Supporting Materials

Concise Synthesis of Semicarbazides and Formylhydrazines *via* Direct Addition Reaction between Aromatic Azoarenes and *N*-Substituted Formamides

Defu Liu¹, Jincheng Mao,^{1,2}*Guangwei Rong¹, Hong Yan¹, Yang Zheng¹, Jie Chen¹

¹Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. Chin

^bState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China

jcmao@suda.edu.cn

Content

Experimental Section	2-4
Characterization of the corresponding products	5-11
X-ray crystallographic data for compound 4a	12
Copy of ¹ H and ¹³ C NMR Spectra for Corresponding Products	20-42

Experimental Section

General Information:

All reactions were carried out under an air atmosphere condition. Azobenzene was purchased from Sinophorm Chemical Reagent Co., Ltd, other Aromatic azo compounds were prepared using literature procedure¹⁻³. Various Formamides and various Oxidants and other chemicals were purchased from Aldrich, Acros or Alfa. Column chromatography was generally performed on silica gel (100-200 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light (254 nm) to visualize the course of the reactions. The ¹H (400 MHz) and ¹³C NMR (100 MHz) data were recorded on Varian 400 M spectrometers using CDCl₃ as solvent. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.500 ppm) as internal reference. ESI-MS and HRMS were performed by the State-authorized Analytical Center in Soochow University.

Optimization

Optimization of reaction conditions for the reaction of azobenzene with DMF^[a]

	1a	O H N Oxidant DMF,120°C 2a	$H_{N,N} + $	H N O 4a	N H
Entry	Oxidant		Additive (equiv)	Yield of 3a [%] ^b	Yield of 4a [%] ^b
1°	DTBP(2eq)	_	_	19	NR
2	DTBP	_	-	25	NR
3 ^d	DTBP(6eq)	_	_	24	NR
4	DTBP	PhCOCl	_	31	17
5	DCP	PhCOCl	_	trace	60
6	TBHP	PhCOCl	_	10	14
7	BQ	PhCOCl	_	trace	trace

8	DCP	PhCH ₂ COCl	_	25	30
9	DCP	PhCH ₂ Cl	-	30	22
10	DCP	POBr ₃	-	13	40
11	DTBP	PhCOCl	$I_2(0.2)$	47	trace
12	DTBP	PhCOCl	NaI (02)	57	trace
13	DTBP	PhCOCl	KI (0.2)	51	trace
14	DTBP	PhCOCl	TBAI (0.2)	51	trace
15	DTBP	PhCH ₂ COCl	NaI (02)	40	trace
16	DTBP	PhCH ₂ Cl	NaI (02)	38	trace
17	DTBP	POBr ₃	NaI (02)	52	trace
18	DTBP	SOCl ₂	NaI (02)	27	trace
19e	DTBP	PhCOCl	NaI (0.2)	65	trace
20^{f}	DTBP	PhCOCl	NaI (0.2)	42	trace
21	DCP	PhCOCl	imidazole (1.0)	10	68
22	DCP	PhCOCl	2-methylimidazole (1.0)	<10	55
23	DCP	PhCOCl	4-methylimidazole (1.0)	<10	43
24	DCP	PhCOCl(40%)	imidazole (1.0)	15	30
25	DCP	PhCOCl(10%)	imidazole (1.0)	14	44

^a Catalytic conditions: azobenzene (0.5 mmol), oxidant (2 mmol, 4 eq), PhCOCl (20 mol%), DMF (2 mL), 120 °C, 24 h, air. ^b Yield of isolated product. ^c DTBP 2eq. ^dDTBP 6eq ^ePhCOCl (40 mol%). ^fPhCOCl (10 mol%).

General Procedure for preparation of semicarbazides through the addition Reaction between aromatic azoarenes and *N*-substituted formamides: To a reaction tube equipped with a magnetic stir bar was added under air, azoarene (0.5 mmol), NaI (20 mol%), DTBP (4 equiv) and PhCOC1 (40 mol%) in DMF (2 mL). The resulting reaction mixture was kept stirring at 120 °C for 24 h. At the end of the reaction, the reaction mixture was cooled to room temperature. After removal of the solvent, the residue was subjected to column chromatography on silica gel using ethyl acetate and petroleum ether mixtures to afford the desired product in high purity.

General Procedure for Preparation of formylhydrzaines through the addition Reaction between aromatic azoarenes and *N*-substituted formamides: To a reaction tube equipped with a magnetic stir bar was added under air, azoarene (0.5 mmol), imidazole (1 equiv), DCP (4 equiv) and PhCOCl (20 mol%) in DMF (2 mL). The resulting reaction mixture was kept stirring at 120 °C for 24 h. At the end of the reaction, the reaction mixture was cooled to room temperature. After removal of the solvent, the residue was subjected to column chromatography on silica gel using ethyl acetate and petroleum ether mixtures to afford the desired product in high purity.

Characterization of the corresponding products:

N,N-Dimethyl-1,2-diphenylhydrazinecarboxamide

White Solid; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.29 (t, J = 7.9 Hz, 2H), 7.16 (t, J = 8.0 Hz, 2H), 7.10 – 7.07 (m, 2H), 7.03 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 7.6 Hz, 2H), 6.73 (t, J = 7.2 Hz, 1H), 2.84 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 164.7, 153.5, 150.2, 134.2, 133.9, 128.4, 125.3, 124.0, 117.1, 42.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₈N₃O requires 256.1450, found 256.1448.

1,2-Bis(4-fluorophenyl)-N,N-dimethylhydrazinecarboxamide

Yellow oil liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.11(m, 2H), 7.05(d, J = 8.0 Hz, 2H), 7.00 (m, 2H), 6.94 (m, 3H), 2.91 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 160.5, 159.1, 158.5, 156.8, 144.8 (d, J = 2.2 Hz, 2C), 142.4 (d, J = 3.0 Hz, 2C), 122.8 (d, J = 8.2 Hz, 2C), 116.2, 116.0 (d, J = 1.5 Hz, 2C), 115.7, 115.0 (d, J=7.7, 2C), 37.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₆F₂N₃O requires 292.1261, found 292.1264.

1,2-bis(4-chlorophenyl)-N,N-dimethylhydrazinecarboxamide

Yellow and oily liquid ; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.26(s, 1H), 7.16 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 3.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 147.0, 144.4, 129.6, 129.3, 129.17, 125.8, 121.7, 114.8, 37.4. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₆Cl₂N₃O requires 324.0670, found 324.0661.

1,2-Bis(4-bromophenyl)-N,N-dimethylhydrazinecarboxamide

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.8 Hz, 1H), 6.97 (s, 2H), 6.94 (s, 1H), 6.80 (d, J = 8.4 Hz, 1H), 2.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 147.5, 144.9, 132.2, 132.1, 122.0, 117.2, 115.2, 113.1, 37.5. MS ESI (m/z): [M+H]⁺ calcd for C₁₅H₁₅Br₂N₃O requires 411.9655, found 411.9662. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₆Br₂N₃O requires 411.9660, found 411.9653.

N,N-Dimethyl-1,2-bis(4-(trifluoromethoxy)phenyl)hydrazinecarboxamide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 9.2 Hz, 2H), 7.12-7.10 (m, 5H), 6.92 (m, 2H), 2.92 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 147.2, 145.6 (d, J = 2.0 Hz, 2C), 144.6, 143.3 (d, J = 2.0 Hz, 2C), 122.5, 122.1, 121.9, 121.7, 121.6, 119.3, 119.2, 114.3, 37.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₅F₆N₃O₃ requires 424.1096, found 424.1092.

2-(4-Bromophenyl)-1-(4-iodophenyl)-N,N-dimethylhydrazinecarboxamide

Tan oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (m, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.42 (m, 1H), 7.34 (d, J = 8.8Hz, 1H), 6.95 (m, 2H), 6.83 (m, 2H), 6.70 (d, J = 8.4 Hz, 1H), 2.90 (d, J = 1.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 159.7, 148.3, 147.6, 145.7, 145.0, 138.3, 138.1, 132.2, 132.2, 128.4, 122.3, 122.0, 117.3, 115.8, 115.3, 113.2, 87.8, 82.9, 37.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₆BrIN₃O requires 459.9540, found 459.9522.

1,2-Bis(3-chlorophenyl)-N,N-dimethylhydrazinecarboxamide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (m, 1H), 7.18 (d, J = 8.0

Hz, 1H), 7.12 (m, 3H), 6.96 (m, 1H), 6.94 (t, J = 2.0 Hz, 1H), 6.90 (m, 1H), 6.80 (m, 1H), 2.95 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 149.7, 147.0, 135.2, 135.0, 130.5, 130.2, 124.5, 121.2, 120.5, 118.1, 113.5, 111.9, 37.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₆Cl₂N₃O requires 324.0670, found 324.0681.

1,2-Bis(3-bromophenyl)-N,N-dimethylhydrazinecarboxamide

Tan oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 7.24 (m, 1H), 7.17 (m, 2H), 7.10 (m, 2H), 7.00 (m, 2H), 6.83 (m, 1H), 2.93 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 149.8, 147.1, 130.8, 130.5, 127.4, 124.1, 123.4,123.3, 123.0, 118.5, 116.4, 112.3, 37.6. TOF MS CI⁺ (m/z): [M+H]+ calcd for C₁₅H₁₆Br₂N₃O requires 411.9660, found 411.9664.

Diethyl 4,4'-(1-(dimethylcarbamoyl)hydrazine-1,2-diyl)dibenzoate

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.93(d, J = 8.4Hz, 2H), 7.34 (s, 1H), 7.08 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 4.32 (m, 4H), 2.94 (s, 6H), 1.35 (q, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 166.0, 159.2, 152.1, 149.2, 131.5, 131.0, 126.0, 123.0, 118.8, 112.4, 60.9, 60.5, 37.6, 14.4, 14.4. TOF MS CI⁺ (m/z): [M+H]+ calcd for C₂₁H₂₆N₃O₅ requires 400.1872, found 400.1870.

1-(4-Iodophenyl)-N,N-dimethyl-2-phenylhydrazinecarboxamide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (m, 2H),, 7.32 (t, *J* = 8.0 Hz, 2H), 7.25 (m, 1H), 7.10 (m, 2H), 6.90 (m, 2H), 6.74 (d, *J* = 8.8 Hz, 1H), 2.90 (d, *J* = 7.6Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 159.8, 148.7, 148.4, 145.9, 138.0, 129.4, 124.7, 122.2, 121.3, 120.8, 115.9 , 113.6, 82.7, 37.5, 37.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₇IN₃O requires 382.0416, found 382.0408.

1-(4-Bromophenyl)-N,N-dimethyl-2-phenylhydrazinecarboxamide

Tan oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (m, 1H), 7.35 (m, 2H), 7.28 (m, 1H), 7.13 (m, 2H), 7.02 (m, 1H), 6.95 (m, 2H), 6.88 (m, 1H), 2.93 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 159.9, 148.4, 148.0, 146.0, 145.3, 132.2,132.1, 129.4, 124.7, 121.9, 121.3, 120.8, 116.9, 115.4, 113.6, 112.9, 37.6, 37.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₇BrN₃O requires 334.0555, found 334.0555.

1-(4-Chlorophenyl)-N,N-dimethyl-2-phenylhydrazinecarboxamide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 1H), 7.29 (m, 2H), 7.22 (d, J = 8.8 Hz, 1H), 7.12 (m, 4H), 6.93 (m, 2H), 2.93 (d, J = 4.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 160.1, 148.4, 147.5, 146.0, 144.8, 133.1, 130.1, 129.3, 129.2, 128.4, 125.6, 124.7, 121.7, 121.2, 120.8, 114.9, 113.5, 37.6, 37.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₇ClN₃O requires 290.1060, found 290.1062.

N-Methyl-1,2-diphenylhydrazinecarboxamide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.0 Hz, 2H), 7.23 (dd, J = 16.0, 8.0 Hz, 4H), 7.06 (t, J = 7.2 Hz, 1H), 6.89 (t, J = 7.2 Hz, 1H), 6.83 (d, J = 8.0 Hz, 2H), 6.53 (d, J = 7.2 Hz, 1H), 6.26 (s, 1H), 2.83 (d, J = 4.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 145.7, 141.5, 129.4, 128.6, 124.6, 122.2, 121.3, 113.4, 26.9. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₄H₁₆N₃O requires 242.1293, found 242.1288.

1,2-Diphenylhydrazinecarboxamide

Yellow and oily liquid; ¹H NMR (400 MHz, DMSO) δ 8.73 (s, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.23 (t, J = 8.0Hz, 2H), 7.14 (t, J = 8.0 Hz, 2H), 6.99 (t, J = 7.2 Hz, 1H),

6.72 (d, J = 7.6 Hz, 3H), 6.59 (s, 2H). ¹³C NMR (100 MHz, DMSO) δ 163.0, 151.8, 147.1, 134.1, 133.1, 128.6, 127.4, 124.4, 117.7. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₃H₁₄N₃O requires 228.1137, found 228.1145.

N,N-Diethyl-1,2-diphenylhydrazinecarboxamide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, J = 7.6 Hz, 2H), 7.25 (t, J = 8.0 Hz, 2H), 7.17 (d, J = 7.6 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.95 (s, 1H), 6.90 (t, J = 7.2 Hz, 1H), 3.34 (d, J = 6.8 Hz, 4H), 1.07 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 148.9, 147.0, 129.3, 129.2, 124.6, 121.1, 121.0, 113.9, 41.6, 13.0. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₇H₂₂N₃O requires 284.1763, found 284.1759.

N,N-Dimethyl-2-phenyl-2-(phenylamino)acetamide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.28 (s, 1H), 7.26 (m, 2H), 7.11 (t, J = 8.0 Hz, 2H), 6.66 (m, 3H), 5.27 (s, 1H), 3.03 (s, 3H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 146.2, 138.1, 129.2, 128.9, 128.1, 127.9, 117.9, 113.7, 58.2, 37.0, 36.3. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₆H₁₉N₂O requires 255.1497, found 255.1496.

N,N'-Diphenylmorpholine-4-carbohydrazide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ = 7.34 (t, *J* = 7.9 Hz, 2H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 7.14 (t, *J*=7.3, 1H), 6.94 (t, *J* = 7.6 Hz, 3H), 3.60 (m, 4H), 3.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 148.7, 145.9, 129.4, 129.4, 124.8, 121.2, 120.9, 113.4, 66.4, 45.8. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₇H₂₀N₃O₂ requires 298.1555, found 298.1556.

N, N'-Diphenylformohydrazide

White Solid; ¹H NMR (400 MHz, DMSO) δ 9.19 (s, 1H), 8.98 (s, 1H), 8.79 (s, 1H), 8.54 (s, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 7.38 (m, 4H), 7.18 (m, 6H), 6.75 (m, 6H). ¹³C NMR (100 MHz, DMSO) δ 170.2, 165.9, 152.4, 152.2, 146.9, 144.6, 134.5, 134.4, 134.1, 133.9, 130.5, 126.2, 125.1, 124.5, 124.2, 117.5, 117.4, 114.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₃H₁₃N₂O requires 213.1034, found 213.1028.

N,N'-Bis(4-fluorophenyl)formohydrazide

Yellow and oily liquid; ¹H NMR (400 MHz, DMSO) δ 9.13 (s, 1H), 8.87 (s, 1H), 8.77 (s, 1H), 8.50 (s, 1H), 7.65 (dd, J = 8.8, 4.8 Hz, 2H), 7.53 (dd, J = 8.8, 4.8 Hz, 2H), 7.24 (m, 4H), 7.01 (q, J = 9.1 Hz, 4H), 6.74 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.96, 162.18, 161.53, 160.25, 159.73, 159.65, 157.26, 142.39, 142.37, 141.95, 136.86, 122.85, 122.77, 121.43, 121.35, 116.79, 116.47, 116.24, 116.06, 115.96, 115.88, 115.83, 114.41, 114.34. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₃H₁₁F₂N₂O requires 249.0839, found 249.0842.

N,*N*'-Bis(4-chlorophenyl)formohydrazide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.60 (d, J = 24.2 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.39 (q, J = 9.0 Hz, 6H), 7.30 (m, 1H), 7.20 (dd, J = 12.0, 8.8 Hz, 4H), 6.96 (s, 1H), 6.80 (s, 1H), 6.73 (dd, J = 9.2, 2.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 160.0, 144.9, 144.4, 139.3, 137.9, 131.9, 131.2, 129.9, 129.7, 129.3, 129.2, 127.0, 121.7, 120.3, 115.4, 114.0. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₃H₁₁Cl₂N₂O requires 281.0248, found 281.0239.

N,N'-Bis(4-bromophenyl)formohydrazide

Yellow and oily liquid; ¹H NMR (400 MHz, DMSO) δ 9.35 (s, 1H), 8.98 (d, J = 8.4 Hz, 2H), 8.51 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.47 (m, 6H), 7.20 (m, 4H), 6.74 (dd, J = 15.2, 8.7 Hz, 4H). ¹³C NMR (101 MHz, DMSO) δ 165.47, 161.17, 146.52, 146.13, 140.97, 138.61, 129.90, 129.78, 129.62, 129.26, 129.23, 124.12, 123.41, 122.97, 121.79, 120.99, 114.53, 114.35. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₃H₁₁Br₂N₂O requires 368.9238, found 368.9231.

N,N'-Bis(4-(trifluoromethoxy)phenyl)formohydrazide

Yellow and oily liquid; ¹H NMR (400 MHz, DMSO) δ 9.46 (s, 1H), 9.08 (s, 1H), 9.00(s, 1H), 8.53 (s, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.8 Hz, 3H), 7.42 (t, J = 7.6 Hz, 5H), 7.18 (dd, J = 12.4, 8.8 Hz, 4H), 6.81 (dd, J = 15.3, 8.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 160.2, 158.9, 147.2, 146.5, 144.9, 144.5, 143.9, 143.6, 139.3, 137.9, 136.8, 124.1, 122.9, 122.6, 122.4, 121.7, 121.6, 120.4, 119.2, 119.1, 114.9, 113.4. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₁F₆N₂O₃ requires 381.0674, found 381.0670.

N,N'-Dip-tolylformohydrazide

Yellow and oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 2H), 8.59 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 3H), 7.21 (d, J = 8.4 Hz, 3H), 7.12 (d, J = 8.4 Hz, 1H), 7.03 (t, J = 8.4 Hz, 4H), 6.73 (t, J = 8.0 Hz, 5H), 2.33 (d, 6H), 2.25 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 160.3, 144.2, 143.9, 138.6, 137.0, 136.1, 135.7, 131.3, 131.0, 130.2, 130.1, 129.8, 129.6, 120.9, 119.5, 114.4, 113.2, 20.9, 20.9, 20.6, 20.5. TOF MS CI⁺ (m/z): [M+H]⁺ calcd for C₁₅H₁₇N₂O requires 241.1341, found 241.1341.

References

- 1. C. Zhang, N. Jiao, Angew. Chem. Int. Ed.2010, 49, 6174-6177;
- 2. H. Ma, W. Li, J. Wang, Y. Gong, Z. Lei, Tetrahedron, 2012, 68, 8358-8366;
- 3. B. Priewisch, R.-U. K. Braun, J. Org. Chem. 2005, 70, 2350-2352

X-ray crystallographic data for compound 4a (CCDC 1040947):

Summary of Crystallographlic Data for C₁₃H₁₂N₂O:

Chemical formula	C ₁₃ H ₁₂ N ₂ O
Formula weight	212.25
Crystal Color	Colorless
Crystal System	Orthorhombic
Space Group	P 21 21 21
Cell Volume	1083.22(12)
Crystal Size	0.50×0.40×0.20
Cell formula units Z	4
Cell length a	6.3920(4)
Cell length b	8.4041(5)
Cell length c	20.1646(12)
Cell angle alpha	90.00
Cell angle beta	90.00
Cell angle gamma	90.00
Temp, K/ λ, Å	293(2)
Crystal_F_000	448
R factor all	0.1075
Radiation type	MoK\a

Selected Bond Distances:

Bond	Length (Å)	Bond	Length (Å)
O1 C7	1.235(5)	C5 H5	0.9300
N1 C7	1.343(5)	C6 H6	0.9300
N1 N2	1.407(4)	C7 H7	0.9300
N1 C1	1.435(5)	C8 C13	1.382(5)
N2 C8	1.420(5)	C8 C9	1.382(6)

N2 H2A	0.83(5)	C9 C10	1.380(5)
C1 C2	1.374(6)	С9 Н9	0.9300
C1 C6	1.396(5)	C10 C11	1.381(7)
C2 C3	1.398(6)	C10 H10	0.9300
C2 H2	0.9300	C11 C12	1.366(7)
C3 C4	1.379(7)	C11 H11	0.9300
C3 H3	0.9300	C12 C13	1.385(6)
C4 C5	1.370(7)	C12 H12	0.9300
C4 H4	0.9300	C13 H13	0.9300
C5 C6	1.390(6)		

Selected Bond angles:

Bond	Angle (deg)	Bond	Angle (deg)
C7 N1 N2	119.1(3)	C1 C6 H6	120.3
C7 N1 C1	122.6(3)	O1 C7 N1	122.5(4)
N2 N1 C1	117.5(3)	O1 C7 H7	118.8
N1 N2 C8	115.8(3)	N1 C7 H7	118.8
N1 N2 H2A	103(3)	C13 C8 C9	119.6(3)
C8 N2 H2A	120(4)	C13 C8 N2	117.2(3)
C2 C1 C6	120.0(4)	C9 C8 N2	123.2(3)
C2 C1 N1	121.0(4)	C10 C9 C8	119.6(4)
C6 C1 N1	119.0(3)	C10 C9 H9	120.2
C1 C2 C3	119.9(4)	C8 C9 H9	120.2
C1 C2 H2	120.0	C9 C10 C11	120.7(4)
C3 C2 H2	120.0	C9 C10 H10	119.7
C4 C3 C2	119.8(5)	C11 C10 H10	119.7
C4 C3 H3	120.1	C12 C11 C10	119.9(4)
C2 C3 H3	120.1	C12 C11 H11	120.1
C5 C4 C3	120.3(4)	C10 C11 H11	120.1
C5 C4 H4	119.8	C11 C12 C13	119.9(4)
C3 C4 H4	119.8	C11 C12 H12	120.0
C4 C5 C6	120.4(4)	C13 C12 H12	120.0
C4 C5 H5	119.8	C8 C13 C12	120.4(4)
C6 C4 H4	119.8	C8 C13 H13	119.8
C5 C6 C1	119.4(4)	C12 C13 H13	119.8
C5 C6 H6	120.3		

