Table_S1.pdf

Rubric for text- and illustration-based evaluation of textbooks. (PDF, 6 pages, 145 KB).
Table_S2.pdf
Rubric for evaluation of practice of projection construction. (PDF, 2 pages, 176 KB).
Table_S3.pdf
Evaluations of textbook introductions to Newman projections. (PDF, 2 pages, 106 KB).
Table_S4.pdf
Evaluations of textbook practice problems of Newman projections. (PDF, 1 page, 94 KB).
Table_S5.pdf
Evaluations of textbook introductions to Fischer projections. (PDF, 2 pages, 176 KB).
Table_S6.pdf
Evaluations of textbook practice problems of Fischer projections. (PDF, 1 page, 94 KB).

Table S1
Rubric for text- and illustration-based evaluation of textbooks

Analysis Areas		Possible Scores	Description within NPs	Description within FPs	Rationale \& Alignment to Principles
Introduction of the Projection					
Purpose	0	The purpose of the diagram is not discussed at its introduction	The diagram is introduced only as a possible way to represent a molecule	The diagram is introduced only as a possible way to represent a molecule	Principle 1: As instructors, we feel it necessary that students are told why they are learning a new representation and how this will be used in the future.
	1	A relationship to molecule conformation (NP) or stereochemistry (FP) is implied or explicitly stated	Introduction to diagrams is found in the chapter on "Conformation," or is explicitly related to conformation	Introduction to diagrams is found in the chapter on "Stereochemistry", or is described within discussions of three-dimensionality of chiral centers	
Definitions of representationspecific conventions	0	Conventions of the representation are not defined	No discussion of what the lines and circles in the diagram represent or how the lines/circles are organized	No discussion of what the lines in the diagram represent	Principle 1: Diagrams are a form of communication in chemistry. Therefore, a thorough understanding of the conventions of diagrammatic representations used in the discipline is critical, and novices should be explicitly introduced to these conventions.
	1	Definitions are given, but may not be fully developed	The circle in the diagram is presented as representing the back carbon itself	Horizontal lines are discussed as representing bonds that come out of the page, or are projected toward the viewer, and vertical lines represent bonds that are going into the page, or away from the viewer	
	2	Complete definitions are given	The circle in the diagram is presented as representing the electron density around the carbon-carbon bond	N/A	

This journal is © The Royal Society of Chemistry 2013

Table S1, Continued

Analysis Areas	Possible Scores	Description within NPs	Description within FPs
Introduction of the Projection, Continued		Rationale \& Alignment to Principles	

Relationship to other chemical representations, continued

Table S1, Continued

Analysis Areas		Possible Scores	Description within NPs	Description within FPs	Rationale \& Alignment to Principles
Construction of the Projection, Continued					
Molecule conformation					
Discussion of molecular conformation with respect to representations	0	The text does not address conformation of molecules	At the point of introduction to the NP, the text does not differentiate between NPs of eclipsed and staggered molecules	The text does not state that FPs can be formed from the eclipsed conformation only	Principles 2-5: Explicit discussion of substituent relationships allows the user to understand how a diagram should be interpreted and "read" for chemical information.
	1	Text or illustrations show the importance of molecule conformation	The text states or illustrations imply that staggered molecules are drawn with 60° between front and back substituents, and eclipsed conformations are shown with substituents slightly offset	The book states in the text or implies within illustrations the necessity of the eclipsed conformation prior to creating the FP	
	2	Text and illustrations are used to show importance of molecule conformation	The book states both in text and within illustrations the connection between substituent angles and conformations	The book states both in text and within illustrations the importance of using the eclipsed conformation when creating FPs	
Illustrations and compound conformation	0	Illustrations imply importance of molecule conformation in creating diagrams	Illustrations showing the translation of DWs to NPs present the DW in only one conformation or do not address how the conformation of the NP changes as a result of the DW being in either an eclipsed or staggered conformation	Illustrations consistently depict the initial DW representation in an eclipsed conformation prior to FP construction, or only single-carboncenter molecules are shown in illustrations	With FPs, it is vital that novices understand the conventions of the diagram, and that these representations can only be created for molecules in the eclipsed conformations.
	1	Illustrations depict representations of molecules in both staggered and eclipsed conformations	Illustrations showing the translation of both eclipsed and staggered molecules to NPs are shown, indicating the important modifications to the NP that occur as a result	Illustrations display the necessary rotation of a staggered molecule into the eclipsed conformation prior to creating the FP	
Viewing perspective					
Text discussion of viewing perspective	0	Multiple viewing perspectives are not discussed in the text	The text does not state that multiple viewing perspectives may be used	No mention of viewing perspective is discussed in the text	Principle 3: NPs can be viewed from multiple perspectives and still be considered correct while FPs can only be viewed in the eclipsed format, with the substituents pointing toward the viewer; it is vital that novices be told this explicitly.
	1	Viewing perspective is discussed explicitly in the text	The text explicitly states that the NP can be made by viewing the initial representation from both the left and the right (only if the original molecule is represented as a DW)	The text explicitly states that the initial representation must be viewed so that the substituents in the molecule point toward the viewer and the backbone points away from the viewer	

Table S1, Continued

Analysis Areas		Possible Scores	Description within NPs	Description within FPs	Rationale \& Alignment to Principles
Construction of the Projection, Continued					
Viewing perspective, continued					
Directionality of viewing perspectives depicted in illustrations	0	Illustrations imply only one viewing perspective	Illustrations use only one viewing direction, or the viewing direction cannot be determined due to the use of symmetric molecules	Illustrations consistently show the viewing perspective from only one direction, the bottom or left of the originally presented molecule, for example; the viewing direction cannot be determined due to the use of symmetric molecules	Principle 3: Multiple viewing perspective are used as referents for constructing new diagrams.
	1	Illustrations display the NP or FP from multiple viewing perspectives	Illustrations display possible perspectives from both the left and right of the original molecule (if the original molecule is a DW)	Illustrations display possible perspectives from multiple directions	When used in conjunction with text, illustrations can reify students' understanding of representations.
Viewing perspective of initial diagram and relationship of substituents	0	Illustrations do not indicate a viewing perspective of the initial molecular representation	Illustrations include no perspective cue or the original molecule is not rotated towards the reader, and so the relationship of substituents as it relates to the reader's perspective is not indicated.	Illustrations that show a translation from DW (or ball \& stick) representation to FP do not show a viewing perspective that the reader should take, such as an eye or stick person, and no relationship between the viewer and the substituent positions is implied	
	1	Illustrations explicitly indicate the direction of the viewing perspective and the resulting relationships of the substituents	Illustration cues are used to indicate a viewing perspective, OR the original molecule is rotated toward the reader, indicating the positions of the substituents in relation to the viewer's perspective	Illustrations include an eye or stick person, for example, to indicate the viewer's perspective; OR a DW diagram is presented as pointing "outward" to the readers' perspective, thus implying the positional relationships of reader and substituents	Principle 3: Illustrative cues are vital for novices attempting to understand how viewing perspective and directionality influence how representations are constructed.
	2	Illustrations indicate a viewing perspective and the resulting observer's view from this perspective	Illustrations include both a visual cue of viewing perspective on a given diagram (DW or ball \& stick, for example) AND an image of this diagram from that perspective (such as a saw-horse representation)	Illustrations include both a visual cue of viewing perspective on a given diagram (e.g., DW or ball \& stick) AND an image of this diagram from that perspective (such as the bowtie representation of the DW)	

Analysis Areas		Possible Scores	Description within NPs	Description within FPs	Rationale \& Alignment to Principles
Construction of the Projection, Continued					
Carbon centers and diagram construction	0	See descriptions	Only molecules with non-chiral centers are used	Only single-carbon-center molecules are used and these molecules are nonchiral	Principle 3: NP translations shown without using chiral centers lead to ambiguity regarding the viewing direction. Use of single-carbon-centered molecules in FPs deemphasizes the importance of the eclipsed conformation.
	1	See descriptions	Only molecules with one chiral center, with 4 different substituents on a carbon, are used	Only single-carbon-center molecules are used, but these molecules are chiral	
	2	See descriptions	Molecules with two chiral centers, with 4 different substituents on each carbon, are used	If multi-carbon-center molecules are used in illustrations, none or only one is chiral	
	3	See descriptions	N/A	Multi-carbon-center molecules are used in illustrations and each are chiral	
Representations Throughout the Text					
FPs in discussion of carbohydrates	0	No FPs in discussion	N/A	FPs are not used in the discussion of carbohydrate and sugar stereochemistry	Principles 3 \& 5: Students are encouraged to establish referential connections between FPs and sugar and carbohydrate stereochemistry. More importantly, understanding FPs facilitates understanding of differences at chiral centers in sugars and carbohydrates (e.g., D vs. L sugars).
	1	FPs used in discussion	N/A	FPs are used in the discussion of carbohydrate and sugar stereochemistry	
FPs in discussion of R/S Configuration	0	No FPs in discussion	N/A	FPs not used in the discussion and introduction to R/S configurations of chiral carbons	Principle 5: FPs allow the user to "see" multiple chiral centers more readily and therefore identify their spatial relationships and configurations more easily.
	1	FPs used in discussion	N/A	FPs are used to discuss R/S configurations of chiral centers	
Viewing perspectives throughout the text	0	A variety of viewing perspectives is not used	Less than 40%, or greater than 60% of NPs depict a left viewing perspective, or the resulting NP is the same from either direction	Implied viewing perspectives from eclipsed molecules to FPs are from the same direction less in than 40% or greater than 60% of examples	Principle 3: The use of multiple viewing perspectives allows students to better relate DWs, NPs, and FPs of various conformations to each other.
	1	A variety of viewing perspectives is used	Only 40-60\% of viewing perspective shown of NPs use the left viewing perspective	Implied viewing perspectives of eclipsed molecules are evenly distributed between directions	

Analysis Areas		Possible Scores	Description within NPs	Description within FPs	Rationale \& Alignment to Principles
Representations Throughout the Text, Continued					
Use of NPs in E2 Reactions	0	NPs are not used in E2 reactions	NPs are not used in the discussion and introduction to E2 reactions	N/A	Principle 5: Use of the NP to pictorially represent the spatial relationship between leaving group and nucleophile is critical for understanding the processes involved in E2 reactions. Possessing a strong understanding of the NP would therefore reduce cognitive load.
	1	NPs are used in E2 reactions	NPs are used in the introduction to the E2 reactions to introduce anti/synperiplanar configurations	N/A	
Rotations throughout the text					Principle 2: It is important that novices understand that molecules are dynamic and, therefore, can rotate and adopt many conformations. However, it is likewise important that students be made aware that not all rotational movement results in the formation of the same conformer and may, instead, result in isomers with different chemical properties.
Illustration of rotations	0	Rotation of NPs is not shown	No illustration of the rotation around the carbon-carbon bond is included in the textbook	N/A	
	1	One carbon rotation	In illustrations, one carbon is shown as static, while the other can rotate	N/A	
	2	Two carbon rotation	An illustration depicts that both carbons can rotate independently of one another	N/A	
Textual discussion of rotations	0	No discussion of rotation	The text includes no discussion about the rotation around the carbon-carbon bond of a molecule	No discussion of the rules of FP rotation	
	1	Some discussion of rotation	A discussion of rotation around the carbon-carbon bond is included, but is vague as to how this rotation occurs (one carbon or two)	A discussion of the FP rotation rules is included, including that FPs must not be rotated 90° as this changes the implied stereochemistry of the molecule, while a rotation of 180° is permissible	
	2	Complete discussion of rotation	The text explicitly states that both carbon atoms can rotate independently of one another	N/A	

Table S2
Rubric for evaluation of practice of projection construction

Analysis Areas		Possible Scores	Description within NPs	Description within FPs	Rationale
Practice problems	0	No practice problems	Text does not include practice problems dealing with the construction of NPs	Text does not include practice problems dealing with the construction of FPs	It is important for students to practice translating between different representations if they are to develop metarepresentational competence.
	1	Practice problems included	Text includes practice problems dealing with NP construction	Text includes practice problems dealing with FP construction	
Viewing perspective(s) in practice					
Required or implied viewing perspectives and directionality	0	No viewing perspective provided	Practice problems do not ask the student to use a specific viewing perspective	Molecular representations are shown only in an eclipsed conformation, suggesting a single viewing perspective, or only single-centered molecules are used	Translating DW representations to NPs result in only one correct answer IF a viewing perspective is required. Not specifying a viewing direction can lead to ambiguity and confusion as to how to construct the NP properly.
	1	Specific viewing perspective provided	Students are asked to use a specific viewing perspective in the construction of a NP	Practice problems do not provide a DW or ball \& stick representation of the original molecule, only a name or molecular formula, or DWs are depicted in a staggered conformation; each of which result in no specific viewing perspective or directionality	properly. With FPs, it is vital that the student learns to put the molecule in the eclipsed formation, and approach this from the appropriate position relative to the substituents.
Variation of viewing perspective	0	Skewed number of viewing perspectives	If score of " 1 " above: Less than 40%, or greater than 60%, of viewing perspectives requested were from the left, or the resulting NP is the same when constructed from either viewing direction	If score of " 0 " above: Less than 40%, or greater than 60%, of implied viewing perspectives were from only one direction, such as the bottom of the DW molecule	It is important that students should have an opportunity to translate between representations using multiple viewing perspectives. This addresses the misconception that only a single viewing perspective is "correct."
	1	Even number of viewing perspectives requested	If score of " 1 " above: Only $40-60 \%$ of the requested viewing perspectives are from the left	If score of " 0 " above: Only 40-60\% of implied viewing perspectives were from one direction	
Viewing perspective and nomenclature	0	No relationship between viewing perspective and nomenclature	Requested viewing perspectives do not correspond to nomenclature of the molecule, or no viewing directions were specifically requested	Directions do not require FPs to have the first priority carbon at the top of the vertical bond	Requiring alignment with molecular nomenclature again leads to only one correct answer for each problem, allows students to relate this information to previously acquired knowledge, and continues to align students to the common conventions associated with the diagrams.
	1	Viewing perspective corresponds to nomenclature	Requested viewing perspectives correspond to the nomenclature of the molecule	Directions indicate that FPs should be composed according to nomenclature, with the first priority substituent at the top of the FP	

This journal is © The Royal Society of Chemistry 2013

Table S2, Continued			Description within NPs	Description within FPs

Table S3
Evaluations of textbook introductions to Newman projections

	Bruice	Carey \& Giuliano	Klein ${ }^{\text {a }}$	Klein ${ }^{\text {b }}$	Loudon	McMurry	Wade
Introduction to the Newman Projection (7)							
Purpose	1	1	1	1	1	1	1
Definition of representationspecific symbols	1	1	1	1	1	1	1
Relationship to oth Relationship to dash-wedge diagram	chemical 1	presentatio 1	2	2	1	0	1
Relationship to 3D representations	0	1	0	0	1	1	0
Relationship to other 2D representations	0	1	1	0	0	1	1
Construction of the Newman Projection (11)							
Stepwise Construction	0	0	1	1	1	0	0
Diagrammatic and text-based examples	1	1	1	1	1	1	1
Molecule Conformation Discussion of molecule conformation with respect to representations 1 1 1 1 2 1 2							
Illustrations and compound conformation	1	1	0	0	0	1	1
Viewing perspective Text discussion of viewing perspective	0	0	0	0	1	0	0
Directionality of viewing perspectives in illustrations	0	0	0	0	0	0	0
Viewing perspective of initial diagram and relationship of substituents	0	1	2	1	2	1	1
Carbon centers and diagram construction	0	0	2	0	0	0	0

Table S3, continued

Representations Throughout the Text (6)							
Viewing perspectives throughout the text	c	0	0	0	0	0	0
Use of NPs in E2 reactions	0	0	1	1	0	1	1
Rotations throughou Illustrations of NP rotations	te 2	0	2	1	1	1	1
Textual discussion of rotations	1	1	1	2	2	1	2
Total (24)	9	10	16	12	14	11	13

Note:
a: Organic Chemistry, 2012
b: Organic Chemistry as a Second Language, 2006 \& 2008
c: One or fewer NP translations was illustrated in the later textbook sections that were reviewed

Table S4
Evaluations of textbook practice problems of Newman projections

| | Bruice |
 Giuliano | Klein $^{\mathrm{a}}$ | Klein $^{\mathrm{b}}$ | Loudon | McMurry | Wade |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Practice problems | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Viewing perspective at practice
 Required or
 implied viewing
 perspectives and
 directionality | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| Variation of
 viewing
 perspective | c | d | 0 | 0 | c | d | c |
| Viewing
 perspective and
 nomenclature | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Molecule
 conformation and
 diagram
 frameworks | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Reverse
 construction | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| Carbon centers in
 translation and
 construction tasks | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Real-world
 applications of
 representations | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| Total (10) | 5 | 5 | 7 | 5 | 7 | 4 | 6 |

Notes:
a: Organic Chemistry, 2012
b: Organic Chemistry as a Second Language, 2006 \& 2008
c: No translation tasks were included in the book. Construction tasks were from name or molecular formula only, and so no viewing perspective could be identified
d : Translation practice problems did not ask for specific viewing perspectives

Table S5
Evaluations of textbook introductions to Fischer projections

	Bruice	Carey \& Giuliano	Klein ${ }^{\text {a }}$	Klein ${ }^{\text {b }}$	Loudon	McMurry	Wade
Introduction to the Fischer Projection (6)							
Purpose	1	1	1	1	1	1	1
Definition of representationspecific symbols	1	1	1	1	1	1	1
Relationship to other chemical representations							
Relationship to dash-wedge diagram	1	1	2	2	1	1	2
Relationship to 3D representations	0	1	0	0	0	1	1
Relationship to other representations	0	0	0	0	0	0	0
Construction of the Fischer Projection (12)							
Stepwise Construction	0	0	0	1	1	0	0
Diagrammatic and text-based examples	0	1	1	1	1	1	1
Molecule Conformation Discussion of molecule conformation with respect to representations							
Illustrations and compound conformation	0	1	0	1	0	0	0
Viewing perspectiv Text discussion of viewing perspective	1	1	0	1	1	0	1
Directionality of viewing perspectives in illustrations	0	0	0	0	1	1	0
Viewing perspective of initial diagram and relationship of substituents	0	1	0	2	2	2	2
Carbon centers and diagram construction	1	3	3	3	3	1	1

Table S5, continued

Representations Throughout the Text (4)							
FPs in discussion of carbohydrates	1	1	1	c	1	1	1
FPs in discussion of R/S configurations	1	1	1	1	1	1	1
Viewing perspectives throughout the text	d	0	d	d	d	e	d
Rotations througho Textual discussion of rotations	te 1	0	0	0	1	1	1
Total (22)	8	14	10	14	17	13	13

Notes:
a: Organic Chemistry, 2012
b: Organic Chemistry as a Second Language, 2006 \& 2008
c: Textbook did not include a carbohydrate section
d: One or fewer FP translations was illustrated in the later textbook sections that were reviewed
e: FPs were introduced within the sugars chapter, and so does not fit with "Representations Throughout the Text"

Table S6
Evaluations of textbook practice problems of Fischer projections

	Bruice	Carey \& Giuliano	Klein ${ }^{\text {a }}$	Klein ${ }^{\text {b }}$	Loudon	McMurry	Wade
Practice problems	1	1	1	0	1	1	1
Viewing perspective Required or implied viewing perspectives and directionality	practice $1^{\text {d }}$	$1{ }^{\text {d }}$	$1^{\text {e }}$	c	$1{ }^{\text {d }}$	$1^{\text {d, }}$	$1^{\text {d, }}$
Variation of viewing perspective	f	f	f	c	f	f	f
Viewing perspective and nomenclature	0	0	0	c	0	0	0
Molecule conformation and diagram frameworks	d	d	0	c	d	1	1
Reverse construction	0	0	1	0	0	1	1
Carbon centers in translation and construction tasks	3	3	2	c	3	2	3
Real-world applications of representations	1	1	1	1	1	2	1
Total (11)	6	6	6	1	6	8	8

Note:
a: Organic Chemistry, 2012
b: Organic Chemistry as a Second Language, 2006 \& 2008
c: No practice problems in FP construction were included in this textbook, therefore no further scores regarding such problems are included
d : Construction tasks were from name or molecular formula only, so no viewing perspective could be identified or framework employed
e: Practice problems provided staggered molecules from which to translate to FPS
f: Practice problems did not imply specific viewing perspective

