Supporting Information:

Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array

Avinash Bajaj,^{*a*} Subinoy Rana,^{*a*} Oscar R. Miranda,^{*a*} Joseph C. Yawe,^{*a*} D. Joseph Jerry,^{*b*} Uwe H. F. Bunz,^{*c*} Vincent M. Rotello^{*a*,*}

Table S1. Binding constants (K_S), Gibbs free energy changes ($-\Delta G$) and binding stoichiometries (*n*) between GFP and cationic nanoparticles (**NP1–NP12**) as determined from fluorescence titration.

Nanoparticle	$Ks (10^9 \mathrm{M}^{-1})$	$-\Delta G (kJ mol^{-1})$	n
NP1	2.6	53.74	2.8
NP2	15.9	58.23	3.6
NP3	0.2	47.40	3.3
NP4	9.4	56.93	1.8
NP5	0.5	49.65	9.7
NP6	0.2	47.40	1.6

Figure S1. Fluorescence titration curves for the complexation of GFP with 12 different cationic gold nanoparticles (**NP1-NP12**). The changes of fluorescence intensity at 510 nm were measured following the addition of cationic nanoparticles (0-100 nM) with an excitation wavelength of 475 nm. The red solid lines represent the best curve fitting using the model of single set of identical binding sites.

NP 1	NP 2	NP 3	NP 4	NP 5	NP 6	Different	lsogenic
	FI NFZ NF3 NF4 NF3 N			cancer cells	cells		
						92	94
						88	78
5						75	78
						79	50
						71	61
						46	56
						88	89
						54	61
						50	72
						75	56
						71	50
						75	72
						29	89
						38	67
						83	89
						92	89
						88	94
						100	89
						92	94
íi						88	89
		_				83	67
-						96	89
						96	94
						100	94
						100	94

Figure S2. Jackknifed classification matrix of the fluorescence data corresponding to different nanoparticle combinations for the 7 cell lines.