Low-valent vanadium catecholate clusters: Supplementary Information

E. Scales, L. Sorace, A. Dei, A. Caneschi, C. A. Muryn, D. Collison and E. J. L. McInnes

Complex		Bond Valence Sums		
		V(1)	V(2)	V(3)
$[V_6O(dbcat)_4(MeO)_8(MeOH)_2]$ (1)	V ^{III}	2.95	2.93	2.94
	VIV	3.24	3.22	3.23
	VV	3.47	3.44	3.46
$[V_6O_2(dbcat)_4(acac)_2(PhCO_2)_4(EtO)_2]$ (2)	V ^{III}	3.01	3.37	3.05
	VIV	3.30	3.71	3.35
	VV	3.54	3.96	3.59
$[V_2(dbcat)_4(EtOH)_2]$ (3)	V ^{III}	3.47	3.41	
	VIV	3.82	3.75	
	VV	4.09	4.01	
$[V_6O_3("dbcat")_4(MeO)_8]$ (4)	V ^{III}	3.73 (3.72)	3.22 (3.25)	3.07 (3.10)
	VIV	4.10 (4.08)	3.54 (3.57)	3.38 (3.41)
	VV	4.39 (4.37)	3.79 (3.82)	3.62 (3.65)
$[V_2O_2("dbcat")_4]$ (5)	V ^{III}	4.27		
	VIV	4.69		
	VV	5.02		

Table S1. Bond valence sum analyses for Complexes 1-5.

Figure S1. $\chi(T)$ (*left*) and $\chi T(T)$ (*right*) for polycrystalline sample of **1** measured in a 1 T applied field; experimental (black squares) and fitted (red lines) to the spin Hamiltonian: $H = -J_1(\hat{s}_1.\hat{s}_{1A} + \hat{s}_2.\hat{s}_{2A} + \hat{s}_3.\hat{s}_{3A}) - J_2(\hat{s}_1.\hat{s}_2 + \hat{s}_1.\hat{s}_{2A} + \hat{s}_1.\hat{s}_3 + \hat{s}_1.\hat{s}_{3A} + \hat{s}_{1A}.\hat{s}_2 + \hat{s}_{1A}.\hat{s}_2 + \hat{s}_{1A}.\hat{s}_3 + \hat{s}_{1A}.\hat{s}_{3A})$ $-J_3(\hat{s}_2.\hat{s}_3 + \hat{s}_2.\hat{s}_{3A} + \hat{s}_{2A}.\hat{s}_{3A})$

representing the three chemically unique V^{III}...V^{III} interactions [*trans* across the linear μ_6 -O1; *cis* via μ_2 -O(Me); *cis* via μ_2 -O(dbcat), respectively; see inset Scheme]. Fitting gives $J_1 = -136$, $J_2 = -128$ and $J_3 = -54$ cm⁻¹ with g = 1.85. These antiferromagnetic interactions result in a total spin S = 0 ground state for the molecule. Strong AF coupling has been observed in a V(III) trimer bridged

by a "T-shaped" μ_3 -oxide, i.e. with ca. 180° "*trans*" (*ca.* -130 cm⁻¹) and 90° "*cis*" (*ca.* -26 cm⁻¹) couplings; see I.S. Tidmarsh, L.J. Batchelor, E. Scales, R.H. Laye, L. Sorace, A. Caneshi, J. Schnack and E.J.L. McInnes, *Dalton Trans.* 2009, 9402.

Figure S2. {VO₆} polyhedral representation of the crystal structure of **1**, highlighting the Lindqvist-type structure.

Figure S3. $\chi T(T)$ for a polycrystalline sample of **2** measured in 0.1 T applied field. The room temperature value of χT is 4.13 emu K mol⁻¹. Inset: Magnetisation (*M*) vs. applied magnetic field (*B*) measured at 2 (*top*) and 4 K (*bottom*). *M*(*B*) is tending towards saturation at ca. 5 μ_B , suggesting a total spin ground state for the molecule of S = 3 at most. This is consistent with antiferromagentic coupling between four V(III) (s = 1) ions with two $s = \frac{1}{2}$ centres but does not discriminate between the latter being from two V(IV) ions or from two strongly AF coupled V^{III}(dbsq) fragments.

Figure S4. $\chi(T)$ (*left*) and $\chi T(T)$ (*right*) for a polycrystalline sample of **4** measured in a 1 T applied field. If V1,1A (with terminal oxides) were V^V then the formula of **4** must be $[(V^VO)_2V^{III}_4O(dbcat)_4 (OMe)_8]$. This would give a straightforward spin-Hamiltonian of a square of s = 1 ions. We have been unable to fit the data to this model. This is consistent with V1,1A being V^{IV} as supported by BVS. Any physically meaningful model for $[(V^{IV}O)_2V^{III}_4O(dbcat)_2(dbsq)_2(OMe)_8]$ or $[(V^{IV}O)_2V^{III}_2V^{IV}_2O(dbcat)_4(OMe)_8]$ would involve at least six different *J*-values and would be hopelessly overparameterised, hence we have not attempted this.

Figure S5. UV-Vis spectra following the aerial oxidation of complex $1 \rightarrow 4$ in 0.145 mM CH₂Cl₂ solution; spectra measured every 0.5 h for 24 h.

Figure S6. Top: Cyclic voltammograms (CVs) of complex 1 in (${}^{n}Bu_{4}N$)BF₄ CH₂Cl₂ solution at room temperature. Full potential sweep and isolated sweeps about redox processes shown. The quasi-reversible processes (green and blue curves) are at +0.47 and +0.85 V *vs.* Ag/AgCl. Bottom: CVs of the same solution after standing for 30 mins, after which it was turning to blue/black colour. A third redox process has appeared at -0.05 V vs. Ag/AgCl.