Electronic Supplementary Information

Synergistically Thermodynamic and Kinetic Tailoring of the Hydrogen Desorption Properties of MgH₂ by Co-Addition of AlH₃ and CeF₃

Haizhen Liu,^{*a*} Chen Wu,*,^{*a*} Yongan Liu^{*a*}, Zhaohui Dong^{*b*}, Xinhua Wang*,^{*a*,*c*}, Hongwei Ge^{*a*}, Shouquan Li^{*c*}, and Mi Yan,^{*a*}

- ^a State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- ^b Zhejiang Metallurgical Research Institute, Hangzhou 310017, China
- ^c Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- * Corresponding authors:
- (1) C. Wu

E-mail: chen_wu@zju.edu.cn

(2) X.H. WangE-mail: <u>xinhwang@zju.edu.cn</u>Tel/Fax: +86 571-87952716

Supplementary Figures and Results

Fig. S1 XRD patterns of the as-synthesized AlH₃ (a) and the as-milled MgH₂ (b), MgH₂ + 0.25AlH₃ (c), MgH₂ + 0.01CeF₃ (d), and MgH₂ + 0.25AlH₃ + 0.01CeF₃ (e) samples. The milled samples show a physical mixture of the starting materials. No CeF₃-relevant phases are detected in the CeF₃-doped samples, which may due to the low addition content.

Fig. S2 XRD patterns of the samples after hydrogen desorption at 300 °C for 3 h. (a) MgH₂: The desorption product mainly contains the MgH₂ phase and some trace of Mg, which indicates the majority of MgH₂ remains un-decomposed. (b) MgH₂ + 0.25AlH₃: The desorption product mainly contains Mg₁₇Al₁₂, Mg, and some un-decomposed MgH₂. (c) MgH₂ + 0.01CeF₃: The desorption product mainly contains Mg and some trace of un-decomposed MgH₂. No any CeF₃-relevant phases are detected due to low content of CeF₃ added. (d) MgH₂ + 0.25AlH₃ + 0.01CeF₃: The desorption product mainly contains the Mg₁₇Al₁₂ and Mg phases. No un-decomposed MgH₂ is detected, suggesting that MgH₂ has almost fully decomposed after co-addition of 0.25AlH₃ and 0.01CeF₃. A diffraction peak located at 2Theta = 27° - 28° is suspected of belonging to the phase of CeH₂₋₃.

Fig. S3 XRD patterns of (a) as-prepared AlH₃, (b) as-milled MgH₂, (c) as-milled MgH₂ + 0.1AlH₃, (d-f) as-milled MgH₂ + mCeF₃ (m = 0.01 (d), 0.02 (e), and 0.05 (f)), (g-i) as-milled MgH₂ + 0.1AlH₃ + nCeF₃ (n = 0.01 (g), 0.02 (h), and 0.05 (i)). The samples are mainly the physical mixture of the starting materials after milling. CeF₃ is detected in the as-milled samples, which shows that CeF₃ does not react with MgH₂ or AlH₃ during ball milling. The Scherrer's equation was utilized to estimate the grain sizes of MgH₂ in the samples, which are indicated in the figure. The grains of MgH₂ can be refined from (43~44) nm to (38~40) nm by addition of 0.01CeF₃.

Fig. S4 Schematic display of the microstructure evolution of the MgH₂-AlH₃-CeF₃ composite during sample preparation and hydrogen desorption process.