Supporting Information

Zr(IV) complexes containing salan-type ligands: Synthesis, structural characterization and role as catalysts towards the polymerization of ε -caprolactone, *rac*-lactide, ethylene, homopolymerization and copolymerization of epoxides with CO₂

Mrinmay Mandal,^a Debashis Chakraborty*^a and Venkatachalam Ramkumar^b

^{*a*}Department of Chemistry, Indian Institute of Technology Patna, Patna-800 013, Bihar, India. Tel: +91 6122552171. E-mail address: dc@iitp.ac.in; debashis.iitp@gmail.com (D. Chakraborty).

^bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.

Fig. S1 ¹H NMR (400 MHz, CDCl₃) of Compound 1

Fig. S2 ¹³C NMR (100 MHz, CDCl₃) of Compound 1

Fig. S3 ESI-Mass Spectrum of Compound 1

Fig. S4 ¹H NMR (400 MHz, CDCl₃) of Compound 2

Fig. S5 ¹³C NMR (100 MHz, CDCl₃) of Compound 2

Fig. S6 ESI-Mass Spectrum of Compound 2

Fig. S7 ¹H NMR (400 MHz, CDCl₃) of Compound 3

Fig. S8 ¹³C NMR (100 MHz, CDCl₃) of Compound 3

Fig. S9 ESI-Mass Spectrum of Compound 3

Fig. S10 Molecular structure of **3**; thermal ellipsoids were drawn at 30 % probability level. Selected bond lengths (Å) and bond angles (°): Zr(2)-O(1) 2.015(2), O(2)-Zr(2) 1.937(3), O(5)–Zr(2) 2.173(2), O(5)–Zr(1) 2.185(2), O(8)-Zr(1) 1.941(3), N(1)-Zr(1) 2.573(3), O(8)-Zr(1)-O(7) 97.28(11), O(3)-Zr(2)-O(1) 96.72(11)), O(8)-Zr(1)-N(1) 83.81(10), O(2)-Zr(2)-Zr(1) 97.95(11), O(8)-Zr(1)-Zr(2) 124.27(9), N(1)-Zr(1)-Zr(2) 76.55(6), O(6)-Zr(1)-O(7) 95.25(11), O(7)-Zr(1)-O(4) 94.72(9), Zr(2)-O(5)-Zr(1) 109.00(10).

Fig. S11 Plot of M_n and M_w/M_n vs. % conversion for *rac*-LA polymerization at 140 °C using 1, 2 and 3.

Fig. S12 Homonucler decoupled ¹H NMR spectra of *rac*-LA in 15:1 ratio using by 1 in CDCl₃.

Fig. S13 *rac*-LA conversion vs. time plot using **1**, **2** and **3**: [rac-LA]_o/[Cat]_o = 600 at 140 °C.

Fig. S14 ε -CL conversion vs. time plot using **1**, **2** and **3**: $[\varepsilon$ -CL]_o/[Cat]_o = 200 at 80 °C.

Fig. S15 Semi-logarithmic plots of ε -CL conversion in time initiated by 1, 2 and 3: [ε -CL]_o/[Cat]_o = 200 at 80 °C.

Fig. S16 *rac*-LA conversion vs. time plot using **1**, **2** and **3**: [rac-LA]_o/[Cat]_o/[BnOH] = 200:1:5 at 140 °C.

Fig. S17 ε -CL conversion vs. time plot using 1, 2 and 3: [ε -CL]_o/[Cat]_o/[BnOH] = 200:1:5 at 80 °C.

Fig. S18 Semi-logarithmic plots of *rac*-LA conversion in time initiated by 1, 2 and 3: [*rac*-LA]_o/[Cat]_o/[BnOH] = 200:1:5 at 140 °C.

Fig. S19 Semi-logarithmic plots of ε -CL conversion in time initiated by 1, 2 and 3: [ε -CL]₀/[Cat]₀/[BnOH] = 200:1:5 at 80 °C.

Fig. S20 MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and 1 in 15:1 ratio. For n = 4, peak at 676.311 is observed [144.14* 4 + 59 (isopropoxide end group) + 41 (CH₃CN adduct)].

Fig. S21 ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and 1 in 15:1 ratio.

Fig. S22 MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and 1 in the presence of BnOH in ratio 15:1:2. For n = 13, peak at 1049.492 is observed [72*13 + 72 + 41 (CH₃CN adduct)].

Fig. S23 ¹H NMR spectrum of the crude product obtained from a reaction between rac-LA and 1

in the presence of BnOH in ratio 15:1:2.

Fig. S24 MALDI-TOF of the crude product obtained from a reaction between ε -CL and 1 in 15:1

ratio.

Fig. S25 ¹H NMR spectrum of the crude product obtained from a reaction between ε -CL and 1 in 15:1 ratio.

Fig. S26 MALDI-TOF of the crude product obtained from a reaction between ε -CL and 1 in the presence of BnOH in ratio 15:1:2.

Fig. S27 ¹H NMR spectrum of the crude product obtained from a reaction between ε -CL and 1 in the presence of BnOH in ratio 15:1:2.

Complex 3

Fig. S28 Mulliken partial charges of complexes 1 and 3.

Fig. S29 ¹H NMR (500 MHz, CDCl₃) of the crude product obtained from a reaction between CHO and 1 in 1000:1 ratio at 80 $^{\circ}$ C.

Fig. S30 ¹H NMR (500 MHz, CDCl₃) of the crude product obtained from a reaction between PO and **1** in 1000:1 ratio at 30 °C.

Fig. S31 ¹H NMR (500 MHz, CDCl₃) of the crude product obtained from a reaction between SO and 1 in 1000:1 ratio at 120 °C.

Fig. S32 MALDI-TOF mass spectrum of PCHC sample produced by 1 at 50 °C and 35 bar CO_2 pressure from CHO and CO_2 using TBAB as cocatalyst.

Fig. S33 ¹H NMR (500 MHz, CDCl₃) spectrum of a representative sample of poly(propylene carbonate).

Fig. S34 ¹³C NMR (125 MHz, CDCl₃) spectrum of a representative sample of poly(propylene carbonate).

Fig. S35 Representative TGA trace and derivative plot of PCHC produced by **1** (Table 4, entry 1).

Fig. S36 Representative TGA trace and derivative plot of PPC produced by 1 (Table 4, entry 4).

Fig. S37 Representative DSC trace of PCHC produced by 1, 2nd heat cycle (Table 4, entry 1).

Fig. S38 Representative DSC trace of PPC produced by 1, 2nd heat cycle (Table 4, entry 4).

Fig. S39 Carbonyl region of the ¹³C-NMR spectrum of styrene carbonate (SC) synthesized from the coupling of styrene oxide (SO) and CO₂.

Fig. S40 Plot of activity vs. [MAO]/[cat] ratio for 1, 2 and 3 for ethylene polymerization.

Scheme S2 Polymerization proceeds through the coordination-insertion mechanism for ε -CL.

Compound	1	2	3
Empirical formula	$C_{43}H_{71}N_2O_8Zr_2$	$C_{49}H_{86}N_2O_8Zr_2$	$C_{59}H_{96}N_2O_8Zr_2$
Formula weight	926.46	1013.64	1143.82
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P2(1)/n	P21/c	<i>P</i> 1
Temp/K	298(2)	296(2)	298(2)
Wavelength (Å)	0.71073	0.71073	0.71073
<i>a</i> (Å)	11.9483(4)	16.8978(5)	11.1760(3)
<i>b</i> (Å)	21.6468(7)	13.4806(4)	11.3344(3)
<i>c</i> (Å)	19.0429(5)	24.3958(7)	26.2444(8)
α (°)	90	90	94.360(2)
β (°)	101.575(2)	102.6790(10)	101.224(2)
γ (°)	90	90	100.485(2)
$V(Å^3)$	4825.1(3)	5421.7(3)	3184.95(15)
Ζ	4	4	2
D_{calc} (g/cm ³)	1.275	1.242	1.193
Reflns collected	29680	45770	38478
No. of indepreflns	8488	9539	11145
GOF	1.047	0.853	1.195
Final <i>R</i>	$R_1 = 0.0409,$	$R_1 = 0.0473,$	$R_1 = 0.0472,$
indices($I > 2\sigma(I)$)	$wR_2 = 0.1007$	$wR_2 = 0.1374$	$wR_2 = 0.1464$
<i>R</i> indices (all data)	$R_1 = 0.0678,$	$R_1 = 0.0615,$	$R_1 = 0.0684,$
	$wR_2 = 0.1230$	$wR_2 = 0.1613$	$wR_2 = 0.1672$

Table S1 Crystal data for the structures of 1, 2 and 3

$$R_1 = \sum |F_0| - |F_c| / \sum |F_0|, \ wR_2 = \left[\sum (F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\right]^{1/2}$$

Table S2 Solution polymerization data for *rac*-LA and ε -CL using 1–3 in the presence of benzyl alcohol in 200:1:5 (monomer: catalyst: benzyl alcohol) ratio.

Entry	Initiator	Monomer	T / °C	Yield	^a Time/	^b TOF/min	$^{c}M_{\rm n}{}^{obs}/$	$^{d}M_{n}^{theo}/$	$M_{\rm w}/M_{\rm n}$	^e P _r
				(%)	min		kgmol ⁻¹	kgmol ⁻¹		
1	1	rac-LA	140	98	11	3.6	6.89	5.87	1.05	0.72
2	2	rac-LA	140	99	16	2.5	6.81	5.87	1.09	0.71
3	3	rac-LA	140	99	27	1.5	6.02	5.87	1.10	0.73
4	1	ε- CL	80	97	19	2.0	6.73	4.67	1.08	
5	2	ε- CL	80	98	25	1.6	5.55	4.67	1.13	
6	3	ε- CL	80	98	31	1.3	5.69	4.67	1.11	

^{*a*}Time of polymerization measured by quenching the polymerization reaction when all monomer was found consumed. ^{*b*}Turnover frequency (TOF) = Number of moles of monomer consumed / (mole of catalyst × time of polymerization). ^{*c*}Measured by GPC at 27 °C in THF relative to polystyrene standards with Mark-Houwink corrections for M_n for *ε*-CL and LA polymerization. ^{*d*} M_n (theoretical) at 100 % conversion = $[M]_0/[C]_0 \times mol wt$ (monomer) + mol wt (BnOH). ^{*e*}Calculated from homonuclear decoupled ¹H NMR spectrum.

Table S3 Computed Mulliken Net charges (Q/e) on various atoms of complexes 1 and 3

Complex	Positions	Mulliken
		Charge (Q/e)
	Ph- <i>O</i> (1)	-0.615
	Ph- <i>O</i> (2)	-0.614
	^{<i>i</i>} Pr-O (terminal 1)	-0.651
1	^{<i>i</i>} Pr-O (terminal 2)	-0.659
	^{<i>i</i>} Pr-O (terminal 3)	-0.661
	^{<i>i</i>} Pr-O (terminal 4)	-0.670
	^{<i>i</i>} Pr-O (bridging 1)	-0.778
	^{<i>i</i>} Pr-O (bridging 2)	-0.790
	Ph- <i>O</i> (1)	-0.625
	Ph- <i>O</i> (2)	-0.632
	^{<i>i</i>} Pr-O (terminal 1)	-0.629

3	^{<i>i</i>} Pr-O (terminal 2)	-0.636
	^{<i>i</i>} Pr-O (terminal 3)	-0.647
	^{<i>i</i>} Pr-O (terminal 4)	-0.649
	^{<i>i</i>} Pr-O (bridging 1)	-0.760
	^{<i>i</i>} Pr-O (bridging 2)	-0.760