Electronic Supplementary Information

Dialkoxybenzo[j]fluoranthenes: synthesis, structures, photophysical properties, and optical waveguide application

Xiao-Jun Li,^{*a,b*} Meng Li,^{*a,b*} Wei Yao,^{*c*} Hai-Yan Lu,^{*,*b*} YongSheng Zhao^{*,*c*} and Chuan-Feng Chen^{*,*a*}

 ^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Fax: 8610-62554449; E-mail: cchen@iccas.ac.cn
^b University of Chinese Academy of Sciences, Beijing 100049, China. E-mail: haiyanlu@gucas.ac.cn

^c Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Email: yszhao@iccas.ac.cn

Contents

I.	¹ H NMR and ¹³ C NMR spectra of new compounds
II.	Absorption spectra of 4a-e in the spin-coated films
III.	Fluorescence spectra of 4e in the spin-coated films
IV.	AFM topography images of spin-coated films of 4e
V.	Crystal data

Fig. S4 ¹³C NMR spectrum (101 MHz, CDCl₃) of 3b.

Fig. S6 ¹³C NMR spectrum (75 MHz, CDCl₃) of 4a.

Fig. S8¹³C NMR spectrum (101 MHz, CDCl₃) of **4b**.

Fig. S10 ¹³C NMR spectrum (101 MHz, acetone- d_6) of **5**.

Fig. S12 13 C NMR spectrum (75 MHz, CDCl₃) of 4c.

$\begin{array}{c} 123 \\$	2282333226	3 4 8 3 8 8 1 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	8
	444444	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P

Fig. S14 ¹³C NMR spectrum (75 MHz, CDCl₃) of 4d.

Fig. S16 ¹H NMR spectrum (300 MHz, $CDCl_3$) of **4e**.

II. Absorption spectra of 4a-e in the spin-coated films

Fig. S17 UV-Vis spectra of 4a-e in the spin-coated films at room temperature.

III. Fluorescence spectra of 4e in the spin-coated films

Fig. S18 Fluorescence spectra of 4e in the spin-coated films prepared from the different concentrations of the stock solutions in CH_2Cl_2 at room temperature and same rotate speed. The concentrations of the stock solutions were 10 mg/mL (1), 12 mg/mL (2), and 15 mg/mL (3), respectively. $\lambda_{ex} = 407$ nm.

IV. AFM topography image of spin-coated film of 4e

Fig. S19 AFM topography image of spin-coated film of 4e on OTS-modified SiO₂/Si substrates. The concentration of the stock solution in CH₂Cl₂ was 12 mg/mL.

V. Crystal data

Compound	3 a	4 a	4b	4d
CCDC number	1037207	1037219	1038631	1037208
Empirical formula	$C_{22}H_{22}O_2$	$C_{22}H_{16}O_2$	$C_{22}H_{16}O_2$	$C_{28} H_{28} O_2$
Formula weight	318.39	312.35	312.35	396.50
Temperature	173.1500 K	173.1500 K	173.1500 K	173.1500 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Orthorhombic	Orthorhombic	Triclinic	Triclinic
Space group	P b c a	P b c a	P -1	P -1
Unit cell dimensions	a = 11.935(3) Å α = 90° b = 12.812(3) Å β = 90° c = 20.795(5) Å γ = 90°.	$a = 10.361(2) Å \alpha = 90^{\circ} b = 14.6319(7) Å \beta = 90^{\circ} c = 20.1158(9) Å \gamma = 90^{\circ}.$	a = 6.3011(13) Å α = 90° b = 15.399(3) Å β = 90° c = 16.736(3) Å γ = 90°.	a = 8.1661(16) Å $\alpha = 90^{\circ}$ b = 13.473(3) Å $\beta = 90^{\circ}$ c = 20.342(4) Å $\gamma = 90^{\circ}$.

Table S1.	Crystal	data	of 3a,	4a,	4b,	and	4d .
	•						

Volume	3179.6(12) Å ³	3049.4(7) Å ³	1554.3(6) Å ³	2170.1(8) Å ³
Z	8	8	4	4
Density (calculated)	1.330 Mg/m^3	1.361 Mg/m ³	1.335 Mg/m ³	1.214 Mg/m^3
Absorption coefficient	0.083 mm ⁻¹	0.086 mm ⁻¹	0.084 mm ⁻¹	0.075 mm ⁻¹
F(000)	1360	1312	656	848
Crystal size	0.38 x 0.17 x 0.13 mm ³	0.46 x 0.3 x 0.26 mm ³	0.42 x 0.12 x 0.07 mm ³	0.265 x 0.231 x 0.146 mm ³
Theta range for data collection	3.180 to 27.476°	2.823 to 27.483°.	1.263 to 25.199°.	2.844 to 27.485°.
Index ranges	-12<=h<=15, - 16<=k<=16, 15<=l<=26	-13<=h<=13, - 18<=k<=18, 11<=l<=26	-7<=h<=7, - 17<=k<=18, - 20<=l<=19	-10<=h<=10, - 17<=k<=17, - 26<=l<=22
Reflections collected	11691	11528	11770	21365
Independent reflections	3627 [R(int) = 0.0442]	3474 [R(int) = 0.0406]	5567 [R(int) = 0.0541]	9810 [R(int) = 0.0694]
Completeness to theta = 26.000°	99.4 %	99.7 %	98.8 %	99.3 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.8517	1.0000 and 0.6449	1.0000 and 0.6053	1.0000 and 0.4113
Refinement method	Full-matrix least- squares on F ²			
Data / restraints / parameters	3627 / 0 / 219	3474 / 0 / 219	5567 / 0 / 437	9810 / 0 / 545
Goodness-of- fit on F ²	1.255	1.224	1.177	1.157
Final R indices [I>2sigma(I)]	R1 = 0.0744, wR2 = 0.1259	R1 = 0.0625, wR2 = 0.1224	R1 = 0.0848, wR2 = 0.1539	R1 = 0.1046, wR2 = 0.2319
R indices (all data)	$R1 = \overline{0.0849},$ wR2 = 0.1343	R1 = 0.0680, wR2 = 0.1250	R1 = 0.1171, wR2 = 0.1769	R1 = 0.1327, wR2 = 0.2511
Extinction coefficient	n/a	n/a	n/a	n/a
Largest diff. peak and hole	0.262 and -0.202 e.Å ⁻³	0.193 and -0.153 e.Å ⁻³	0.248 and -0.220 e.Å ⁻³	1.353 and -0.218 e.Å ⁻³