Supporting Information

Substituent Effects on Ditetrel Alkyne Analogues: Multiple vs Single Bonded Isomers

Yang Peng, Roland C. Fischer, W. Alexander Merrill, Jelena Fischer, Lihung Pu, Bobby D. Ellis,

James C. Fettinger, Rolfe H. Herber, and Philip P. Power

5 Experimental Section

General Procedures. All reactions were performed with the use of modified Schlenk techniques under anaerobic and anhydrous conditions. The syntheses of most of the modified ligands have been already reported. ^{S1} These followed routes are already well established for related large terphenyl derivatives.^{S2, S3} The synthesis of 4-Me₃Ge-Ar'MgBr is given in the Supporting Information. Derivatization to their lithium salts by means of their reaction with ⁿBuLi also proceeded normally and in high yields. ^{S1-S5} The compounds (Ar'SnCl)₂, (Ar*SnCl)_{1,2}, (Ar'GeCl)₂ and (Ar*GeCl)_{1,2} were prepared as previously described. ^{S6, S7-S10} ¹H and ¹³C {¹H} NMR spectra were obtained on a Varian Mercury 300MHz spectrometer (75.5MHz, respectively) and referenced internally to residual protio hexane, benzene or toluene in deuterated solvent. Solution ¹¹⁹Sn NMR spectra were recorded on a Varian Inova 600 MHz spectrometer (224.2MHz, respectively) and referenced externally to neat SnⁿBu₄. UV-¹⁵ vis data were recorded on a Hitachi-1200 spectrometer, while infrared spectra were recorded as Nujol mulls between CsI plates using a Perkin-Elmer 1430 instrument. Melting points were measured in sealed glass capillaries under nitrogen using a Mel-Temp II apparatus and are uncorrected.

4-Me₃Ge-Ar'MgBr: To a stirred solution of Me₃Ge-C₆H₂Cl₂^{S11} (8.35 g, 0.0314 mol) in 150 mL of dry THF in a 500 mL two necked flask was added 15 mL 2.5M ⁿBuLi (0.0370 mol) over a period of 10 min with cooling to ca.

- ²⁰ -78°C. After stirring for 1 h, a freshly prepared solution of 2,6-ⁱPr₂-H₃C₆-MgBr (34 g, 0.0691 mol) in 150 ml THF was added dropwise with stirring over a period of 2h, after which time the mixture was warmed to room temperature and the solvents were removed to a ca. 20 mL volume under reduced pressure. Then, ca. 100 mL of dry hexane was then added to afford a white precipitate. The resultant mixture was filtered and the white precipitate was dried under the reduced pressure to afford 4-Me₃Ge-Ar'MgBr(THF)₃ (16.8g, 70%). ¹H NMR
- ²⁵ (C₆D₆, 300.08MHz, 25°C): δ 7.31 (s, 2H), 7.22 (t, 2H, ³J_{HH} = 6.8Hz), 7.15 (d, 4H, ³J_{HH} = 6.8Hz), 3.66 (br, 12H, THF), 3.39 (sept, 4H, ³J_{HH} = 6.9Hz), 1.42 (d, 12H, ³J_{HH} = 6.9MHz), 1.27 (br, 12H, THF), 1.20 (d, 12H, ³J_{HH} = 6.9MHz), 0.44 (s, 9H, -Ge(CH₃)₃).¹³C {¹H} NMR (C₆D₆, 150.8MHz, 25°C): δ 154.6, 148.2, 144.3, 140.1, 136.7, 132.6, 128.4, 124.6, 31.2 (o-CH(CH₃)₂), 27.8 (o-CH(CH₃)₂), 24.5 (o-CH(CH₃)₂), -2.0 ((CH₃)₃)Ge).

Aryl germanium(II) and tin(II) halides.

- ³⁰ **[4-Cl-Ar'GeCl]**₂: A solution of 4-Cl-Ar'Li (OEt₂)₂ (2.50 g, 4.26 mmol) in diethyl ether (30 mL) was added to a cooled (ca. -78°C) rapidly stirred suspension of 0.986 g (5.00 mmol) of GeCl₂ dioxane in diethyl ether (15 mL). After complete addition, the reaction mixture was allowed to warm slowly to room temperature and stirring was continued for an additional 12 h to produce a bright yellow solution. All volatile materials were removed under reduced pressure and the remaining solid was extracted with ca. 40 mL of hexanes. The precipitate was allowed
- ³⁵ to settle and the reaction mixture was filtered through a filter tipped cannula. Concentration to incipient crystallization and storage at ca.-20°C yielded 1.37 g (1.27 mmol, 59.6 % yield) of yellow crystals of [4-Cl-Ar'GeCl]₂. m.p.: 162-163°C. UV-Vis (hexanes) λ_{max} nm (ε [L mol⁻¹cm⁻¹]): 358 (2550). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.28 (s, 2H), 7.20 (t, 2H, ³J_{HH} = 6.6 Hz), 7.11 (d, 4H, ³J_{HH} = 6.6 Hz), 2.95 (sept, 4H, ³J_{HH} = 5.1 Hz), 1.33 (d, 12H, ³J_{HH} = 5.1 Hz), 0.93 (d, 12H, ³J_{HH} = 5.1 Hz). ¹³C{¹H} NMR (C₆D₆, 75.45 MHz, 25°C): δ (*i*-40 C₆H₂ClGe) not obs., 147.36 (*i*-Dipp), 138.11 (*o*-Dipp), 134.79 (*o*-C₆H₂ClGe), 131.13 (*p*-C₆H₂ClGe), 129.42 (*p*-Dipp), 128.61 (*m*-C₆H₂ClGe), 123.82 (*m*-Dipp), 31.10 (*o*-CH(CH₃)₂), 25.56 (*o*-CH(CH₃)₂), 23.20 (*o*-CH(CH₃)₂).

[4-Me₃Si-Ar'GeCl]₂: By a procedure similar to that for [4-Cl-Ar'GeCl]₂, [4-Me₃Si-Ar'GeCl]₂ was prepared by using 0.875 g (3.78 mmol) of GeCl₂ dioxane and 1.50 g (3.15 mmol) of 4-Me₃Si-Ar'Li to afford 1.33 g (72.9 %

yield) of [4-Me₃Si-Ar'GeCl]₂ which was obtained as yellow crystals after filtration, concentration under reduced pressure and storage at ca. -20°C. m.p.: 138-141°C. UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 379 (2700). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.52 (s, 2H), 7.40 (t, 2H, ³J_{HH} = 6.8 Hz), 7.29 (d, 4H, ³J_{HH} = 6.8 Hz), 3.01 (sept, 4H, ³J_{HH} = 6.9 Hz), 1.33 (d, 12H, ³J_{HH} = 6.9 Hz), 1.02 (d, 12H, ³J_{HH} = 6.9 Hz), 0.23 (s, 9H). ¹³C{¹H} NMR s (C₆D₆, 100.53 MHz, 25°C): δ 167.90 (ipso-C₆H₂SiMe₃), 147.63 (o-Dipp), 144.08 (i-Dipp), 143.96 (o-C₆H₂SiMe₃), 137.66 (*p*-C₆H₂SiMe₃), 136.74 (*m*-C₆H₂SiMe₃), 129.83 (*p*-Dipp), 123.54 (*m*-Dipp), 31.40 (*o*-CH(CH₃)₂), 25.60 (*o*-CH(CH₃)₂), 22.89 (*o*-CH(CH₃)₂), -1.93 ((CH₃)₃Si). ²⁹Si {¹H} NMR (CDCl₃, 119.163 MHz, 25°C): δ -3.67.

3.5-ⁱ**Pr₂-Ar*GeI**: By a procedure similar to that of [4-Cl-Ar'GeCl]₂, 3.5-ⁱ**Pr₂-Ar*GeI** was prepared using 1.5 g ¹⁰ (6.48 mmol) of GeCl₂ dioxane and 3.40 g (5.26 mmol) of 3,5-¹Pr₂-Ar*Li to afford 1.45 g (36.9 % yield) of 3,5-¹Pr₂-Ar*GeI which was obtained as yellow crystals after filtration, concentration under reduced pressure and storage at ca. -20°C. UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 388 (800). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.54 (s, 1H), 7.23 (s, 4H), 3.01 (sept, 4H, ${}^{3}J_{HH} = 6.7$ Hz), 2.87 (sept, 2H, ${}^{3}J_{HH} = 6.7$ Hz), 2.75 (sept, 2H, ${}^{3}J_{\rm HH} = 6.9$ Hz), 1.30 (d, 12H, ${}^{3}J_{\rm HH} = 6.9$ Hz), 1.26 (d, 12H, ${}^{3}J_{\rm HH} = 6.9$ Hz), 1.18 (d, 12H, ${}^{3}J_{\rm HH} = 6.9$ Hz), 1.14 (d, ¹⁵ 12H, ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 100.53 MHz, 25°C): δ 184.4 (*o*-C₆H₂^{*i*}Pr₂), 155.0 (*p*-Dipp), 148.5 (*o*-Dipp), 146.3 (*i*-Dipp), 136.0 (*m*-C₆H₂^{*i*}Pr₂), 125.0 (*p*-C₆H₂^{*i*}Pr₂), 120.8 (*m*-Dipp), *i*-C₆H₂^{*i*}Pr₂ was not observed. 35.6 $(p-CH(CH_3)_2)$, 34.7 $(o-CH(CH_3)_2)$, 30.5 $(m-CH(CH_3)_2)$, 27.6 $(CH(CH_3)_2)$, 26.0 $(CH(CH_3)_2)$, 25.9 (CH(CH₃)₂), 24.3 (CH(CH₃)₂).

[4-F-Ar'SnCl]₂: A solution of 4-F-Ar'Li/LiI (2.00 g, 3.59 mmol) in diethyl ether (40 mL) was added to a ²⁰ cooled (ca. -78°C) rapidly stirred suspension of 1.04 g (5.50 mmol) of SnCl₂ in diethyl ether (20 mL). After complete addition the reaction mixture was allowed to slowly warm to room temperature and stirring was continued for additional 12 h. After concentrating the resulting orange solution under reduced pressure to about 5 mL, 60 mL of hexanes were added. The resultant precipitates were allowed to settle and the reaction mixture was filtered through a filter tipped cannula. Due to chloride/iodide exchange reactions, the product was obtained $_{25}$ as a 4:1 mixture of [4-F-Ar'SnCl]₂ and the 4-F-Ar'SnI. m.p: 183-184°C. UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻ 1 cm⁻¹]): 395 (2200). 1 H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.40 (s, 2H), 7.14 (t, 2H, $^{3}J_{HH}$ = 6.0 Hz), 7.07 (d, 2H, ${}^{3}J_{\text{HF}} = 10.3 \text{ Hz}$, 7.03 (d, 4H, ${}^{3}J_{\text{HH}} = 6.0 \text{ Hz}$), 2.95 (sept, 4H, ${}^{3}J_{\text{HH}} = 5.1 \text{ Hz}$), 1.21 (d, 12H, ${}^{3}J_{\text{HH}} = 5.1 \text{ Hz}$), 0.93 (d, 12H, ${}^{3}J_{\text{HH}} = 5.1 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃, 75.45 MHz, 25°C): δ 176.9 (*i*-C₆H₂F, ${}^{4}J_{\text{FC}} =$ not res.), 162.6 (*p*- C_6H_2F , ${}^{17}J_{FC} = 248$ Hz), 147.8 (*o*- C_6H_2FI , ${}^{3}J_{FC} = 6.8$ Hz), 147.3 (*o*-Dipp), 136.3 (*i*-Dipp), 129.5 (*p*-Dipp), 123.7 ³⁰ (*m*-Dipp), 117.6 (*m*-C₆H₂FI, ² J_{FC} = 19.1 Hz), 30.9 (*o*-CH(CH₃)₂), 26.0 (*o*-CH(CH₃)₂), 22.8 (*o*-CH(CH₃)₂). ¹⁹F {¹H} NMR (C₆D₆, 282.33 MHz, 25°C): δ -113.2 (t, ³ J_{HF} = 10.3 Hz). ¹¹⁹Sn {¹H} NMR (C₆D₆, 224.192 MHz, 25°C): δ

719.5

[4-Cl-Ar'SnCl]₂: By a procedure similar to that for [4-F-Ar'SnCl]₂, [4-Cl-Ar'SnCl]₂ was prepared using 4-Cl-Ar'Li (OEt₂)₂ (2.35 g, 4.00 mmol) and 1.14 g (6.00 mmol) of SnCl₂ in diethyl ether (60 mL). This afforded 1.47 ³⁵ g (62.6%) of [4-Cl-Ar'SnCl]₂ as yellow crystals from toluene at ca. -20°C. m.p: 177-179°C (decomp.). UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 394 (2600). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.41 (s, 2H), 7.13 (t, 2H, ${}^{3}J_{HH} = 6.6$ Hz), 7.06 (d, 4H, ${}^{3}J_{HH} = 6.6$ Hz), 2.94 (sept, 4H, ${}^{3}J_{HH} = 5.1$ Hz), 1.22 (d, 12H, ${}^{3}J_{HH} = 5.1$ Hz), 0.91 (d, 12H, ${}^{3}J_{\text{HH}} = 5.1 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 75.45 MHz, 25°C): δ 180.58 (*i*-C₆H₂ClSn), 147.57 (*i*-Dipp), 144.79 (*o*-Dipp), 136.65 (*o*-C₆H₂ClSn), 131.78 (*p*-C₆H₂ClSn), 129.18 (*p*-Dipp), 125.54 (*m*-C₆H₂ClSn), 123.82 (*m*-Dipp), 30.88 (*o*-CH(CH₃)₂), 26.24 (*o*-CH(CH₃)₂), 22.84 (*o*-CH(CH₃)₂). ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.192) MHz, 25°C): δ 443.4.

[4-MeO-Ar'SnCl]₂: In a manner similar to that described for [4-F-Ar'SnCl]₂, [4-MeO-Ar'SnCl]₂ was prepared from a solution of 4- MeO-Ar'Li (1.5g, 3.45 mmol) and 0.78 g (4.11mmol) of SnCl₂. Work up afforded 0.8g (40%) of [4-MeO-Ar'SnCl]₂ as large orange crystals. m. p: 187-190°C. UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻ $_{45}$ ¹cm⁻¹]): 402(730). ¹H NMR (C₆D₆, 300.08MHz, 25°C): δ 7.18 (t, 2H, ³J_{HH} = 6.8Hz), 7.13 (d, 4H, ³J_{HH} = 6.8Hz), 6.99 (s, 2H), 3.36(s, 9H), 3.18 (sept, 4H, ${}^{3}J_{HH} = 6.9Hz$), 1.34 (d, 12H, ${}^{3}J_{HH} = 6.9MHz$), 1.04 (d, 12H, ${}^{3}J_{HH} =$ 6.9MHz). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 150.8MHz, 25°C): δi -C₆H₂MeO (not observed) 160.5 (*o*-Dipp), 148.3 (*i*-Dipp), 147.5 (p-Dipp), 138.5 (o-C₆H₂MeO), 129.9 (p- C₆H₂MeO), 124.6 (m-Dipp), 117.3 (m- C₆H₂MeO), 55.3 (-

OCH₃), 31.7 (o-CH(CH₃)₂), 27.2 (o-CH(CH₃)₂), 23.7 (o-CH(CH₃)₂). ¹¹⁹Sn{¹H}NMR (C₆D₆, 224.19MHz, 25°C): δ 1115.

[4-'Bu-Ar'SnCl]₂: In a manner similar to that described for [4-F-Ar'SnCl]₂, [4-'Bu-Ar'SnCl]₂ was prepared from a solution of 4-'Bu-Ar'Li (4.00 g, 8.66 mmol) with SnCl₂ (1.93 g, 10.2 mmol). Work up gave 2.39 g of yellow ⁵ microcrystalline [4-'Bu-Ar'SnCl]₂ (45%) after 1 week. m.p: 216-218°C. UV-vis (hexanes) λ_{max} nm (ε [L mol⁻¹cm⁻¹]): 402 (1240). ¹H NMR (C₆D₆, 300.08MHz, 25°C): δ 7.38 (s, 2H, Ar*H*), 7.18-7.25 (m, 6H, Ar*H*), 3.12 (septet, 4H, ³J_{HH} = 6.9 Hz, *CH*(CH₃)₂), 1.33 (d, 12H, ³J_{HH} = 6.9 Hz, *CH*(*CH*₃)₂), 1.32 (s, 9H, *C*(*CH*₃)₃), 1.05 (d, 12H, ³J_{HH} = 6.9 Hz, *CH*(*CH*₃)₂). ¹³C {¹H} NMR (C₆D₆, 150.8MHz, 25°C): δ 150.3, 147.7, 144.4, 129.3, 125.5, 123.7 and 122.8 (Ar*C*), 34.5 (*C*(CH₃)₃), 31.2 (*C*H(CH₃)₂), 30.9 (*C*(*CH*₃)₃), 26.1 (*C*H(*C*H₃)₂), 24.3 (*C*H(*C*H₃)₂), ¹⁰ 22.8 (*C*H(*C*H₃)₂). ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.19MHz, 25°C): δ 1001.0.

[4-Me₃Si-Ar'SnCl]₂: In a manner similar to that described for [4-F-Ar'SnCl]₂, [4-Me₃Si-Ar'SnCl]₂ was prepared from a solution of 4-Me₃Si-Ar'Li (2.00g, 4.20 mmol) with (1.20 g, 6.3 mmol) of SnCl₂. Work up afforded 1.65 g (63.1%) of [4-Me₃Si-Ar'SnCl]₂ which contained minor traces of the respective iodide as a side product. m.p: 154-155°C, UV-Vis (hexanes) λ_{max} nm (ε [L mol⁻¹cm⁻¹]): 406 (2400). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ ¹⁵ 7.54 (s, 2H), 7.22 (t, 2H, ³J_{HH} = 6.8 Hz), 7.11 (d, 4H, ³J_{HH} = 6.8 Hz), 3.06 (sept, 4H, ³J_{HH} = 6.9 Hz), 1.27 (d, 12H, ³J_{HH} = 6.9 Hz), 1.00 (d, 12H, ³J_{HH} = 6.9 Hz), 0.24 (s, 9H). ¹³C{¹H} NMR (C₆D₆, 100.53 MHz, 25°C): δ 183.5 (*ipso*-C₆H₂SiMe₃), 148.3 (*o*-Dipp), 144.6 (*i*-Dipp), 134.0 (*o*-C₆H₂SiMe₃), 137.7 (*p*-C₆H₂SiMe₃), 135.9 (*m*-C₆H₂SiMe₃), 129.9 (*p*-Dipp), 124.3 (*m*-Dipp), 31.6 (*o*-CH(CH₃)₂), 26.7 (*o*-CH(CH₃)₂), 23.4 (*o*-CH(CH₃)₂), -1.37 ((CH₃)₃Si). ²⁹Si{¹H} NMR (CDCl₃, 119.163 MHz, 25°C): -4.3. ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.192 MHz, 25°C): δ ²⁰ 904.1.

[4-Me₃Ge-Ar'SnCl]₂: A solution of 4-Me₃Ge-Ar'MgBr (see supporting information) (3g, 3.58 mmol) in diethyl ether (40 mL) was added dropwise to a dispersion of 1.2g (6.32 mmol) of SnCl₂ in ether (30 mL) with cooling in an ice bath. The reaction mixture became orange. Stirring was maintained for 12h, after which time the solvents were removed under reduced pressure. The resultant orange powder was extracted into toluene and ²⁵ filtered. Concentration to incipient crystallization and storage of the solution at ca. -30°C for 12 h afforded 1.0 g

- ²⁵ Intered. Concentration to incipient crystallization and storage of the solution at ca. -50 °C for 12 if alforded 1.0 g (42%) of [4-Me₃Ge-Ar'SnCl]₂ as orange crystals which contained minor traces of the respective iodide as a side product. m. p: 180-182°C. UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 408 (740). ¹H NMR (C₆D₆, 300.08MHz, 25°C): δ 7.60 (s, 2H), 7.19 (t, 2H, ³J_{HH} = 6.8Hz), 7.15 (d, 4H, ³J_{HH} = 6.8Hz), 3.16 (sept, 4H, ³J_{HH} = 6.9Hz), 1.34 (d, 12H, ³J_{HH} = 6.9MHz), 1.04 (d, 12H, ³J_{HH} = 6.9MHz), 0.40 (s, 9H, -Ge(CH₃)₃). ¹³C {¹H} NMR (C₆D₆,
- ³⁰ 150.8MHz, 25°C): δ *i* C₆H₂GeMe₃ (not observed), 147.8 (*o*-Dipp), 144.3 (*i*-Dipp), 135.3 (*o*-C₆H₂GeMe₃), 132.7 (*p* C₆H₂GeMe₃), 129.6 (*m* C₆H₂GeMe₃), 123.9 (*p*-Dipp), 123.0 (*m*-Dipp), 31.1 (*o*-CH(CH₃)₂), 26.3(*o*-CH(CH₃)₂), 23.0 (*o*-CH(CH₃)₂), -1.9 ((CH₃)₃Ge). ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.19MHz, 25°C): δ 805.7.

[3,5-ⁱ**Pr**₂-**Ar'SnCl]**₂: In a manner similar to that described for [4-F-ArSnCl]₂, [3,5-ⁱ**Pr**₂-Ar'SnCl]₂ was prepared from a solution of 3,5-ⁱ**P**r₂-Ar'Li (1.25 g, 2.56 mmol) with SnCl₂ (0.76 g, 4.00 mmol). Work up yielded 1.18 g ³⁵ (72.3%) of [3,5-ⁱ**P**r₂-Ar'SnCl]₂ as orange needles. m.p: 187-189°C. UV-Vis (hexanes) λ_{max} nm (ε [L mol⁻¹cm⁻¹]): 399 (2200). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.49 (s, 1H), 7.27 (t, 2H, ³*J*_{HH} = 6.8 Hz), 7.15 (d, 4H, ³*J*_{HH} = 6.8 Hz), 2.91 (sept, 2H, ³*J*_{HH} = 7.4 Hz), 2.80 (sept, 4H, ³*J*_{HH} = 6.9 Hz), 1.39 (d, 12H, ³*J*_{HH} = 6.9 Hz), 1.14 (d, 12H, ³*J*_{HH} = 6.9 Hz), 1.07 (d, 12H, ³*J*_{HH} = 7.4 Hz). ¹³C{¹H} NMR (CDCl₃, 100.53 MHz, 25°C): δ *i*-C₆H₂^{*i*}Pr₂ not observed, 149.1 (*i*-Dipp), 148.5 (*o*-Dipp), 148.0 (*m*-C₆H₂^{*i*}Pr₂), 140.3 (*o*-C₆H₂^{*i*}Pr₂), 129.6 (*p*-Dipp), 125.5 (*i*-40 C₆H₂^{*i*}Pr₂), 123.5 (*m*-Dipp), 30.9 (*o*-CH(CH₃)₂), 30.3 (*m*-CH(CH₃)₂), 30.0 (CH(CH₃)₂), 25.7 (CH(CH₃)₂), 25.0 (CH(CH₃)₂). ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.192 MHz, 25°C): δ 748.8.

3,5-ⁱ**Pr**₂-**Ar*****SnCl**: In a manner similar to that described for [4-F-ArSnCl]₂, 3,5-ⁱ**P**₂-Ar*SnCl was prepared from a solution of 3,5-ⁱ**P**₂-Ar*Li₂(Et₂O) (3.0 g, 4.16 mmol) with 1.18 g of SnCl₂ (6.2 mmol). Work up yielded 1.67 g (55.7%) of 3,5-ⁱ**P**₇-Ar*SnCl as orange crystals. m.p: 149-151°C (decomp.) UV-Vis (hexanes) λ_{max} nm (ε [L ⁴⁵ mol⁻¹cm⁻¹]): 416 (2700). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.47 (s, 1H), 7.22 (s, 4H), 2.98 (sept, 4H, ³*J*_{HH} = 6.7 Hz), 2.84 (sept, 2H, ³*J*_{HH} = 6.7 Hz), 2.75 (sept, 2H, ³*J*_{HH} = 6.9 Hz), 1.43 (d, 12H, ³*J*_{HH} = 6.9 Hz), 1.25 (d, 12H, ³*J*_{HH} = 6.9 Hz), 1.16 (d, 12H, ³*J*_{HH} = 6.9 Hz), 1.12 (d, 12H, ³*J*_{HH} = 6.9 Hz). ¹³C{¹H} NMR (C₆D₆, 100.53 MHz, 25°C): δ 221.3 (*i*-C₆H₂^{*i*}Pr₂), 149.9 (*o*-C₆H₂^{*i*}Pr₂), 148.5 (*p*-Dipp), 148.1 (*o*-Dipp), 140.5 (*i*-Dipp), 134.0 (*m*-

C₆H₂^{*i*}Pr₂), 123.6 (*p*-C₆H₂^{*i*}Pr₂), 123.4 (*m*-Dipp), 35.0 (*p*-CH(CH₃)₂), 31.0 (*o*-CH(CH₃)₂), 30.1 (*m*-CH(CH₃)₂), 26.8 (CH(CH₃)₂), 25.7 (CH(CH₃)₂), 25.0 (CH(CH₃)₂), 23.5 (CH(CH₃)₂). ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.192 MHz, 25°C): δ 1256.0.

Digermynes and Distannynes.

- 5 **4-Cl-Ar'GeGeAr'-4-Cl**: To a cooled (ca. -78°C) solution of 0.75 g (0.694 mmol) of [4-Cl-Ar'GeCl]₂ in diethyl ether, 1.40 ml (1.40 mmol) of a 1.0 molar solution of di*-iso*-butylaluminum hydride were added with stirring. Stirring at ca. -78°C was continued for additional 45 minutes after which time the reaction mixture was allowed to warm slowly to room temperature to give a dark red reaction mixture. Stirring was continued for 8 h whereupon filtration through a filter tipped cannula and concentration under reduced pressure to incipient arustallization and storage at 20°C wielded 0.313 g (0.310 mmol. 44.7 % wield) of armse red arustals of 4 Cl
- ¹⁰ crystallization and storage at -20°C yielded 0.313 g (0.310 mmol, 44.7 % yield) of orange-red crystals of 4-Cl-Ar'GeGeAr'-4-Cl. m.p.: 159-162°C (decomp.) UV-Vis λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 324 (sh, 5100) 438 (1800). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.24 (s, 2H), 7.15 (t, 2H, ${}^{3}J_{HH} = 6.6$ Hz), 7.01 (d. 4H, ${}^{3}J_{HH} = 6.6$ Hz), 2.68 (sept, 4H, ${}^{3}J_{HH} = 5.1$ Hz), 1.08 (d, 12H, ${}^{3}J_{HH} = 5.1$ Hz), 0.96 (d, 12H, ${}^{3}J_{HH} = 5.1$ Hz). ¹³C{¹H} NMR (C₆D₆, 75.45 MHz, 25°C): δ (*i*-C₆H₂Ge) not obs., 147.49 (*i*-Dipp), 145.84 (*o*-Dipp), 139.09 (*o*-C₆H₂Ge), 129.03 (*p*-C₆H₂Ge), 15 128.10 (*p*-Dipp), 123.82 (*m*-Dipp), 123.71 (*m*-C₆H₂Ge), 31.10 (*o*-CH(CH₃)₂), 25.56 (*o*-CH(CH₃)₂), 23.20 (*o*-Ch(CH₃)₂), 25.56 (*o*-CH(CH₃)₂), 23.20 (*o*-Ch(CH₃)₂), 25.56 (*o*-CH(CH₃)₂), 23.20 (*o*-Ch(CH₃)₂), 25.56 (*o*-CH(CH₃)₂), 25.56 (*o*-CH(CH₃)₂), 25.20 (*o*-Ch(CH₃)₂),
- $CH(CH_3)_2).$

4-Me₃Si-Ar'GeGeAr'-4-SiMe₃: At ca. 0°C a solution of 0.65 g (1.12 mmol) of $[4-Me_3Si-Ar'GeCl]_2$ in diethyl ether (30 mL) was added to a stirred suspension of 0.162 g (1.20 mmol) KC₈ in diethyl ether (20 mL). The reaction mixture slowly became a dark-red color and after stirring for further 36 h at ca. 25°C. The precipitated

²⁰ salts and graphite were seperated via a cannula to produce a dark red solution which was concentrated *in vacuo* to incipient crystallization and stored at ca. -20°C to give 0.265 g (43.7 % yield) of 4-Me₃Si-Ar'GeGeAr'-4-SiMe₃ as dark red crystals. m.p.: 161-163°C (decomp.) UV-Vis λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 380 (5600) 510 (1050). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.31 (t, 2H, ³J_{HH} = 6.8 Hz), 7.24 (s, 2H), 7.12 (d, 4H, ³J_{HH} = 6.8 Hz), 2.74 (sept, 4H, ³J_{HH} = 6.9 Hz), 1.32 (d, 12H, ³J_{HH} = 6.9 Hz), 1.06 (d, 12H, ³J_{HH} = 6.9 Hz), 0.29 (s, 9H). ²⁵ ¹³C{¹H} NMR (C₆D₆, 100.53 MHz, 25°C): δ 158.72 (*ipso*-C₆H₂Ge), 146.47 (*o*-Dipp), 141.10 (*i*-Dipp), 140.48

 $(o-C_6H_2Ge)$, 137.98 $(p-C_6H_2Ge)$, 132.65 $(m-C_6H_2Ge)$, 127.96 (p-Dipp), 123.84 (m-Dipp), 30.95 $(o-CH(CH_3)_2)$, 25.55 $(o-CH(CH_3)_2)$, 24.72 $(o-CH(CH_3)_2)$, -1.20 $((CH_3)_3Si)$. ²⁹Si{¹H} NMR (CDCl₃, 119.163 MHz, 25°C): δ - 5.24.

3,5-ⁱ**Pr**₂-**Ar*****GeGeAr***-**3,5**-ⁱ**Pr**₂: 2.2 g (2.94 mmol) of 3,5-ⁱ**P**r₂-**Ar***GeI in THF (30 mL) was added to a stirred suspension of 0.406 g (3.22 mmol) of KC₈. The reaction mixture slowly became dark-red, and after stirring the reaction for 24 h at ca. 25°C, the precipitated salts and graphite were filtered off via a cannula to produce a dark red solution which was concentrated *in vacuo* to incipient crystallization and stored at -20°C to give 1.50 g (36.0 % yield) of 3,5-ⁱ**P**r₂-**A**r*GeGeAr*-3,5-ⁱ**P**r₂ as dark red crystals. UV-Vis λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 378 (3033), 496 (407). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.54 (s, 1H), 6.83 (s, 4H), 3.07 (sept, 2H, ³*J*_{HH} = 6.7 Hz), 2.92 (sept, 4H, ³*J*_{HH} = 6.7 Hz), 2.80 (sept, 2H, ³*J*_{HH} = 6.7 Hz), 1.34 (d, 12H, ³*J*_{HH} = 6.7 Hz), 1.28 (d, 12H, ³*J*_{HH} = 6.7 Hz), 1.20 (d, 12H, ³*J*_{HH} = 6.7 Hz), 1.16 (d, 12H, ³*J*_{HH} = 6.7 Hz). ¹³C{¹H} NMR (C₆D₆, 100.53 MHz, 25°C): δ *i*-C₆H₂^{*i*}Pr₂ not observed, 176.9 (*m*-C₆H₂^{*i*}Pr₂), 148.4 (*o*-Dipp), 147.5 (*p*-Dipp), 146.9 (*i*-Dipp), 130.8 (*o*-C₆H₂^{*i*}Pr₂), 122.3 (*p*-C₆H₂^{*i*}Pr₂), 121.0 (*m*-Dipp), 34.8 (*p*-CH(CH₃)₂), 30.7 (*o*-CH(CH₃)₂), 29.9 (*m*-CH(CH₃)₂), 26.2 (CH(*C*H₃)₂), 25.1 (CH(*C*H₃)₂), 24.5 (CH(*C*H₃)₂), 24.2 (CH(*C*H₃)₂).

- 40 **4-F-Ar'SnSnAr'-4-F**: A solution of [4-F-Ar'SnCl]₂ (1.10 g, 0.935 mmol) in diethyl ether (ca. 20 mL) were added to a precooled (ca. 0°C) and rapidly stirred suspension of 0.078 g (2.00 mmol) finely dispersed potassium. The cooling bath was removed after complete addition and stirring was continued at room temperature for 96 h. During this time the reaction mixture acquired an intense dark blue-green color. The precipitates were then allowed to settle overnight and the reaction mixture was filtered through a filter-tipped cannula and was 45 concentrated to incipient crystallization. Storage at ca.-20°C afforded 0.56 g (56.1%) of microcrystalline, dark
- green 4-F-Ar'SnSnAr'-4-F. m.p: 167-169°C. UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 425 (4200), 592 (3100). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.81 (d, 2H, ³J_{HF} = 9.8 Hz), 7.13 (t, 2H, ³J_{HH} = 6.0 Hz), 7.05 (d. 4H, ³J_{HH} = 6.0 Hz), 2.82 (sept, 4H, ³J_{HH} = 5.1 Hz), 1.41 (d, 12H, ³J_{HH} = 5.1 Hz), 1.01 (d, 12H, ³J_{HH} = 5.1 Hz).

¹³C{¹H} NMR (CDCl₃, 75.45 MHz, 25°C): δ *i*-C₆H₂FSn (not observed) 173.9 (*p*-C₆H₂FSn, ¹J_{FC} = 282 Hz), 153.4 (*o*-Dipp), 147.0 (*i*-Dipp), 142.1 (*o*-C₆H₂FSn, ³J_{FC} = <2 Hz), 131.6 (*p*-Dipp), 123.3 (*m*-Dipp), 107.6 (*m*-C₆H₂FSn, ²J_{FC} = 18.2 Hz), 33.5 (*o*-CH(CH₃)₂), 28.2 (*o*-CH(CH₃)₂), 24.5 (*o*-CH(CH₃)₂). ¹⁹F NMR (C₆D₆, 282.33 MHz, 25°C): δ -111.40 (t, ³J_{HF} = 9.8 Hz). ¹¹⁹Sn {¹H} NMR (C₆D₆, 224.192 MHz, 25°C): not observed.

- ⁵ **4-Cl-Ar'SnSnAr'-4-Cl**: A solution of [4-Cl-Ar'SnCl]₂ (0.8 g, 0.682 mmol) in diethyl ether (ca. 20 mL) was added to a precooled (ca. -78°C) and rapidly stirred suspension of 0.06 g (1.53 mmol) finely dispersed potassium. The cooling bath was removed after complete addition and stirring was continued at room temperature for 48 h. During this time the reaction mixture acquired a teal color. Workup as above afforded 0.335 g (44.6%) of dichroic orange-green crystals of 4-Cl-Ar'SnSnAr'-4-Cl. m.p: 154-157°C (decomp.) UV-Vis
- ¹⁰ (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 406 (4300), 592 (1550). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.98 (s, 2H), 7.22 (t, 2H, ³J_{HH} = 6.6 Hz), 7.08 (d. 4H, ³J_{HH} = 6.6 Hz), 2.92 (sept, 4H, ³J_{HH} = 5.1 Hz), 1.38 (d, 12H, ³J_{HH} = 5.1 Hz), 1.17 (d, 12H, ³J_{HH} = 5.1 Hz). ¹³C{¹H} NMR (C₆D₆, 75.45 MHz, 25°C): δ 161.5 (*i*-C₆H₂Sn), 150.9 (*i*-Dipp), 147.6 (*o*-Dipp), 146.6 (*o*-C₆H₂Sn), 143.2 (*p*-C₆H₂Sn), 141.2 (*p*-Dipp), 127.7 (*m*-C₆H₂ClSn), 125.3 (*m*-Dipp), 36.0 (*o*-CH(CH₃)₂), 32.4 (*o*-CH(CH₃)₂), 26.9 (*o*-CH(CH₃)₂).¹¹⁹Sn{¹H} NMR (C₆D₆, 224.192 MHz, 25°C): ¹⁵ not observed.

4-MeO-Ar'SnSnAr'-4-OMe : A solution of [4-MeO-Ar'SnCl]₂ (0.62 g, 1.07 mmol) in toluene (ca. 50 mL) was added dropwise to a suspension of 0.041g (1.05 mmol) of finely dispersed potassium with rapid stirring at room temperature. The reaction mixture quickly became a deep green color and stirring was continued for 12h after which time the precipitated material and unreacted potassium was allowed to settle. The solution was ²⁰ filleted through a filter tipped cannula and concentrated under reduced pressure to incipient crystallization (ca.

10 mL). Storage at ca. -20°C yielded 0.4g (34%) of 4- MeO-Ar'SnSnAr'-4-OMe. m.p: 182-184°C. UV-Vis (hexanes) λ_{max} nm (ϵ [Lmol⁻¹cm⁻¹]): 586 (1050), 402 (3960). ¹H NMR (C₆D₆, 300.08MHz, 25°C): δ 7.87 (s, 2H), 7.06 (d, 4H, ³J_{HH} = 6.8Hz), 3.56 (s, 9H), 2.91 (sept, 4H, ³J_{HH} = 6.9Hz), 1.50 (d, 12H, ³J_{HH} = 6.9MHz), 1.21 (d, 12H, ³J_{HH} = 6.9MHz). ¹³C {¹H} NMR (C₆D₆, 150.8MHz, 25°C): δ *i*- C₆H₂MeO (not observed), 154.9 (*o*-Dipp), 127.5 (*i* H) (*i*

²⁵ 137.9 (*i*-Dipp), 131.4 (*o*-C₆H₂MeO), 129.3 (*p*- C₆H₂MeO), 125.5 (*m*- C₆H₂MeO), 125.7 (*p*-Dipp), 122.9 (*m*-Dipp), 33.5 (*o*-CH(CH₃)₂), 28.7 (*o*-CH(CH₃)₂), 23.7 (*o*-CH(CH₃)₂), 1.44 (-OCH₃). ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.19MHz, 25°C): not observed.

4-^tBu-Ar'SnSnAr'-4-^tBu: To a mixture of [4-^tBu-Ar'SnCl]₂ (0.608 g, 1 mmol) and K shavings (0.040 g, 1 mmol) was added toluene (ca. 60 mL). The mixture was sonicated and heated briefly to *ca*. 75 °C to dissolve all ³⁰ the [4-^tBu-Ar'SnCl]₂, and was then stirred for 4 d at *ca*. 25 °C. The resulting dark green solution was filtered

through Celite on a fine frit, and *ca*. ¹/₄ of the solvent was removed under reduced pressure. Storage at *ca*. -13 °C afforded 0.1 g (17%) small dark green block-shaped crystals (4-^tBu-Ar')SnSn(Ar'-4-^tBu), which also contained a small amount of yellow and red crystals also visible (possibly unreacted starting material (yellow) or overreduced anionic speices, (red). m.p: 217°C. UV-Vis (hexanes) λ_{max} nm (ε [L mol⁻¹cm⁻¹]): 406 (10600), 592 ³⁵ (2230). ¹H NMR (C₆D₆, 300.08, 25 °C): δ 8.21 (s, likely Sn-H hydride impurity), 7.16 (s, solvent, ArH), 7.09 (a ArH) -2.00 (acrt. 4H) ³L = 6.0 Hz CU(CH) = 1.24 (c, 0)Hz

- (s, ArH), 2.90 (sept, 4H, ${}^{3}J_{HH} = 6.9$ Hz, $CH(CH_{3})_{2}$), 1.44 (d, 12H, ${}^{3}J_{HH} = 6.9$ Hz, $CH(CH_{3})_{2}$), 1.34 (s, 9H, $C(CH_{3})_{3}$), 1.21 (d, 12H, ${}^{3}J_{HH} = 6.9$ Hz, $CH(CH_{3})_{2}$). ${}^{13}C{}^{1}H{}$ NMR ($C_{6}D_{6}$, 25 °C): δ 173.8, 160.2, 153.6, 143.3, 130.7, 125.7, 116.8 (ArC), 43.5 ($C(CH_{3})_{3}$), 35.1 ($CH(CH_{3})_{2}$), 33.6 ($C(CH_{3})_{3}$), 30.8 ($CH(CH_{3})_{2}$), 27.9 ($CH(CH_{3})_{2}$). ${}^{119}Sn{}^{1}H{}$ NMR ($C_{6}D_{6}$, 224.19MHz, 25°C): not observed.
- ⁴⁰ **4-Me₃Si-Ar'SnSnAr'-4-SiMe₃**: In a similar manner, a solution of [4-Me₃Si-Ar'SnCl]₂ (0.850 g, 1.36 mmol) in diethyl ether (25 mL) was added to a diethyl ether suspension of 0.059 g (1.51 mmol) of finely dispersed potassium with rapid stirring. The reaction mixture quickly adopted a deep green colour and stirring was continued for 24 h. Workup as above afforded 0.41 g (48%) of dichroic green-dark orange crystals of 4-Me₃Si-Ar'SnSnAr'-4-SiMe₃. The identical product was obtained when the reaction was carried out with KC₈ instead of
- ⁴⁵ potassium as the reducing agent. m.p. 183-185 (decomp.) UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 416 (4700), 608 (1200). ¹H NMR (C₆D₆, 599.814 MHz, 25 °C) δ 7.98 (s, 2H, *m*-C₆H₂Si(CH₃)₃), 7.17 (t, 2H, ³J_{HH} = 6.7 Hz, *p*-Dipp), 7.07 (d, 4H, ³J_{HH} = 6.7 Hz, *m*-Dipp), 2.94 (septet, 4H, ³J_{HH} = 6.8 Hz, CH(CH₃)₂), 1.38 (d, 12H, ³J_{HH} = 6.8 Hz, CH(CH₃)₂), 1.16 (d, 12H, ³J_{HH} = 6.8 Hz, CH(CH₃)₂), 0.28 (s, 9H, (CH₃)₃Si). ¹³C{¹H} (C₆D₆, 150.823 MHz, 25°C) δ 174.6 (*i*-C₆H₂), 161.4 (*o*-C₆H₂), 151.1 (*i*-Dipp), 143.2 (*p*-C₆H₂), 141.2 (*o*-Dipp), 138.0

 $(m-C_6H_2)$, 127.9 (m-Dipp), 125.2 (p-Dipp), 35.9 $(CH(CH_3)_2)$, 32.5 $(CH(CH_3)_2)$, 26.9 $(CH(CH_3)_2)$, -0.6 $((H_3C)_3Si)$. ²⁹Si{¹H} NMR $(C_6D_6, 119.165 \text{ MHz}, 25^{\circ}C)$: δ -4.9. ¹¹⁹Sn{¹H} NMR $(C_6D_6, 223.671 \text{ MHz}, 25^{\circ}C)$: not observed.

- 4- Me₃Ge-Ar'SnSnAr'-4-GeMe₃: A solution of $[4-Me_3Ge-Ar'SnCl]_2$ (3 g, 4.49 mmol) in toluene (ca. 50mL) s was added dropwise to freshly prepared KC₈ (0.66 g, 4.87 mmol) in toluene at room temperature. The reaction mixture quickly adopted a deep green color and stirring was continued for 12h after which the precipitated material and unreacted potassium was allowed to settle. The solution was filtered through a filter tipped cannula and concentrated under reduced pressure to incipient crystallization (ca. 10 mL). Storage at ca. -20°C yielded 0.60 g (10.7%) of 4- Me₃Ge-Ar'SnSnAr'-4- GeMe₃. m.p: 175-177°C. UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹
- ¹⁰]): 602 (2200), 430 (4450). ¹H NMR (C₆D₆, 300.08MHz, 25°C): δ 8.03 (s, 2H), 7.09 (t, 2H, ³J_{HH} = 6.8Hz), 7.06(d, 4H, ³J_{HH} = 6.8Hz), 2.91 (sept, 4H, ³J_{HH} = 6.9Hz), 1.39 (d, 12H, ³J_{HH} = 6.9MHz), 1.17 (d, 12H, ³J_{HH} = 6.9MHz), 0.34 (s, 9H). ¹³C {¹H} NMR (C₆D₆, 150.8MHz, 25°C): δ *i* C₆H₂GeMe₃ (not observed), 146.9 (*o*-Dipp), 137.9 (*i*-Dipp), 129.4 (*o*-C₆H₂GeMe₃), 128.8 (*p* C₆H₂GeMe₃), 127.9 (*m* C₆H₂GeMe₃), 125.5 (*p*-Dipp), 123.0 (*m*-Dipp), 32.8 (*o*-CH(CH₃)₂), 27.3 (*o*-CH(CH₃)₂), 24.5 (*o*-CH(CH₃)₂), -1.78 ((CH₃)₃Ge). ¹¹⁹Sn{¹H} NMR ¹⁵ (C₆D₆, 224.19MHz, 25°C): not observed.

3,5-ⁱ**Pr**₂-**Ar'SnSnAr'-3,5-**ⁱ**Pr**₂: A solution of 3,5-ⁱ**P**r₂-Ar'SnCl (0.90 g, 0.71 mmol) in diethyl ether (30 mL) was slowly added to a suspension of KC₈ (0.20 mg, 1.50 mmol) in diethyl ether (20 mL) at 0°C. The reaction mixture quickly became a dark green. The reaction mixture was kept at 0°C for 30 minutes and was then allowed to warm to the room temperature where it was stirred for 8 h. Filtration through a filter tipped cannula, filte

- ²⁰ followed by concentration to approximately 5 mL and storage at ca. -20°C yielded 0.192 g (22.6% yield) of 3,5-ⁱPr₂-Ar'SnSnAr'-3,5-ⁱPr₂ as dichroic orange-green crystals. m.p.: 221-225°C (decomp.) UV-Vis (hexanes) λ_{max} nm (ϵ [L mol⁻¹cm⁻¹]): 414 (4600), 608 (1200). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.43 (s, 1H), 7.20 (t, 2H, ³J_{HH} = 6.8 Hz), 7.07 (d, 4H, ³J_{HH} = 6.8 Hz), 2.73 (sept, 4H, ³J_{HH} = 6.3 Hz), 2.65 (sept, 2H, ³J_{HH} = 7.4 Hz), 1.08 (d, 12H, ³J_{HH} = 6.3 Hz), 1.06 (d, 12H, ³J_{HH} = 6.3 Hz), 1.02 (d, 12H, ³J_{HH} = 7.5 Hz). ¹³C{¹H} NMR (C₆D₆, 100.53
- ²⁵ MHz, 25°C): δi -C₆H₂^{*i*}Pr₂ (not observed), 148.4 (*i*-Dipp), 147.9 (*o*-Dipp), 147.2 (*m*-C₆H₂^{*i*}Pr₂), 131.8 (*o*-C₆H₂^{*i*}Pr₂), 128.7 (*p*-Dipp), 125.7 (*i*-C₆H₂^{*i*}Pr₂), 123.5 (*m*-Dipp), 31.0 (*o*-CH(CH₃)₂), 30.3 (*m*-CH(CH₃)₂), 26.5 (CH(CH₃)₂), 25.0 (CH(CH₃)₂), 24.3 (CH(CH₃)₂). ¹¹⁹Sn{¹H} NMR (C₆D₆, 224.192 MHz, 25°C): not observed.

3,5-ⁱ**Pr**₂-**Ar*****SnSnAr***-**3,5**-ⁱ**Pr**₂: A solution of 3,5-ⁱ**P**r₂-Ar*SnCl (0.80 g, 1.11 mmol) in diethyl ether (30 mL) was added dropwise to a suspension of KC₈ (0.170 g, 1.25 mmol) in diethyl ether (20 mL). The reaction mixture rapidly developed an intense dark green color. Stirring was maintained for 12 h after which all precipitates were allowed to settle. The dark green solution was filtered through a filter tipped cannula, concentrated at reduced pressure to incipient crystallization (ca. 10 mL) and storage at ca. -20°C yielded 0.364 g (47.9 %) of dichroic, orange/green crystals of 3,5-ⁱ**P**r₂-Ar*SnSnAr*-3,5-ⁱ**P**r₂. m.p: 201-203°C. UV-Vis (hexanes) λ_{max} nm (ε [L mol⁻¹cm⁻¹]): 292 (3400), 424 (4900), 612 (550). ¹H NMR (C₆D₆, 300.08 MHz, 25°C): δ 7.27 (s, 1H), 7.18 (s, 4H), 3.09 (sept, 2H, ³J_{HH} = 6.7 Hz), 2.98 (sept, 4H, ³J_{HH} = 6.7 Hz), 2.55 (sept, 2H, ³J_{HH} = 6.7 Hz), 1.48 (d, 12H, ³J_{HH} = 6.7 Hz), 1.45 (d, 12H, ³J_{HH} = 6.7 Hz), 1.30 (d, 12H, ³J_{HH} = 6.7 Hz), 1.18 (d, 12H, ³J_{HH} = 6.7 Hz). ¹³C{¹H} NMR (C₆D₆, 100.53 MHz, 25°C): δ *i*-C₆H₂^{*i*}Pr₂ not observed, 148.7 (*m*-C₆H₂^{*i*}Pr₂), 148.1 (*o*-Dipp), 145.8 (*p*-Dipp), 142.6 (*i*-Dipp), 136.0 (*o*-C₆H₂^{*i*}Pr₂), 128.1 (*p*-C₆H₂^{*i*}Pr₂), 122.6 (*m*-Dipp), 33.8 (*p*-CH(CH₃)₂). ¹¹⁹Sn{¹H} NMR

⁴⁰ (C₆D₆, 224.192 MHz, 25°C): not observed.

¹¹⁹Sn Mössbauer Effect Spectroscopy. Temperature-dependent Mössbauer experiments were carried out in transmission mode ^{S12} using a 2.5 mCi ^{119m}Sn/BaSnO₃ source at room temperature. Spectrometer calibration was accomplished by using a 20 mg cm⁻² α -Fe absorber. Isomer shifts are reported with respect to the centroid of the room-temperature BaSnO₃ spectrum. The as-received samples were transferred in an inert atmosphere glovebox to O-ring sealed plastic sample holders and immediately cooled to liquid nitrogen temperature. These cooled

sample holders then were transferred to a pre-cooled cryostat and examined in transmission geometry. All temperature-dependent Mössbauer data were obtained in both warming and cooling mode, and no evidence of hysteresis was observed. Rapidly cooled green samples of (4-^tBu-Ar')SnSn(Ar'-4-^tBu) and (4-Me₃Si-

Ar')SnSn(Ar'-4-SiMe₃) were examined by Mössbauer spectroscopy at 90K and the spectra are shown in Figure S1.

Figure S1. Mössbauer spectra for (4-^tBu-Ar'Sn)₂ (left) and (4-Me₃Si-Ar'Sn)₂ (right).

- ⁵ **X-ray crystallographic Studies**. Crystals of 3,5-ⁱPr₂-Ar*GeI, (4-Cl-Ar'SnCl)₂, (4-MeO-Ar'SnCl)₂, (4-Me₃Si-Ar'Sn)₂, 3,5-ⁱPr₂-Ar*SnCl, (4-Cl-Ar'Ge)₂, (4-Me₃Si-Ar'Ge)₂, (3,5-ⁱPr₂-Ar*Ge)₂, (4-Cl-Ar'Sn)₂, (4-MeO-Ar'Sn)₂, (4-Me₃Si-Ar'Sn)₂, (4-Me₃Ge-Ar'Sn)₂ and (3,5-ⁱPr₂-Ar*Sn)₂ were removed from a Schlenk tube under a stream of nitrogen and immediately covered with a thin layer of hydrocarbon oil. A suitable crystal was selected, attached to a glass fiber on a copper pin, and quickly placed in a N₂ cold stream on the diffractometer. Data for (4-MeO-Ar'SnCl)₂, (4-Me₃Si-Ar'SnCl)₂, (4-Me₃Si-Ar'SnCl)₂, (4-Me₃Si-Ar'SnCl)₂, (4-Me₃Si-Ar'SnCl)₂, 3,5-ⁱPr₂-Ar*SnCl, (4-Cl-Ar'Ge)₂, (4-Me₃Si-Ar'Ge)₂, (3,5-ⁱPr₂-Ar*Ge)₂, (4-Cl-Ar'Sn)₂, (4-Me₃Si-Ar'Sn)₂ and (4-Me₃Ge-Ar'Sn)₂ were collected at 90 K on a Bruker APEX instrument with use of Mo Kα (λ = 0.710 73Å) radiation and a CCD area detector. Data for 3,5-ⁱPr₂-Ar*GeI, (4-Cl-Ar'SnCl)₂, (4-MeO-Ar'Sn)₂, (4-Me₃Ge-Ar'Sn)₂ and (3,5-ⁱPr₂-Ar*Sn)₂ were collected at 90 K on a Bruker SMART 1000 diffractometer with use of Mo Kα (λ = 0.710 73Å) radiation and a CCD area detector. The SHELX version 6.1 program package was used for the structure solutions and refinements.^{S13} Absorption corrections were applied using the SADABS program ^{S14} Crystals of (4 Cl Ar'Ge)₂ (4 MeO Ar'SnC)₂ (4 MeO Ar'Sn)₂ (4 MeO Ar'Sn)₂ and were
- program.^{S14} Crystals of (4-Cl-Ar'Ge)₂, (4-MeO-Ar'SnCl)₂, (4-Cl-Ar'Sn)₂ and (4-MeO-Ar'Sn)₂ and were determined to be twinned, and the "de-twin" procedure was used to afford a solution. The crystal structures were solved by direct methods and refined by full-matrix least-squares procedures. All non-H atoms were ²⁰ refined anisotropically. All carbon-bound H atoms were included in the refinement at calculated positions using a riding model included in the SHELXTL program. Some details of the data collection and refinement are given in Tables S1 and S2.

	3,5- ⁱ Pr ₂ -Ar*GeI	(4-Cl- Ar'SnCl) ₂	(4-MeO-Ar'SnCl) ₂	(4-Me ₃ Si-Ar'SnCl) ₂	(4-Me ₃ Ge-Ar'SnCl) ₂	3,5- ⁱ Pr ₂ - Ar*SnCl
Formul	C84H122Cl0.13Ge2I1.8	$C_{60}H_{72}Cl_4Sn_2$	C ₇₆ H ₉₄ Cl ₂ O ₂ Sn ₂	$C_{80}H_{106}Si_2Cl_2Sn_2$	$C_{80}H_{106}Cl_2Ge_2Sn_2$	C42H60ClSn
a	7					
Fw	1518.91	1172.36	1347.79	1432.11	1899.2	719.06
Color,	Orange, block	Yellow, block	Yellow, plate	Orange, block	Orange, block	Orange, block
habit						
Cryst	Triclinic	Orthorthombic	Monoclinic	Triclinic	Triclinic	Monoclinic
syst						
Space	P-1	Pccn	C2/c	P-1	P-1	C2/c
group						
a, Å	11.9294(5)	20.3965(16)	23.035(4)	11.3422(6)	11.4346(13)	16.5041(5)
b, Å	18.4084(8)	15.7884(13)	10.8053(17)	12.9163(6) 12.9085(15)		9.4880(3)
c, Å	20.7414(9)	17.1574(14)	27.610(4)	15.1478(11)	15.1952(17)	26.2185(8)
α, deg	114.657(2)	90	90	112.0530(10)	111.709(2)	90
β, deg	105.431(2)	90	98.801(2)	103.2470(10)	103.674(2)	108.442(4)
γ, deg	90.806(2)	90	90	103.1560(10)	103.032(2)	90
V, Å ³	3949.4(3)	5525.2(8)	6791.2(19)	1877.17(19)	1899.2(4)	3894.7(2)
Z	2	4	4	1	1	4
Cryst	$0.24 \times 0.11 \times 0.06$	0.17× 0.16×	$0.33 \times 0.28 \times 0.12$	$0.51{\times}~0.30{\times}~0.21$	$0.32 \times 0.21 \times 0.10$	$0.31 \times 0.22 \times 0.15$
dims, mm ³		0.09				
μ, mm ⁻¹	1.537	1.134	0.858	0.809	1.544	0.751
No. of	35270	37024	29098	16959	8693	3993
reflns						
No. of	18059	4136	24901	8096	400	3262
obsd						
reflns						
R, obsd	0.0542	0.0568	0.0534	0.0295	0.0584	0.0855
reflns(I						
>2σ(I))						
wR ₂ , all	0.1423	0.1304	0.1463	0.0813	0.1746	0.2373

Table S1. Selected crystallographic data for aryl M(II) halide (M = Ge, Sn)

	(4-Cl-Ar'Ge) ₂	(4-SiMe ₃ - Ar'Ge) ₂	(3,5- ¹ Pr ₂ - Ar*Ge) ₂	(4-Cl- Ar'Sn) ₂	(4-MeO- Ar'Sn) ₂	(4- ^t BuAr'Sn) ₂	(4-Me ₃ Si Ar'Sn) ₂	(4-Me ₃ Ge Ar'Sn) ₂	(3,5- ¹ Pr ₂ - Ar*Sn) ₂	
Form ula	C _{69.55} H _{84.37} Cl ₂ Ge	C ₆₇ H _{92.50} Ge ₂ O _{0.}	C203H284Ge4	C ₇₂ H ₈₄ Cl ₂ Sn	$C_{76}H_{94}O_2Sn_2$	$C_{82}H_{106}Sn_2$	$C_{80}H_{106}Si_2Sn_2 \\$	C ₇₈ H ₁₀₂ Ge ₂ S	$C_{254}H_{371}O_{0.5}Sn_6$	
Fw	1136.414	1103.27	3014.76	1257.67	1276.89	1329.05	1361.21	1422.24	4144.65	
Color, habit	Orange, Plate	Red, block	Red, plate	Blue, plate	Green, plate	Green, plate	Brown, block	Brown, block	Green, block	
Cryst syst	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic	Monoclinic	Monoclinic	Triclinic	
Space group	I2/m	P2 ₁ /c	$P2_1/c$	I2/m	P-1	P-1	$P2_1/c$	$P2_1/c$	P-1	
a, Å b, Å c, Å α, deg β, deg γ, deg V, Å ³ Z	14.3831(17) 10.9750(13) 19.628(2) 90 95.579(2) 90 3083.8(6) 2	12.9150(8) 45.098(3) 22.5681(14) 90 98.6700(10) 90 12994.3(14) 8	15.153(4) 22.600(6) 26.212(7) 90 100.842(4) 90 8816(4) 2	14.908(4) 11.003(3) 19.380(5) 90 98.493(4) 90 3144.1(13) 2	10.851(2) 12.507(2) 13.880(3) 96.444(3) 97.785(3) 114.634(3) 1666.5(6) 1	10.5215(6) 12.0825(7) 15.3370(9) 103.2180(10) 107.0010(10) 91.5410(10) 1805.90(18) 1	12.7007(4) 11.7079(4) 24.3198(8) 90 90.138(1) 90 3616.3 2	12.762(4) 11.675(3) 23.975(7) 90 90.303(4) 90 3572.2(8) 4	15.1577(10) 22.7946(15) 36.174(3) 75.1150(10) 84.2180(10) 78.7320(10) 11829.4(14) 2	
Cryst dims, mm ³	0.54×0.38×0.24	0.28×0.24×0.2 4	0.20×0.18×0 .12	0.19× 0.09×0.01	0.64×0.32×0 .12	0.28×0.10×0.06	0.52×0.24×0.1 7	0.43×0.28×0. 11	0.61×0.21×0.19	
μ, mm ⁻¹	1.101	0.998	0.727	0.920	0.793	0.733	0.765	1.564	0.673	
No. of reflns	3731	23543	15965	2920	7273	10013	39562	6418	42862	
No. of obsd reflns	2672	12403	8634	2110	373	8407	9249	381	21641	
R,(I> 2σ(I))obsd reflns	0.0760 II)	0.0787	0.0974	0.0792	0.0622	0.0328	0.0240	0.0827	0.0716	
wR ₂ ,	0.2288	0.1932	0.2985	0.2419	0.1695	0.1041	0.0660	0.2243	0.1980	

Table S2. Selected crystallographic data for neutral ArMMAr (M = Ge, Sn)

S1. R. Wolf, C. Ni, T. Nguyen, M. Brynda, G. J. Long, A. D. Sutton, R. C. Fischer, J. C. Fettinger, M.

Hellman, L. Pu, P. P. Power, *Inorg. Chem.*, 2007, **46**, 1127

S2. B. Schiemenz, P. P. Power, Angew. Chem. Int. Ed., 1996, 35, 2150.

S3. B. Schiemenz, P. P. Power, Organometallics, 1996, 15, 958.

S4. R. C. Fischer, L. Pu, J. C. Fettinger, M. A. Brynda, P. P. Power, J. Am. Chem. Soc., 2006, 128, 11366.

S5. Z. Zhu, R. C. Fischer, B. D. Ellis, E. Rivard, W. A. Merrill, M. M. Olmstead, P. P. Power, J. D. Guo, S. Nagase, L. Pu, *Chem. Eur. J.*, 2009, **15**, 5263.

S6. L. Pu, A. D. Phillips, A. F. Richards, M. Stender, R. S. Simons, M. M. Olmstead, P. P. Power, *J. Am. Chem. Soc.*, 2003, **125**, 11626.

S7. L. Pu, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc., 1997, 119, 11705.

S8. L. Pu, M. M. Olmstead, P. P. Power, B. Schiemenz, Organometallics, 1998, 17, 5602.

S9. B. E. Eichler, L. Pu, M. Stender, P. P. Power, *Polyhedron*, 2001, 20, 556.

S10. M. Stender, L. Pu, P. P. Power, Organometallics, 2001, 20, 1820.

S11. The synthesis of Me₃Ge-C₆H₂Cl₂ was similar to that reported for Me₃Si-C₆H₂Cl₂; See:

D. Wrobel, U. Wannagat, J. Org. Chem.; 1982, 225, 203.

S12. R. H. Herber, J. J. Spijkerman, J. Chem Phy., 1965, 43, 4057.

S13. SHELX and SHELXL PC: VERSION 5.03, Bruker AXS, Inc., Madson, WI, 1994.

S14. SADABS: Area-detection Absorption Correction: Bruker AXS Inc., Madison, WI, 1995.