8.4, 6.9 Hz, 1H).

4,4''-bis(1-(4-(*tert*-butyl)phenyl)-1H-phenanthro[9,10-*d*]imidazol-2-yl)-1,1':3',1''-terphenyl (*m*-BBTPI): 9,10phenanthrenequinone (1.25 g, 6 mmol), *m*-BBCHO (0.72 g, 2.5 mmol), 4-*tert*-butylbenzenamine (0.86 mL, 6 mmol), and ammonium acetate (3.86 g, 50 mmol) were added into glacial acetic acid (40 mL) and the mixture refluxed for 24 h under an N₂ atmosphere. After cooling to room temperature, a pale-yellow mixture was obtained and poured into methanol under stirring. The precipitate was separated by filtration, washed with methanol, and dried under vacuum. The product was purified by column chromatography on silica gel (CH₂Cl₂ as eluent) to give a white solid, with a 78.2% yield (1.81g). ¹H NMR (400 MHz, CD₂Cl₂): δ 8.90 (d, *J* = 8.0 Hz, 2H), 8.78 (d, *J* = 8.4 Hz, 2H), 8.72 (d, *J* = 8.5 Hz, 2H), 7.80-7.45 (m, 26H), 7.35-7.28 (m, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 1.46 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 153.33, 153.22, 141.04, 140.98, 137.48, 136.04, 133.54, 129.79, 129.66, 129.28, 129.25, 128.54, 128.41, 128.25, 127.26, 127.23, 127.07, 126.88, 126.31, 126.22, 124.79, 124.05, 123.15, 123.08, 122.74, 120.91, 35.05, 31.44 ppm. MALDI-TOF MS *m/z*: Calcd for C₆₈H₅₄N₄: 926.4. Found: 927.5 [*M*⁺+H]. Anal. calcd. for C₆₈H₅₄N₄: C, 88.09; H, 5.87; N, 6.04. Found: C, 88.15; H, 5.85; N, 5.93.

Fig. S1 The configuration and HOMO/LUMO energy alignment of the as-prepared devices.

Tuble of Rey performance data for <i>m DDTTT</i> based and some might emerency non-doped violet of de ODDDS.							
emitter	$V_{\rm on}\left({ m V} ight)$	$\lambda_{\rm EL} ({\rm nm})$	CE^a (cd A ⁻¹)	PE^{b} (lm W ⁻¹)	EQE^{c} (%)	CIE (x, y)	reference ^d
<i>m</i> -BBTPI	3.2	428	1.99	1.81	3.63	0.16, 0.06	This work
XBTPI	3.1	428	2.06	1.60	4.93	0.16, 0.05	13e
TTP-TPI	3.1	424	2.10	1.88	5.02	0.16, 0.05	9d
TCPC-6	-	425	1.35	-	3.72	0.16, 0.05	9b
CzS1	3.5	426	1.89	1.58	4.21	0.157, 0.055	9c
CzS2	2.8	417	0.82	0.84	2.70	0.157, 0.044	9c
SiPIM	4.2	420	1.94	-	6.29	0.163, 0.040	9e
M1	-	420	0.65	0.48	1.94	0.165, 0.050	6b
M2	-	428	1.53	0.86	3.02	0.166, 0.056	6b

Table S1 Key performance data for *m*-BBTPI-based and some high-efficiency non-doped violet-blue OLEDs.

^a Current efficiency, ^b power efficiency, ^c external quantum efficiency at maximum. ^d Parallel to the main text.