Supporting Information

Indium-Catalyzed C(sp³)-H Functionalization of 2-Methylazaarenes through Direct Benzylic Addition to Trifluoromethyl Ketones

Zaini Jamal and Yong-Chua Teo*

Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore. Tel: (+65) 6790 3846; Fax: (+65) 6896 9414; E-mail: yongchua.teo@nie.edu.sg **Table of Contents**

1.	General Considerations	SI 2
2.	Experimental Procedures for Synthesis of 2j and 2k	SI 3
3.	General Experimental Procedure for In-catalyzed Benzylic C-H Addition	SI 4
4.	Characterization Data for Benzylic C-H Addition Products	SI 4
5.	Deuterium Exchange Experiments	SI 17
6.	¹ H and ¹³ C NMR Spectra of Benzylic C-H Addition Products	SI 19

1. General Considerations

All commercially available chemicals were used directly upon purchase from suppliers. Anhydrous solvents were used for all non-aqueous reactions and deionized water was used for aqueous reactions. Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Flash chromatography was performed using Merck silica gel 60 with AR grade solvents. Columns were packed as a silica gel suspension in hexane prior to elution by the appropriate solvent system (hexane:ethyl acetate). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance DPX 400 spectrophotometer (chloroform-d, methanol-d or acetone d_6 as solvent). Chemical shifts for ¹H NMR and ¹³C NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ and relative to the residual signals of the appropriate solvents. Multiplicities are reported based on apparent multiplicities and given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); dddd (doublets of doublets of doublets of doublet); dt (doublets of triplet); brs (broad); or m (multiplets). Coupling constants (J values) are reported in unit of Hertz (Hz). Numbers of protons are reported based on the appropriate integration of the signals. Mass spectroscopy was performed using Agilent 1100 series LC/MSD.

2. Experimental Procedures for Synthesis of 2j and 2k

2j and **2k** were synthesized according to modified literature procedure:¹ To a 25-mL RBF equipped with a magnetic stir bar and tightly sealed with a rubber septum, 1,1,1-trifluoropropan-2-one (40 mmol, 4.0 equiv.) in DCM (10 mL) was cooled to 0 °C. With continuous stirring, pyrrolidine (10 mmol, 1.0 equiv.) was then added dropwise followed by the appropriate aldehydes (10 mmol, 1.0 equiv.) After 2 h of stirring at 0 °C, the reaction mixture was then allowed to warm up to room temperature at which stirring was continued for another 24 h. The reaction was then quenched with saturated NH₄Cl solution. The organic layer was then separated, washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. The residual was then purified by flash chromatography (hexane:ethyl acetate = 100:0, 98:2). The analytically pure enone products as **2j** and **2k** were then obtained after further purification by recrystallization from hexane at 0 °C. **2j** and **2k** are known compounds whose identities were determine by comparisons of the respective ¹H NMR spectra with reported literature.¹⁻³

3. General Experimental Procedure for In-catalyzed Benzylic C-H Addition

To an 8-mL reaction vial equipped with a magnetic stir bar, $InCl_3$ (5.5 mg, 5.0 mol%), 2-methylazaarenes (0.75 mmol, 1.5 equiv.), TFMK (0.5 mmol, 1.0 equiv.) and ^{*t*}BuOH (0.5 mL) were sequentially added. The vial was then capped and placed into a preheated oil bath at 60 °C with vigorous stirring. After 24 h, the reaction mixture was then allowed to cool to room temperature and passed through a short pad of celite with dichloromethane washing. The crude reaction mixture was then dried over Na_2SO_4 and concentrated under reduced pressure. Purification by silica gel chromatography (hexane:ethyl acetate = 100:0, 95:5) then gave the intended addition product.

4. Characterization Data for Benzylic C-H Addition Products

1,1,1-trifluoro-2-phenyl-3-(quinolin-2-yl)propan-2-ol (**3aa**).⁴ White solid (99 %, 158.5 mg); ¹H NMR (400 MHz, CDCl₃): δ 3.67 (d, *J* = 15.2 Hz, 1H), 3.78 (d, *J* = 15.2 Hz, 1H), 7.20 – 7.24 (m, 2H), 7.27 – 7.30 (m, 2H), 7.46 – 7.50 (m, 1H), 7.65 – 7.73 (m, 4H), 7.95 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 8.50 (s, 1H); ¹³C NMR (100 MHz, CD₃OD): δ 42.3, 78.7 (q, *J* = 30.0 Hz), 122.8 (overlapping q signal), 124.2, 125.6 (overlapping q signal), 127.8, 128.2, 128.4, 129.0, 129.1, 129.2, 129.4, 131.2, 138.3, 139.2, 147.8, 159.1; HRMS (ESI) Calcd for C₁₈H₁₅F₃NO [M+H]: 318.1105 found: 318.1107.

2-(4-bromophenyl)-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (**3ab**). Off-white solid (99%, 198.0 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.82 (d, *J* = 15.6 Hz, 1H), 3.96 (d, *J* = 15.2 Hz, 1H), 7.46 – 7.50 (m, 2H), 7.54 – 7.58 (m, 2H), 7.70 – 7.78 (m, 3H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 8.29 (d, *J* = 8.4 Hz, 1H), 8.36 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.2, 78.2 (q, *J* = 28.2 Hz), 123.0, 123.9, 126.2 (q, *J* = 283.2 Hz), 127.7, 128.0, 128.88, 128.93, 130.2, 131.2, 132.0, 138.7, 139.0, 147.1, 159.1; HRMS (ESI) Calcd for C₁₈H₁₄BrF₃NO [M+H]: 396.0211 found: 396.0208.

2-(4-chlorophenyl)-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (**3ac**). White solid (99%, 179.4 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.82 (d, *J* = 15.2 Hz, 1H), 3.96 (d, *J* = 15.2 Hz, 1H), 7.33 (d, *J* = 8.8 Hz, 2H), 7.53 – 7.57 (m, 2H), 7.73 – 7.79 (m, 3H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 8.37 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.3, 78.1 (q, *J* = 28.1 Hz), 122.0 (overlapping q signal), 123.9, 124.8 (overlapping q signal), 127.7, 128.0, 128.87, 128.92, 129.0, 129.9, 130.5 (overlapping q signal), 131.2, 134.8, 138.5, 138.7, 147.1, 159.1; HRMS (ESI) Calcd for C₁₈H₁₄ClF₃NO [M+H]: 352.0716 found: 352.0716.

1,1,1-trifluoro-2-(4-fluorophenyl)-3-(quinolin-2-yl)propan-2-ol (**3ad**). White solid (98%, 164.1 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.82 (d, *J* = 15.2 Hz, 1H), 3.96 (d, *J* = 15.2 Hz, 1H), 7.03 – 7.09 (m, 2H), 7.54 – 7.58 (m, 2H), 7.74 – 7.82 (m, 3H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 8.29 (d, *J* = 8.4 Hz, 1H), 8.34 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.4, 78.1 (q, *J* = 28.1 Hz), 115.6 (d, *J* = 21.5 Hz), 124.0, 126.4 (q, *J* = 283.1 Hz), 127.6, 128.0, 128.9, 129.0, 130.2 (d, *J* = 8.3 Hz), 131.2, 135.7 (d, *J* = 3.1 Hz), 138.7, 147.2, 159.3, 163.5 (d, *J* = 244.0 Hz); HRMS (ESI) Calcd for C₁₈H₁₄F₄NO [M+H]: 336.1011 found: 336.1013.

1,1,1-trifluoro-3-(quinolin-2-yl)-2-(4-(trifluoromethyl)phenyl)propan-2-ol (**3ae**). Offwhite solid (98%, 188.9 mg); ¹H NMR (400 MHz, CDCl₃): δ 3.67 (d, *J* = 15.2 Hz, 1H), 3.82 (d, *J* = 15.6 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.51 – 7.70 (m, 3H), 7.71 – 7.74 (m, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.73 (s, brs, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.2, 78.4 (q, *J* = 28.1 Hz), 123.9, 125.2 (q, *J* = 269.7 Hz), 125.9 (q, *J* = 3.7 Hz), 126.2 (q, *J* = 283.3 Hz), 127.7, 128.0, 128.9, 130.3 (overlapping q signal), 130.6 (overlapping q signal), 131.0 (overlapping q signal), 131.3, 138.8, 144.2, 147.1, 147.2, 158.9, 159.0; HRMS (ESI) Calcd for C₁₉H₁₄F₆NO [M+H]: 386.0979 found: 386.0981.

1,1,1-trifluoro-3-(quinolin-2-yl)-2-(thiophen-2-yl)propan-2-ol (**3ah**).⁴ White solid (90%, 146.0 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.78 (d, *J* = 15.2 Hz, 1H), 3.89 (d, *J* = 15.2 Hz, 1H), 6.92 (dd, *J*₁ = 4.8 Hz, *J*₂ = 4.0 Hz, 1H), 7.26 (d, *J* = 3.6 Hz, 1H), 7.31 (d, *J* = 4.8 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.75 – 7.79 (m, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 8.30 (d, *J* = 8.4 Hz, 1H), 8.84 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 41.2, 77.8 (q, *J* = 29.5 Hz), 124.0, 125.8 (q, *J* = 282.7 Hz), 126.7, 127.2, 127.7, 127.9, 128.0, 128.90, 128.93, 131.3, 138.7, 144.4, 147.1, 159.2; HRMS (ESI) Calcd for C₁₆H₁₃F₃NOS [M+H]: 324.0670, found: 324.0673.

4,4,4-trifluoro-1-(furan-2-yl)-3-hydroxy-3-(quinolin-2-ylmethyl)butan-1-one (**3ai**). Yellow solid (36%, 63.1 mg, 65%, 113.6 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.25 (d, *J* = 14.8 Hz, 1H), 3.39 (d, *J* = 15.2 Hz, 1H), 3.51 (d, *J* = 15.2 Hz, 1H), 3.76 (d, *J* = 15.2 Hz, 1H), 6.68 (dd, *J*₁ = 3.6 Hz, *J*₂ = 2.0 Hz, 1H), 7.39 (d, *J* = 3.6 Hz, 1H), 7.55 - 7.61 (m, 2H), 7.72 - 7.77 (m, 2H), 7.83 (d, *J* = 1.2 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 8.35 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 39.7, 41.5, 76.9 (q, *J* = 27.6 Hz), 113.5, 119.8, 124.2, 127.1 (q, *J* = 284.8 Hz), 127.5, 128.0, 128.8, 129.2, 130.9, 138.3, 147.4, 148.6, 154.1, 159.4, 186.0; HRMS (ESI) Calcd for C₁₈H₁₅F₃NO₃ [M+H]: 350.1004 found: 350.1005.

(*E*)-1,1,1-trifluoro-2-(quinolin-2-ylmethyl)-4-(*p*-tolyl)but-3-en-2-ol (**3aj**). Off-white solid (85%, 151.2 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 2.25 (s, 3H), 3.50 – 3.59 (m, 2H), 6.39 (d, *J* = 16.0 Hz, 1H), 6.84 (d, *J* = 16.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.56 – 7.60 (m, 3H), 7.76 – 7.80 (m, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 21.2, 41.1, 77.3 (q, *J* = 27.9 Hz), 122.4 (overlapping q signal), 124.0, 125.2 (overlapping q signal), 126.0, 127.5, 127.6, 128.1, 128.9, 129.2, 130.1, 130.9 (overlapping q signal), 131.1, 134.0, 134.3, 138.4, 138.7, 147.5, 159.1; HRMS (ESI) Calcd for C₂₁H₁₉F₃NO [M+H]: 358.1418 found: 358.1418.

(*E*)-1,1,1-trifluoro-2-(quinolin-2-ylmethyl)-4-(thiophen-2-yl)but-3-en-2-ol (**3ak**). Offwhite solid (85%, 148.8 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.50 – 3.59 (m, 2H), 6.23 (d, *J* = 15.6 Hz, 1H), 6.91 – 6.93 (m, 1H), 7.00 – 7.06 (m, 2H), 7.29 (d, *J* = 4.8 Hz, 1H), 7.57 – 7.60 (m, 2H), 7.70 (s, brs, 1H), 7.76 – 7.80 (m, 1H), 7.80 – 7.94 (m, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 8.33 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.8, 77.1 (q, *J* = 28.1 Hz), 123.9, 126.19, 126.22, 126.5 (q, *J* = 283.6 Hz), 127.53, 127.55, 128.0, 128.1, 128.5, 128.9, 129.2, 131.1, 138.5, 141.8, 147.4, 158.9; HRMS (ESI) Calcd for C₁₈H₁₇F₃NOS [M+H]: 350.0826 found: 350.0826.

2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (**3al**).⁴ Light yellow solid (73%, 120.4 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.00 (d, *J* = 14.0 Hz, 1H), 3.11 (d, *J* = 15.6 Hz, 1H), 3.22 (d, *J* = 13.6 Hz, 1H), 3.34 (d, *J* = 15.6 Hz, 1H), 7.18 – 7.22 (m, 1H), 7.25 – 7.29 (m, 2H), 7.41 – 7.44 (m, 3H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.73 – 7.77 (m, 1H), 7.91 – 7.98 (m, 3H), 8.28 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 38.7, 41.5, 77.5 (q, *J* = 25.9 Hz), 123.7, 127.4, 127.7, 127.8 (q, *J* = 286.1 Hz), 127.9, 128.81, 128.84, 128.9, 131.0, 132.2, 136.3, 138.5, 147.0, 160.1; HRMS (ESI) Calcd for C₁₉H₁₇F₃NO [M+H]: 332.1262 found: 332.1262.

1,1,1-trifluoro-2-(quinolin-2-ylmethyl)butan-2-ol (**3am**).⁴ White solid (46%, 61.6 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 1.04 (t, *J* = 7.6 Hz, 3H), 1.74 – 1.83 (m, 2H), 3.29 – 3.38 (m, 2H), 7.35 (s, 1H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.77 – 7.81 (m, 1H), 8.00 (dd, *J*₁ = 21.4 Hz, *J*₂ = 8.2 Hz, 2H), 8.36 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 7.8, 28.9, 39.2, 76.9 (q, *J* = 25.8 Hz), 123.9, 127.5, 128.03 (q, *J* = 292.0 Hz), 128.01, 128.9, 129.5, 131.1, 138.4, 147.5, 160.1; HRMS (ESI) Calcd for C₁₄H₁₅F₃NO [M+H]: 270.1105 found: 270.1106.

1,1,1-trifluoro-3-methyl-2-(quinolin-2-ylmethyl)butan-2-ol (**3an**). Light yellow solid (34%, 47.5 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 1.09 – 1.12 (m, 6H), 2.11 – 2.15 (m, 1H), 3.33 (s, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.59 – 7.63 (m, 1H), 7.73 (s, 1H), 7.78

- 7.82 (m, 1H), 7.98 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 8.38 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 17.4, 17.9, 34.6, 36.3, 79.1 (q, J = 24.9 Hz), 123.9, 127.5, 128.0, 128.3 (q, J = 287.4 Hz), 128.9, 129.1, 131.2, 138.6, 147.3, 160.5; HRMS (ESI) Calcd for C₁₅H₁₆F₃NO [M+H]: 284.1262 found: 284.1259.

Ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (**3ao**).⁴ Colourless oil (56%, 91.8 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 1.20 (t, *J* = 7.2 Hz, 3H), 2.80 (s, 2H), 3.47 (d, *J* = 15.2 Hz, 1H), 3.79 (d, *J* = 15.2 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.59 – 7.63 (m, 1H), 7.77 – 7.81 (m, 2H), 7.97 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 8.37 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 14.4, 39.1, 39.8, 61.4, 76.0 (q, *J* = 27.8 Hz), 124.2, 127.0 (q, *J* = 284.8 Hz), 127.6, 128.1, 128.9, 129.2, 131.0, 138.4, 147.4, 159.4, 170.0; HRMS (ESI) Calcd for C₁₆H₁₆F₃NO₃ [M+H]: 328.1160 found: 328.2306

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(quinolin-2-ylmethyl)propanoate (**3ap**).⁴ White solid (88%, 137.9 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 1.18 (t, *J* = 7.2 Hz, 3H), 3.54 (d, *J* = 15.2 Hz, 1H), 3.81 (d, *J* = 14.8 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 6.38 (s, brs, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.73 – 7.78 (m, 1H), 7.95 (t, *J* = 8.2 Hz, 2H), 8.30 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 14.3, 40.2, 63.2, 78.8 (q, *J* = 28.3 Hz), 125.1 (q, *J* = 283.8 Hz), 123.7, 127.4, 128.1, 128.8, 129.4, 130.7, 137.8, 147.9, 157.3, 169.3; HRMS (ESI) Calcd for C₁₅H₁₄F₃NO₃ [M+H]: 314.1004 found: 314.1440

3-(6-bromoquinolin-2-yl)-1,1,1-trifluoro-2-phenylpropan-2-ol (**3ba**). White solid (92%, 182.0 mg); ¹H NMR (400 MHz, CDCl₃): δ 3.70 (d, *J* = 15.2 Hz, 1H), 3.79 (d, *J* = 14.8 Hz, 1H), 7.24 – 7.28 (m, 2H), 7.31 – 7.35 (m, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.76 (dd, *J*₁ = 9.0 Hz, *J*₂ = 2.2 Hz, 1H), 7.84 (d, *J* = 9.2 Hz, 1H), 7.91 (d, *J* = 2.0 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 8.13 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.8, 78.2 (q, *J* = 29.7 Hz), 120.7, 124.9, 127.9, 128.5 (q, *J* = 283.3 Hz), 128.9, 129.0, 129.1, 130.8, 131.0, 134.2, 137.6, 139.3, 145.7, 160.0; HRMS (ESI) Calcd for C₁₈H₁₄BrF₃NO [M+H]: 396.0211 found: 396.0218.

3-(6-chloroquinolin-2-yl)-1,1,1-trifluoro-2-phenylpropan-2-ol (**3ca**). White solid (91%, 159.8 mg); ¹H NMR (400 MHz, CDCl₃): δ 3.70 (d, *J* = 15.2 Hz, 1H), 3.81 (d, *J* = 15.2 Hz, 1H), 7.25 – 7.28 (m, 2H), 7.31 – 7.35 (m, 2H), 7.62 (dd, *J*₁ = 9.0 Hz, *J*₂ = 2.2 Hz, 1H), 7.70 – 7.72 (m, 3H), 7.90 (d, *J* = 9.2 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 8.16 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.7, 78.3 (q, *J* = 28.0), 125.0, 126.4 (q, *J* = 283.3 Hz), 127.4, 127.9, 128.5, 128.9, 129.1, 130.9, 131.6, 132.6, 137.7, 139.3, 145.6, 159.9; HRMS (ESI) Calcd for C₁₈H₁₄ClF₃NO [M+H]: 352.0716 found: 352.0717.

3-(7-chloroquinolin-2-yl)-1,1,1-trifluoro-2-phenylpropan-2-ol (**3da**). White solid (92%, 162.3 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.82 (d, *J* = 15.2 Hz, 1H), 3.98 (d, *J* = 15.2 Hz, 1H), 7.20 – 7.24 (m, 1H), 7.28 – 7.32 (m, 2H), 7.51 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.0 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.84 – 7.88 (m, 2H), 8.03 (d, *J* = 1.6 Hz, 1H), 8.25 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.8, 78.3 (q, *J* = 27.9 Hz), 122.2 (overlapping q signal), 124.4, 125.0 (overlapping q signal), 126.4, 127.9, 128.0, 128.2, 128.9, 129.1, 130.6, 130.7 (overlapping q signal), 136.4, 138.4, 139.3, 147.5, 160.7; HRMS (ESI) Calcd for C₁₈H₁₄ClF₃NO [M+H]: 352.0716 found: 352.0715.

3-(4-chloroquinolin-2-yl)-1,1,1-trifluoro-2-phenylpropan-2-ol (**3ea**). White solid (98%, 173.1 mg); ¹H NMR (400 MHz, CDCl₃): δ 3.63 (d, *J* = 15.2 Hz, 1H), 3.75 (d, *J* = 15.2 Hz, 1H), 7.22 – 7.26 (m, 1H), 7.29 – 7.34 (m, 3H), 7.55 – 7.59 (m, 1H), 7.67 – 7.74 (m, 3H), 7.95 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.15 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.7, 78.3 (q, *J* = 28.0 Hz), 124.0, 124.6, 125.7, 126.4 (q, *J* = 283.2 Hz), 128.0, 128.8, 129.0, 129.2, 129.6, 132.2, 139.1, 143.9, 148.1, 159.4; HRMS (ESI) Calcd for C₁₈H₁₄ClF₃NO [M+H]: 352.0716 found: 352.0716.

1,1,1-trifluoro-3-(6-fluoroquinolin-2-yl)-2-phenylpropan-2-ol (**3fa**). White solid (75%, 126.2 mg); ¹H NMR (400 MHz, CDCl₃): δ 3.66 (d, *J* = 15.2 Hz, 1H), 3.77 (d, *J* = 15.2 Hz, 1H), 7.21 – 7.25 (m, 2H), 7.28 – 7.36 (m, 3H), 7.45 (td, *J*₁ = 8.6 Hz, *J*₂ = 2.7 Hz, 1H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.95 (dd, *J*₁ = 9.2 Hz, *J*₂ = 5.2 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 8.18 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.6, 78.3 (q, *J* = 27.6 Hz), 111.8 (d, *J* = 22.0 Hz), 121.1 (d, *J* = 25.9 Hz), 122.2 (overlapping q signal), 124.9, 125.1 (overlapping q signal), 128.0, 128.6 (d, *J* = 10.2 Hz), 128.9 (d, *J* = 1.1 Hz), 129.1, 130.7 (overlapping q signal), 131.8 (d, *J* = 9.2 Hz), 138.0 (d, *J* = 4.0 Hz), 139.4, 144.4, 158.9, 161.2 (d, *J* = 244.9 Hz); HRMS (ESI) Calcd for C₁₈H₁₄F₄NO [M+H]: 336.1011 found: 336.1011.

1,1,1-trifluoro-3-(7-fluoroquinolin-2-yl)-2-phenylpropan-2-ol (**3ga**). White solid (94%, 157.7 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.82 (d, *J* = 15.2 Hz, 1H), 3.96 (d, *J* = 15.2 Hz, 1H), 7.20 – 7.24 (m, 1H), 7.28 – 7.32 (m, 2H), 7.39 (td, *J_I* = 8.8 Hz, *J*₂ = 2.8 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.69 (dd, *J_I* = 10.4 Hz, *J*₂ = 2.4 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.91 – 7.98 (m, 2H), 8.26 (d, *J* = 10.8 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.8, 78.3 (q, *J* = 27.6 Hz), 112.5 (d, *J* = 20.8 Hz), 117.8 (d, *J* = 25.3 Hz), 122.2 (overlapping q signal), 123.5 (d, *J* = 2.2 Hz), 125.1, 127.8 (overlapping q signal), 128.0, 128.9, 129.1, 130.7 (overlapping q signal), 131.4 (d, *J* =

10.2 Hz), 138.5, 139.4, 148.1 (d, J = 12.8 Hz), 160.7, 164.3 (d, J = 247.5 Hz); HRMS (ESI) Calcd for C₁₈H₁₄F₄NO [M+H]: 336.1011 found: 336.1013.

1,1,1-trifluoro-3-(6-methylquinolin-2-yl)-2-phenylpropan-2-ol (**3ha**). White solid (95%, 157.0 mg); ¹H NMR (400 MHz, CDCl₃): δ 2.47 (s, 3H), 3.63 (d, *J* = 15.2 Hz, 1H), 3.75 (d, *J* = 14.8 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.19 – 7.24 (m, 1H), 7.28 – 7.30 (m, 2H), 7.47 – 7.51 (m, 2H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 8.55 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 21.5, 40.4, 78.3 (q, *J* = 27.9 Hz), 122.3 (overlapping q signal), 124.0, 125.1 (overlapping q signal), 127.5, 128.0, 128.7, 128.9, 129.0, 130.8 (overlapping q signal), 133.3, 137.5, 137.9, 139.6, 145.8, 158.4; HRMS (ESI) Calcd for C₁₉H₁₇F₃NO [M+H]: 332.1262 found: 332.1262.

1,1,1-trifluoro-3-(6-methoxyquinolin-2-yl)-2-phenylpropan-2-ol (**3ia**). Yellow solid (58%, 100.8 mg); ¹H NMR (400 MHz, CDCl₃): δ 3.61 (d, *J* = 15.2 Hz, 1H), 3.73 (d, *J* = 14.8 Hz, 1H), 3.86 (s, 3H), 7.00 (d, *J* = 2.4 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.22 – 7.34 (m, 4H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 9.2 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 8.50 (s, brs, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.2, 56.0, 78.3 (q, *J* = 27.8 Hz), 106.3, 122.3 (overlapping q signal), 123.8, 124.2, 125.1 (overlapping q signal), 128.0, 128.9, 129.0, 129.1, 130.3, 130.8 (overlapping q signal), 137.3, 139.6,

143.2, 156.5, 158.9; HRMS (ESI) Calcd for C₁₉H₁₇F₃NO₂ [M+H]: 348.1211 found: 348.1210.

1,1,1-trifluoro-3-(isoquinolin-1-yl)-2-phenylpropan-2-ol (**3ja**).⁴ White solid (99%, 156.9 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 4.00 (d, J = 16.0 Hz, 1H), 4.37 (d, J = 16.0 Hz, 1H), 7.18 – 7.21 (m, 1H), 7.25 – 7.28 (m, 2H), 7.68 (d, J = 5.6 Hz, 1H), 7.74 – 7.81 (m, 4H), 7.92 (d, J = 7.6 Hz, 1H), 8.32 (d, J = 5.6 Hz, 1H), 8.58 (d, J = 8.4 Hz, 1H), 8.80 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 35.0, 78.3 (q, J = 27.7 Hz), 121.3, 126.1, 126.6 (q, J = 283.3 Hz), 127.8, 128.48, 128.52, 128.8, 129.0, 129.1, 131.9, 137.5, 140.1, 140.6, 159.0; HRMS (ESI) Calcd for C₁₈H₁₅F₃NO [M+H]: 318.1105 found: 318.1106.

1,1,1-trifluoro-2-phenyl-3-(pyridin-2-yl)propan-2-ol (**3ka**).⁴ Light yellow solid (48%, 63.7 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 3.62 (d, *J* = 14.8 Hz, 1H), 3.71 (d, *J* = 15.2 Hz, 1H), 7.22 – 7.28 (m, 2H), 7.30 – 7.34 (m, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.69 – 7.74 (m, 3H), 8.01 (s, 1H), 8.43 (d, brs, *J* = 4.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 40.0, 78.1 (q, *J* = 27.8 Hz), 122.3 (overlapping q signal), 123.3, 125.1 (overlapping q signal), 126.0, 128.0, 128.9, 129.0, 130.8 (overlapping q signal), 138.6, 139.5, 148.8, 158.2; HRMS (ESI) Calcd for C₁₄H₁₃F₃NO [M+H]: 268.0949 found: 268.0944.

1,1,1-trifluoro-3-(6-methylpyridin-2-yl)-2-phenylpropan-2-ol (**3la**). White solid (75 %, 106 mg); ¹H NMR (400 MHz, (CD₃)₂CO): δ 2.44 (s, 3H), 3.61 (q, *J* = 15.2 Hz, 2H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.24 – 7.27 (m, 1H), 7.30 – 7.34 (m, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 8.28 (s, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 24.1, 39.9, 78.1 (q, *J* = 27.8 Hz), 122.3 (overlapping q signal), 122.7, 122.9, 125.1 (overlapping q signal), 128.0, 128.8, 129.0, 130.8 (overlapping q signal), 138.9, 139.7, 157.4, 157.8; HRMS (ESI) Calcd for C₁₅H₁₅F₃NO [M+H]: 282.1105 found: 282.1108.

References

- 1. C. Zheng, Y. Li, Y. Yang, H. Wang, H. Cui, J. Zhang and G. Zhao, *Adv. Synth. Catal.* 2009, **351**, 1685.
- 2. P.-P. Yeh, D. S. B. Daniels, D. B. Cordes, A. M. Z. Slawin and A. D. Smith, *Org. Lett.* 2014, **16**, 964.
- 3. J. Hu, S. Chen, Y. Sun, J. Yang and Y. Rao, *Org. Lett.* 2012, **14**, 5030.
- 4. V. B. Graves and A. Shaikh, *Tetrahedron Lett.* 2013, **54**, 695.

5. Deuterium Exchange Experiments

To an 8-mL reaction vial equipped with a magnetic stir bar, $InCl_3$ (5.5 mg, 0.025 mmol), 2-methylquinoline (102 µL, 0.75 mmol) and D₂O (0.5 mL) were sequentially added. The vial was then capped and placed into a pre-heated oil bath at 60 °C with vigorous stirring for 24 h. With glass Pasteur pipettes, an aliquot of the mixture was then drawn and passed through a short pad of silica gel using CDCl₃. The resulting clear mixture was then analyzed by ¹H NMR spectroscopy from which the percentage of deuterium incorporation was determined to be 27%.

Similar procedure was also adopted for the control experiment conducted with omitted InCl₃ whereby no deuterium incorporation was observed.

SI 37

SI 38

SI 61

