Overview of learning progression for matter and atomic-molecular theory from Smith et al., 2006 mapped onto items of the CPCA

Questions & Big	Components of Big Ideas	6-8 Elaboration of Big Ideas	Item on CPCA		
Ideas			α-version	β -version	y-version
1. What are things	Existence of matter	Matter has mass, volume, and weight (in a gravitational	1*	-	-
made of and how	and diversity of	field), and exists in three general phases, solids, liquids,	11	6	6
can we explain their	material kinds	and gas.	13	8	8
properties?		Materials can be elements, compounds or mixtures.	19	14	14
			25	20	19
1. Objects ¹ are		All matter is made of a limited number of different			
constituted of		kinds of atoms, which are commonly bonded together			
matter, which exists		in molecules and networks. Each atom takes up space,			
as many different		has mass, and is in constant motion.			
material kinds.	Objects have	Mass is a measure of amount of matter and is constant	14	9	9
Objects have	properties that can be	across location; weight is a force, proportional to mass	15	10	10
properties that can	measured and	and varies with gravitational field.			
be measured and	explained. Three	Solids, liquids, & gases have different properties.			
depend on amount	important properties				
of matter and on the	are mass, weight, and	The mass and weight of an object is explained by the			
material kinds they	volume.	masses and weights of its atoms. The different			
are made of.		motions & interactions of atoms in solids, liquids, and			
		gases help explain their different properties.			
	Material kinds have	Materials have characteristic properties independent of	16	11	11
	characteristic	size of sample (Extends knowledge to include			
	properties that can be	boiling/freezing points and to elaborate on density)			
	measured and				
	explained.	The properties of materials are determined by the			
		nature, arrangement and motion of the molecules that			
		they are made of.			

2. What changes and	Mass and weight are	Mass and weight (but not volume) are conserved across	3*	-	-
what stays the same	conserved across a	chemical changes, dissolving, phase change & thermal	10	5	5
when things are	broad range of	expansion.	13	8	8
transformed?	transformations		20	15	15
		Mass and weight are conserved in physical and			
2. Matter can be		chemical changes because atoms are neither created			
transformed, but		nor destroyed.			
not created or	Material kinds stay	Some transformations involve chemical change (e.g.,	4*	-	-
destroyed, through	the same across some	burning, rusting) in which new substances, as indicated	5*	-	-
physical and	transformations and	by their different properties, are created.	6	1	1
chemical processes.	change across others.		7	2	2
		In other changes (e.g., phases change, thermal	9	4	4
		expansion) materials may change appearance but the	13	8	8
		substances in them stay the same.	17	12	12
			18	13	13
		In chemical changes new substances are formed as	21*	-	-
		atoms are rearranged into new molecules. The atoms	22	17	16
		themselves remain intact.	24	19	18
		In physical changes, molecules change arrangement			
		and/or motion but remain intact, so the chemical			
		substance remains the same.			

3. How do we know?	Good measurements provide more reliable	Our senses respond to combinations of physical properties, rather than isolated ones. For this reason,	12	7	7
3. We can learn	and useful	they are not good measures of those physical			
about the world	information about	properties.			
through	object properties	Sources of measurement error can be examined and			
measurement,	than common sense	quantified.			
modeling, and	impressions.	We can learn about the properties of things through			
<u> </u>	impressions.	indirect measurement (e.g., water displacement) as			
argument.					
		well as using powerful tools (microscopes).			
		Atoms are too small to see directly with someonly			
		Atoms are too small to see directly with commonly			
	84 - 4 - 11 1 -	available tools.	2*		
	Modeling is	Models can propose unseen entities to explain a	2*	-	-
	concerned with	pattern of data.	8	3	3
	capturing key		23	18	17
	relations among	The properties of and changes in atoms and molecules			
	ideas rather than	have to be distinguished from the macroscopic			
	surface appearance.	properties and phenomena for which they account.			
	Arguments use	Good arguments involve getting data that helps			
	reasoning to connect	distinguish between competing explanations.			
	ideas and data.				
		We learn about properties of atoms and molecules			
		indirectly, using hypothetico-deductive reasoning.			

¹ Any bounded material entity, not just solids

^{*}Items removed from final instrument (γ-version)