High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co₃O₄/MnO₂ hybrid electrodes

Yunpeng Huang ^a, Yue-E Miao ^a, Weng Weei Tjiu ^b, Tianxi Liu ^{a*}

^{*a*} State Key Laboratory of Molecular Engineering of Polymers, Department of

Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China

^b Institute of Materials Research and Engineering, A*STAR (Agency for Science,

Technology and Research), 3 Research Link, Singapore 117602, Singapore

* To whom correspondence should be addressed. E-mail: <u>txliu@fudan.edu.cn</u>; Tel: +86-21-55664197; Fax: +86-21-65640293.

Figure S1. Digital photographs of CNFs/Co₃O₄ membranes derived from (A) 1 wt %

 $Co(Ac)_2$ and (B) 3 wt % $Co(Ac)_2$.

Figure S2. (A) Cross-sectional image of CNFs/Co₃O₄ membranes derived from 1 wt %

Co(Ac)₂, (B) CCM-10 membrane and (C) CCM-20 membrane.

Figure S3. Comparison of the total capacitance between CCMs and CMs.

Calculation of MnO₂ loading content from TGA data:

In the CNFs/Co₃O₄/MnO₂ composite, we set MnO₂ weight as M, carbon weight as C, and percentage of residue as n (%), respectively.

Then, the weight of consumed carbon can be expressed as $\frac{36 \times M}{347.6}$ according to Eq. (1), and thus Co₃O₄ mass in all composites can be given by $\left(\frac{36 \times M}{347.6} + C\right) \times 0.082$, and mass of residual Mn₂O₃ is $\frac{157.8 \times M}{173.8}$. Then, the following equation can be derived from the TGA curves:

$$\left(\left(\frac{36 \times M}{347.6} + C\right) \times 0.082 + C + M\right) \times n = \left(\frac{36 \times M}{347.6} + C\right) \times 0.082 + \frac{157.8 \times M}{173.8}$$

Thus, the loading percentage of MnO₂ is $\frac{M}{\left(\frac{36 \times M}{347.6} + C\right) \times 0.082 + C + M}$. All results are

listed in Table S1:

Sample	Residue mass (%)	Calculated MnO ₂
		content (%)
CCM-1	13.91	7.54
CCM-5	29.78	26.42
CCM-10	43.71	43.00
CCM-20	60.80	63.33
CNFs/Co ₃ O ₄	Co ₃ O ₄ content: 8.21%	

Table S1. Mass loading of MnO₂ for all the samples.

Specific capacitance calculation:

The specific capacitance of the composite electrode based on the mass of MnO_2 is calculated according to the following equation:¹

$$\frac{m_{\text{fiber}}}{C_{\text{MnO2}}} = \frac{m_{\text{fiber}}}{m_{\text{MnO2}}} \left\{ C_{\text{comp}} \left(1 + \frac{m_{\text{MnO2}}}{m_{\text{fiber}}} \right) - C_{\text{fiber}} \right\}$$

where C_{MnO2} is the specific capacitance from the MnO_2 layer alone, C_{comp} is total capacitance of all the components in the composite, C_{fiber} is the capacitance from the $CNFs/Co_3O_4$ fiber only. m_{fiber} and m_{MnO2} are the mass of $CNFs/Co_3O_4$ hybrid fiber and deposited MnO_2 in the composite obtained from TGA curves.

 C_{comp} and C_{fiber} can be calculated from CV according to the following equation:

$$\int id\Delta u$$

$$C = v\Delta um$$

where i is the discharging current (A), Δu is the discharge voltage range (V), v is scan rate (mV s⁻¹), and m is the mass of electrode materials.

Reference:

1 A. Ghosh, E. J. Ra, M. H. Jin, H. Jeong, T. H. Kim, C. Biswas and Y. H. Lee, *Adv. Funct. Mater.*, 2011, **21**, 2541-2547.