Electronic Supplementary Information for: "The Conformer Resolved Ultraviolet Photodissociation of Morpholine"

Thomas A. A. Oliver, Graeme A. King and Michael N. R. Ashfold

1. Experimental Setup

Morpholine (≥ 99.0%, Sigma Aldrich) was used without further purification. The HRA-PTS experimental apparatus has been detailed previously.¹ Briefly, a sample of morpholine (room temperature vapour pressure, seeded in ~700 Torr of argon) was expanded into vacuum through a pulsed valve (General Valve Series 9) and skimmed to form a cold molecular beam. This molecular beam was intersected by a tunable nanosecond UV photolysis pulse generated by frequency doubling the output of a Nd-YAG pumped dye laser (Spectra Physics GCR-270 plus PDL-2, $250 \ge \lambda_{phot} \ge 210$ nm, ~0.5-2 mJ pulse⁻¹) or by use of an ArF excimer laser (Lambda-Physik OpteX, 193 nm, ~1-2 mJ pulse⁻¹). The precise wavelength of the former radiation was measured by directing a portion of the fundamental dye laser output into a wavemeter (Coherent Wavemaster). The UV radiation was focussed into the interaction region using an f = 75 cm lens. After a time delay $\delta t = 10$ ns, H atom photoproducts in the interaction region were tagged using a doublyresonant two photon excitation scheme involving, first, Lyman- α (121.6 nm) excitation to the 2p state, followed by excitation at ~366 nm to a high n Rydberg state ($n \sim 80$). The requisite tagging photons were created using two separate dye lasers pumped by the second harmonic of a single Nd-YAG laser (Continuum Powerlite 9010). The Lyman-a radiation was produced by mixing the 554.8 nm output of one dye laser with residual 1064 nm radiation to produce light of wavelength 364.7 nm, which was then focused in a cell containing a phase matched Kr/Ar gas mixture. The resulting 121.6 nm radiation was then re-focussed into the interaction region (MgF₂ lens). Any prompt ions formed from unintentional vacuum UV or multiphoton induced ionisation processes are removed by biasing (20 V cm⁻¹) an extractor plate assembly that straddles the interaction region. Tagged H (Rydberg) atoms that recoil with velocities along the TOF axis travel to a Johnston multiplier detector (held at -4.2 kV) where they are field ionised and their arrival time recorded.

The length of the TOF axis used in these experiments, d (~37.1 cm), was frequently recalibrated by recording TOF spectra of H atoms resulting from H₂S photodissociation at $\lambda_{phot} < 240$ nm, and least squares fitting to well-characterised rotationally and spin-orbit resolved peaks associated with the H + SH (X, v, N) product channels, using the literature value for D_0 (H–SH)^{2,3} and the relevant diatomic term values.⁴ The electric polarisation vector, ε_{phot} , of the photolysis laser radiation was ordinarily aligned at an angle $\theta = 90^{\circ}$ to the TOF axis. When necessary, ε_{phot} could be rotated by inserting a double Fresnel rhomb (Optics for Research). As before,³ TOF (and thus kinetic energy) dependent recoil anisotropy parameters, β , were determined by recording spectra with ε_{phot} aligned at $\theta = 0^{\circ}$, 54.7° and 90° to the TOF axis.

TOF-mass spectra (MS) of the morpholine sample were investigated by substituting a (removable) Wiley-McClaren TOF-mass spectrometer in place of the extractor plate.

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

2. Optimised Geometry Parameters

-		Structure					
Method	Parameter	τs [‡]	AX	EQ			
	¢/°	-4.8	-53.0	50.8			
B3LYP	$\alpha/^{\circ}$	117.1	111.2	111.2			
	$R_{ m N-H}/ m { m \AA}$	1.001	1.016	1.013			
	¢/°	-4.3	-53.5	51.5			
BMK	α/°	116.7	110.8	110.7			
	$R_{ m N-H}/ m \AA$	1.001	1.017	1.014			
	¢/°	-5.1	-53.4	51.0			
MPWB1K	α/°	116.6	110.5	110.5			
	$R_{ m N-H}$ / Å	0.993	1.008	1.005			
	¢/°	-4.8	-53.7	51.4			
B972	$\alpha/^{\circ}$	117.1	110.9	111.0			
	$R_{ m N-H}/ m { m \AA}$	0.997	1.013	1.010			
	¢/°	-5.1	-53.5	51.1			
BB1K	α/°	116.7	110.5	110.5			
	$R_{ m N-H}$ / Å	0.993	1.009	1.005			
	¢/°	-5.6	-49.3	54.7			
QCISD	α/°	116.8	110.2	110.0			
	$R_{ m N-H}/ m \AA$	1.001	1.018	1.014			
	φ/°	-4.2	-53.0	53.7			
MP2	$\alpha/^{\circ}$	116.4	111.2	109.7			
	$R_{ m N-H}$ / Å	1.002	1.016	1.016			

Optimised values of ϕ , α and R_{N-H} for the axial, equatorial and transition state conformations of morpholine calculated using a 6-311+G^{**} basis set.

3. UV Spectrum

The room temperature UV absorption spectrum of morpholine has a bimodal appearance, with a long wavelength onset at ~255 nm and a secondary rise at ~220 nm. On the basis of the CASPT2 optimised excitation energies, we assign the longest wavelength onset to the $\sigma^* \leftarrow n$ transition and the more intense absorption at shorter wavelengths to (3p and higher)Rydberg $\leftarrow n$ transitions.

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

4. Photoionisation Mass Spectrometry

Ion TOF-mass spectra obtained following excitation of jet cooled morpholine at $\lambda_{phot} = (a) 250.0$ nm and (b) 193.3 nm and subsequent introduction of Lyman- α radiation after $\delta t = 10$ ns.

5. Calculated normal mode wavenumbers for the equatorial and axial conformers of ground state morpholine and for the ground state of the morpholinyl radical

	Morpholine($\widetilde{\mathbf{X}}$)					Morpholinyl($\widetilde{\mathbf{X}}$)			
		Equatorial Conformer Axia		Axial C	Conformer				
Mode	Symm.	Harmonic	Anharmonic	Harmonic	Anharmonic	Mode	Symm.	Harmonic	Anharmonic
ν_1	<i>a</i> '	3538	3372	3500	3340		Disappearing Mode		
v_2	<i>a</i> '	3094	2952	3078	2936	ν_1	<i>a</i> '	3097	2953
ν_3	<i>a</i> '	3061	2922	3070	2923	ν_2	<i>a</i> '	3063	2914
v_4	<i>a</i> '	2986	2867	3024	2904	ν_3	<i>a</i> '	2993	2849
v_5	<i>a</i> '	2932	2779	2951	2791	ν_4	<i>a</i> '	2962	2779
ν_6	<i>a</i> '	1500	1460	1490	1464	v_5	<i>a</i> '	1495	1465
v_7	<i>a</i> '	1493	1459	1481	1436	ν_6	<i>a</i> '	1503	1471
ν_8	<i>a</i> '	1424	1461	1408	1377	ν_7	<i>a</i> '	1328	1305
v_9	<i>a</i> '	1408	1376	1391	1363	ν_8	<i>a</i> '	1404	1375
v_{10}	<i>a</i> '	1332	1293	1343	1299	V9	<i>a</i> '	1306	1264
ν_{11}	<i>a</i> '	1300	1269	1318	1288	ν_{10}	<i>a</i> '	1248	1208
V ₁₂	<i>a</i> '	1142	1110	1164	1137	v_{11}	<i>a</i> '	1026	1006
v_{13}	<i>a</i> '	1077	1052	1049	1032	v_{12}	<i>a</i> '	1090	1070
v_{14}	<i>a</i> '	1038	1012	1011	984	ν_{13}	<i>a</i> '	946	920
v_{15}	<i>a</i> '	909	884	906	887	ν_{14}	<i>a</i> '	881	863
v_{16}	<i>a</i> '	839	821	834	819	ν_{15}	<i>a</i> '	840	824
v_{17}	<i>a</i> '	781	736	771	755	Disappearing Mode			
v_{18}	<i>a</i> '	585	576	592	617	ν_{16}	<i>a</i> '	612	625
V19	<i>a</i> '	443	435	441	436	ν_{17}	<i>a</i> '	461	448
v_{20}	<i>a</i> '	415	404	397	433	ν_{18}	<i>a</i> '	367	368
V ₂₁	<i>a</i> '	263	254	255	267	V19	<i>a</i> '	239	229
V 22	<i>a</i> "	3092	2950	3077	2934	v_{20}	<i>a</i> "	3096	2952
V ₂₃	<i>a</i> "	3060	2921	3069	2922	v_{21}	<i>a</i> "	3062	2913
v_{24}	<i>a</i> "	2981	2828	3021	2899	V ₂₂	<i>a</i> "	2990	2834
V25	<i>a</i> "	2928	2804	2942	2784	V ₂₃	$a^{\prime\prime}$	2952	2750
v_{26}	<i>a</i> "	1490	1443	1492	1461	v_{24}	$a^{\prime\prime}$	1478	1439
V ₂₇	<i>a</i> "	1485	1439	1477	1447	V25	$a^{\prime\prime}$	1490	1456
V_{28}	<i>a</i> "	1482	1442	1472	1436	Disappearing Mode			
V29	<i>a</i> "	1377	1346	1377	1346	V ₂₆	<i>a</i> "	1364	1342
V30	<i>a</i> "	1347	1312	1351	1321	V ₂₇	<i>a</i> "	1317	1294
V31	<i>a</i> "	1250	1219	1272	1240	V ₂₈	<i>a</i> "	1272	1241
V32	<i>a</i> "	1226	1197	1215	1190	V29	<i>a</i> "	1212	1192
V33	<i>a</i> "	1156	1119	1145	1112	V ₃₀	<i>a</i> "	1167	1133
V 34	<i>a</i> "	1112	1075	1123	1082	V ₃₁	<i>a</i> "	1084	1046
V35	<i>a</i> "	1087	1066	1043	1027	V ₃₂	<i>a</i> "	1055	1023
V36	<i>a</i> "	896	875	885	869	V ₃₃	<i>a</i> "	878	860
V 37	<i>a</i> "	862	843	838	835	V ₃₄	<i>a</i> "	844	830
v_{38}	<i>a</i> "	481	473	484	482	V ₃₅	<i>a</i> "	482	482
V39	<i>a</i> "	266	246	245	266	V ₃₆	<i>a</i> "	222	227

Harmonic and anharmonic corrected vibrational wavenumbers (in cm⁻¹) at the DFT/B3LYP/6-311+G** level for the equatorial and axial morpholine conformers, and for the morpholinyl radical. The parent equatorial conformer modes are labelled according to Herzberg notation,⁵ whereas the ordering of the morpholinyl radical modes have been adjusted so as to map through from those of the parent morpholine molecule.

References

- 2 S. H. S. Wilson, J. D. Howe and M. N. R. Ashfold, Mol. Phys. 1996, 88, 841.
- 3 P. A. Cook, S. R. Langford, R. N. Dixon and M. N. R. Ashfold, J. Chem. Phys., 2001, 114, 1672.
- 4 K.-P. Huber and G. Herzberg, *Constants of Diatomic Molecules*, 1979, Van Nostrand Reinhold, New York, London.
- 5 G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules; van Nostrand: 1945, Princeton, NJ.

¹ B. Cronin, M. G. D. Nix, R. N. Dixon, R. H. Qadiri and M. N. R. Ashfold, *Phys. Chem. Chem. Phys.* 2004, 6, 5031.