Supporting Information

Catalytic asymmetric synthesis of cyclic amino acids and alkaloid derivatives: Application to (+)-dihydropinidine and Selfotel synthesis

Taichi Kano, Takeshi Kumano, Ryu Sakamoto and Keiji Maruoka*
Department of Chemistry, Graduate School of Science, Kyoto University
Sakyo, Kyoto 606-8502, Japan

General Information: Infrared (IR) spectra were recorded on a Shimadzu IRPrestige-21 spectrometer. ${ }^{1}$ H NMR spectra were measured on a JEOL JNM-FX400 (400 MHz) spectrometer. Chemical shifts were reported in ppm from tetramethylsilane (in the case of CDCl_{3}) as an internal standard. Data were reported as follows: chemical shift, integration, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, and app = apparent), and coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-FX400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. High performance liquid chromatography (HPLC) was performed on Shimadzu 10A instruments using a Daicel CHIRALPAK AD-H, AS-H and CHIRALCEL OD-H $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ column. The high-resolution mass spectra (HRMS) were performed on Applied Biosystems Mariner 8295 API-TOF and Bruker microTOF. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$) were used. The products were purified by flash column chromatography on silica gel 60 (Merck $1.09386 .9025,230-400$ mesh). Glycine t-butyl ester-benzophenoneimine Shiff base 1, ${ }^{1}$ alanine t-butyl ester- p-chlorobenzaldimine Shiff base 6, ${ }^{2}$ chiral phase transfer catalysts $(S)-\mathbf{2 a},(S)-\mathbf{2 b}$ and (S)-2c were prepared according to literature procedure. ${ }^{3}$ Alkyl halides $3,{ }^{4-6} \mathbf{8}^{4}$ and $\mathbf{1 3}{ }^{7}$ were prepared according to literature procedure. Cyclic amino esters $\mathbf{5 a},{ }^{8} \mathbf{1 2 b}{ }^{9}$ and $12 \mathbf{c}^{9}$ are known compounds. Selfotel (CGS-19755) was prepared by a similar method described in literature. ${ }^{10}$ Other simple chemicals were purchased and used as such.

General Procedure for Asymmetric Alkylation under Phase-Transfer Conditions

To a mixture of $\mathbf{1}(30 \mathrm{mg}, 0.10 \mathrm{mmol})$, 3a ($209 \mathrm{mg}, 1.0 \mathrm{mmol}$) and (S)-2a(1.5 mg, 0.002 mmol$)$ in toluene (1 mL) was added $\mathrm{CsOH}(42 \mathrm{mg}, 0.25 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$, and the reaction mixture was vigorously stirred for 16 h . After the consumption of the starting material, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with dichloromethane. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by chromatography on silica gel (hexane/ethyl acetate $=5 / 1$ as eluent) to afford 4 a ($36 \mathrm{mg}, 0.085 \mathrm{mmol}, 85 \%$ yield) as an oil. The
enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/2-propanol = 50/1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 6.3 min (major) and 10.0 min (minor)). $[\alpha]_{\mathrm{D}}^{25}=81.1$ (c 1.0 , $\mathrm{CHCl}_{3} ; 99 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.27(3 \mathrm{H}, \mathrm{s}), 1.30-1.40(2 \mathrm{H}, \mathrm{m}), 1.44(9 \mathrm{H}, \mathrm{s}), 1.55-1.60(2 \mathrm{H}, \mathrm{m}), 1.87-1.93(2 \mathrm{H}$, $\mathrm{m}), 3.84-3.93(5 \mathrm{H}, \mathrm{m}), 7.17-7.19(2 \mathrm{H}, \mathrm{m}), 7.29-7.45(6 \mathrm{H}, \mathrm{m}), 7.63-7.66(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.6,23.8$, $28.1,33.8,38.9,64.6,66.0,80.8,110.0,127.88,127.94,128.4,128.5,128.8,130.1,136.7,139.7,169.9$, 171.5; IR (neat) 1069, 1148, 1368, 1447, 1622, 1732, $2951 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{4}$: $424.2482\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $424.2491\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(R)-tert-Butyl 2-(Diphenylmethyleneamino)-6-(2-methyl-1,3-dioxolan-2-yl)hexanoate $\mathbf{4 b}$

Daicel Chiralpak AD-H, hexane/2-propanol $=50 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 12.0 min (major) and 15.7 min (minor). $[\alpha]_{\mathrm{D}}^{20}=83.6$ (c 0.5, $\mathrm{CHCl}_{3} ; 98 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $\delta 1.20-1.37(7 \mathrm{H}, \mathrm{m})$, $1.44(9 \mathrm{H}, \mathrm{s}), 1.57-1.61(2 \mathrm{H}, \mathrm{m}), 1.88(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 3.85-3.94(5 \mathrm{H}, \mathrm{m}), 7.15-7.18(2 \mathrm{H}, \mathrm{m}), 7.30-7.56$ ($6 \mathrm{H}, \mathrm{m}$), 7.63-7.65 (2H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 23.7,23.9,26.3,28.1,33.6,34.7,39.1,64.6,66.0,80.8,110.0$, $127.9,128.0,128.37,128.42,128.8,130.1,135.3,136.8,169.8,171.6$; IR (neat) $1152,1368,1622,1732$, 2359, $2978 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{4}: 438.2639\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $438.2646([\mathrm{M}+$ $\mathrm{H}]^{+}$).

General Procedure for Diastereoselective Reductive Amination

To a mixture of $\mathbf{4 a}(67 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added TFA $(36 \mu \mathrm{~L}, 0.48$ $\mathrm{mmol})$. After stirring for 1 h , to the mixture was added $10 \% \mathrm{Pd} / \mathrm{C}(34 \mathrm{mg})$ and the mixture was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 24 h under hydrogen atmosphere. After filtration through celite, the filtrate was basified with aqueous NaHCO_{3} and extracted with dichloromethane. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by chromatography on silica gel (dichloromethane $/$ methanol $=50 / 1$ as eluent) to afford 5 a ($28 \mathrm{mg}, 0.14 \mathrm{mmol}$ 88% yield $)$ as an oil. $[\alpha]_{\mathrm{D}}^{21}=7.1\left(c 0.7, \mathrm{CHCl}_{3} ; 99 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.98-1.08(1 \mathrm{H}, \mathrm{m}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.4$ $\mathrm{Hz}), 1.25-1.44(2 \mathrm{H}, \mathrm{m}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.57-1.62(1 \mathrm{H}, \mathrm{m}), 1.77(1 \mathrm{H}, \mathrm{br}), 1.83-1.89(1 \mathrm{H}, \mathrm{m}), 1.94-1.99(1 \mathrm{H}, \mathrm{m})$, $2.64(1 \mathrm{H}, \mathrm{dqd}, J=11.0,6.4,2.7 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{dd}, J=11.5,2.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.8,24.6,28.0,29.0,33.8$, 51.8, 59.8, 80.8, 172.6; IR (neat) 1153, 1368, 1730, 2357, $2930 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2}: 200.1645\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $200.1644\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(2R,7R)-tert-Butyl 7-Methylazepane-2-carboxylate 5b

$[\alpha]_{\mathrm{D}}^{22}=15.0\left(c 0.5, \mathrm{CHCl}_{3} ; 98 \%\right.$ ee $) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.12(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.26-1.34(1 \mathrm{H}, \mathrm{m}), 1.40-1.44$ $(1 \mathrm{H}, \mathrm{m}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.61-1.76(5 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}, \mathrm{br}), 1.98-2.07(1 \mathrm{H}, \mathrm{m}), 2.71-2.79(1 \mathrm{H}, \mathrm{m}), 3.39(1 \mathrm{H}, \mathrm{dd}$, $J=9.8,5.1 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR $\delta 23.9,25.0,25.3,28.0,33.6,39.6,54.5,61.0,80.9,174.1$; IR (neat) 1157, 1368, 1726, 2359, $2926 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{2}: 214.1802\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 214.1799 $\left([M+H]^{+}\right)$.

Synthesis of (2R,6R)-tert-Butyl 2,6-Dimethylpiperidine-2-carboxylate 7

To a mixture of $\mathbf{8}(161 \mathrm{mg}, 0.60 \mathrm{mmol})$, $\mathbf{3 a}(254 \mathrm{mg}, 6.0 \mathrm{mmol})$ and $(S)-\mathbf{2 a}(9 \mathrm{mg}, 0.012 \mathrm{mmol})$ in toluene (6 mL) was added $\mathrm{CsOH}(280 \mathrm{mg}, 1.5 \mathrm{mmol})$ at $-20{ }^{\circ} \mathrm{C}$, and the reaction mixture was vigorously stirred for 20 h . After the consumption of the starting material, the mixture was concentrated under reduced pressure, and to the residue were added $\mathrm{EtOH}(3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, and TFA ($245 \mu \mathrm{~L}, 3.3 \mathrm{mmol}$). After stirring for 1 h , to the mixture was added $10 \% \mathrm{Pd} / \mathrm{C}(80 \mathrm{mg})$ and the mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 36 h under hydrogen atmosphere. After filtration through celite, the result solution was basified with aqueous NaHCO_{3} and extracted with dichloromethane. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by chromatography on silica gel (dichloromethane $/$ methanol $=30 / 1$ as eluent) to afford $7(79 \mathrm{mg}, 0.37 \mathrm{mmol}$, 61% yield) as an oil. $[\alpha]_{\mathrm{D}}^{21}=18.3$ (c 1.0, $\mathrm{CHCl}_{3} ; 96 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $\delta 0.91-1.02(1 \mathrm{H}, \mathrm{m}), 1.07(3 \mathrm{H}, \mathrm{d}, J=$ $6.4 \mathrm{~Hz}), 1.35(3 \mathrm{H}$,
s), $1.46(9 \mathrm{H}, \mathrm{s}), 1.49-1.73(6 \mathrm{H}, \mathrm{m}), 2.86-2.91(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.1,20.6,22.9,27.8,32.8,34.0,45.5$, 58.1, 80.4, 175.7; IR (neat) 1145, 1284, 1368, 1454, 1724, $2932 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{2}: 214.1802\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $214.1794\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Determination of the Enantiomeric Excess of (R)-tert-Butyl 2-Amino-2-methyl-5-(2-methyl-1,3-dioxolan-2-yl)pentanoate

To a mixture of $\mathbf{6}(54 \mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathbf{3 a}(418 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $(S) \mathbf{2 a}(3 \mathrm{mg}, 0.004 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{CsOH}(93 \mathrm{mg}, 0.50 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, and the reaction mixture was vigorously stirred for 24 h . After the consumption of the starting material, the mixture was concentrated under reduced pressure, and to the residue were added $\mathrm{MeOH}(1 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, and TFA ($53 \mu \mathrm{~L}, 0.7 \mathrm{mmol}$). After stirring for 0.5 h, the solution was basified with aqueous NaHCO_{3}, extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. To a solution of the residue and triethylamine ($56 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) in dichloromethane (2 mL) was added benzoyl chloride ($34 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 h at $0{ }^{\circ} \mathrm{C}$, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with dichloromethane. The organic layer was drid over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by chromatography on silica gel (hexane/ethylacetate $=5 / 1$ as eluent) to afford N-benzoylated
derivative of the title compound ($41 \mathrm{mg}, 0.11 \mathrm{mmol}, 51 \%$ yield) as an oil. The enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak OD-H, hexane/2-propanol $=50 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}$, retention time: 19.2 min (major) and 30.2 min (minor)). $[\alpha]_{\mathrm{D}}^{19}=-12.6\left(c 0.9, \mathrm{CHCl}_{3} ; 96 \%\right.$ ee); ${ }^{1} \mathrm{H}$ NMR $\delta 1.26(3 \mathrm{H}, \mathrm{s}), 1.38-1.48(2 \mathrm{H}, \mathrm{m}), 1.51(9 \mathrm{H}, \mathrm{s}), 1.55-1.69(2 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.78-1.86(1 \mathrm{H}, \mathrm{m})$, 2.52-2.60 $(1 \mathrm{H}, \mathrm{m}), 3.83-3.92(4 \mathrm{H}, \mathrm{m}), 7.41-7.51(3 \mathrm{H}, \mathrm{m}), 7.78-7.81(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 19.1,23.4,23.7$, $27.9,36.0,38.8,61.2,64.5,64.6,82.3,109.8,126.8,128.5,131.3,135.2,166.0,174.2$; IR (neat) 1152, 1663, 1728, 2980, $3408 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{5}: 378.2275\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 378.2271 $\left([M+H]^{+}\right)$.

Asymmetric Synthesis of (+)-Dihydropinidine Hydrochloride

To a solution of $5 \mathbf{~}(123 \mathrm{mg}, 0.64 \mathrm{mmol})$ in dioxane $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(59 \mathrm{mg}$, $0.70 \mathrm{mmol})$ and Benzyl Chloroformate $(101 \mu \mathrm{~L}, 0.70 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stitted at room temperature overnight. The reaction mixture was evaporated to remove dioxane, extracted with dichloromethane and washed with 1 N HCl and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by chromatography on silica gel (hexane/ethyl acetate $=5 / 1$ as eluent) to afford the ($2 R, 6 R$)-1-benzyl 2-tert-butyl 6-methylpiperidine-1,2-dicarboxylate (193 mg, 91\% yield). The enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/2-propanol $=50 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}$, retention time: 22.1 min (minor) and 24.0 min (major)). $[\alpha]_{\mathrm{D}}^{27}=36.2$ (c $1.0, \mathrm{CHCl}_{3}, 99 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $\delta 1.18(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 1.41(9 \mathrm{H}, \mathrm{s}), 1.47-1.71(5 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 4.38-4.44(1 \mathrm{H}$, m), $4.73(1 \mathrm{H}, \mathrm{br}), 5.16(2 \mathrm{H}, \mathrm{s}), 7.26-7.36(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.5,18.7,25.8,27.8,30.0,46.7,53.3,67.0$, 81.2, 127.78, 127.81, 128.4, 136.8, 156.1, 171.6; IR (neat) $1074,1153,1406,1740,2357 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NNaO}_{4}: 356.1832\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $356.1827\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

To a solution of ($2 R, 6 R$)-1-benzyl 2-tert-butyl 6-methylpiperidine-1,2-dicarboxylate ($181 \mathrm{mg}, 0.54 \mathrm{mmol}$) in toluene $(9 \mathrm{~mL})$ was added DIBAL-H $\left(0.43 \mathrm{~mL}, 1.5 \mathrm{M}\right.$ in toluene) in a dropwise fashion at $-78{ }^{\circ} \mathrm{C}$. After being stirred at the same temperature for 2 h , ethyl acetate (1 mL) was added dropwise. After stirring for 30 min, a few drops of $\mathrm{H}_{2} \mathrm{O}$ were then added. The resulting mixture was then warmed to room temperature and stirred vigorously for 1 h . The mixture was filtered through celite with dichloromethane as eluent. The filtrate was concentrated to afford crude aldehyde, which was used for the next reaction without further purification.

To a flask charged with $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{CH}_{3} \mathrm{Br}(301 \mathrm{mg}, 0.81 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ was added n - $\mathrm{BuLi}(0.50$ $\mathrm{mL}, 1.6 \mathrm{M}$ in hexane) at $-78^{\circ} \mathrm{C}$. After being stirred for 1 h at room temperature, the crude aldehyde obtained above in THF (1 mL) was added at $-78^{\circ} \mathrm{C}$. The resuling mixture was stirred overnight at room temperature. The reaction mixture was quenched with 1 N HCl , extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by chromatography on silica gel (hexane/ethyl acetate $=20 / 1$ as eluent) to afford E•Z mixture of ($2 R, 6 R$)-benzyl 2-methyl-6-(prop-1-enyl)piperidine-1-carboxylate ($81 \mathrm{mg}, 55 \%$ yield, E (98% ee)/Z (95%
ee) $=1 / 5$). The enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane $/ 2$-propanol $=40 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: $15.5 \mathrm{~min}(\mathrm{Z}:$ minor $), 16.3 \mathrm{~min}$ (Z: major), $18.0 \min \left(\mathrm{E}:\right.$ major), $19.5 \mathrm{~min}(\mathrm{E}:$ minor) $) .{ }^{1} \mathrm{H}$ NMR $\delta 1.17(0.50 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 1.24(2.50 \mathrm{H}, \mathrm{d}$, $J=7.1 \mathrm{~Hz}), 1.45-1.50(1 \mathrm{H}, \mathrm{m}), 1.55-1.76(8 \mathrm{H}, \mathrm{m}), 4.40-4.44(1 \mathrm{H}, \mathrm{m}), 4.73(0.17 \mathrm{H}, \mathrm{br}), 5.03-5.07(1 \mathrm{H}, \mathrm{m})$, $5.13(1.67 \mathrm{H}, \mathrm{s}), 5.14(0.33 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 5.44-5.48(0.83 \mathrm{H}, \mathrm{m}), 5.55-5.57(0.17 \mathrm{H}, \mathrm{m}), 5.72(0.83 \mathrm{H}, \mathrm{ddq}, J$ $=11.2,9.5,1.7 \mathrm{~Hz}), 7.28-7.36(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{E}$ isomer $/ \mathrm{Z}$ isomer) $14.3 / 14.5,17.8 / 12.7,20.5 / 20.9$, 28.8/30.0, 30.2/30.4, 46.4/46.3, 51.4/47.6, 66.8/66.9, 125.9/125.2, 127.71/127.75, 127.73/127.8, 128.4/128.3, 132.5/131.7, 137.2/137.1, 155.8/155.7; IR (neat) 1072, 1307, 1692, 2340, $2936 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}: 274.1802\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $274.1800\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

To a solution of $(2 R, 6 R)$-benzyl 2-methyl-6-(prop-1-enyl)piperidine-1-carboxylate $(45 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$. The mixture was stirred under hydrogen atmosphere for 24 h at room temperature. The resulting mixture was filtered through celite with MeOH as eluent. To the filtrate was added $\mathrm{HCl}(3 \mathrm{~mL}, 1 \mathrm{M}$ in MeOH$)$ and the whole mixture was concentrated. The residue was recrystalized from ethyl acetate to yield (+)-dihydropinidine hydrochloride ($20 \mathrm{mg}, 67 \%$ yield): $[\alpha]_{\mathrm{D}}^{26}=12.0$ (c 0.2, EtOH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.97(3 \mathrm{H}, \mathrm{t}, J=4.0 \mathrm{~Hz}), 1.32-1.66(10 \mathrm{H}, \mathrm{m}), 1.87-1.93(2 \mathrm{H}, \mathrm{m}), 2.00$ $(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{br}), 3.18(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.2,19.5,19.6,23.5,29.1,31.7,37.0,55.0$, 58.7; IR (neat) 1129, 1372, 1461, $2958 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}$: $142.1590\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $142.1596\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Synthesis of 6-(2-Bromoethyl)-1,4-dioxaspiro[4.4]nonane 8b

The title compound was prepared by a similar method described in literature. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR $\delta 1.31-1.36(1 \mathrm{H}, \mathrm{m}), 1.63-1.84(5 \mathrm{H}, \mathrm{m}), 1.91-1.95(1 \mathrm{H}, \mathrm{m}), 2.05-2.12(2 \mathrm{H}, \mathrm{m}), 3.35-3.40(1 \mathrm{H}, \mathrm{m})$, 3.42-3.52 ($1 \mathrm{H}, \mathrm{m}$), 3.87-3.95 ($4 \mathrm{H}, \mathrm{m}$) ; ${ }^{13} \mathrm{C}$ NMR $\delta 20.6,28.9,32.6,32.8,35.5,44.6,64.4,64.5,117.8$; IR (neat) $1026,1139,1206,1260,1315,1738,2876,2957 \mathrm{~cm}^{-1}$.

Synthesis of 6-(2-Bromoethyl)-1,4-dioxaspiro[4.5]decane 8c

The title compound was prepared by a similar method described in literature. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR $\delta 1.25-1.39(3 \mathrm{H}, \mathrm{m}), 1.43-1.49(1 \mathrm{H}, \mathrm{m}), 1.59-1.72(3 \mathrm{H}, \mathrm{m}), 1.76-1.81(3 \mathrm{H}, \mathrm{m}), 2.15-2.28(1 \mathrm{H}, \mathrm{m})$, 3.38-3.45 (1H, m), 3.49-3.55 (1H, m), 3.91-3.99 (4H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 23.6,24.5,29.1,32.3,32.9,34.5,43.2$, 64.5, 64.7, 110.4; IR (neat) 1117, 1221, 1524, 1713, 2978, $3335 \mathrm{~cm}^{-1}$.

Diastereo-mixture of (2R)-tert-Butyl 2-(Diphenylmethyleneamino)-5-(2-methyl-1,3-dioxolan-2-yl) hexanoate 9a

$(2 R, 5 R) /(2 R, 5 S)=1 / 1 .{ }^{1} \mathrm{H}$ NMR $\delta 0.91(1.5 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.93(1.5 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 0.99-1.11(1 \mathrm{H}$, $\mathrm{m}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.44(4.5 \mathrm{H}, \mathrm{s}), 1.45(4.5 \mathrm{H}, \mathrm{s}), 1.51-1.65(2 \mathrm{H}, \mathrm{m}), 1.69-1.88(1 \mathrm{H}, \mathrm{m}), 1.97-2.10(1 \mathrm{H}, \mathrm{m})$, 3.79-3.93 ($5 \mathrm{H}, \mathrm{m}$), 7.16-7.19 ($2 \mathrm{H}, \mathrm{m}$), 7.3-7.46 ($6 \mathrm{H}, \mathrm{m}$), 7.63-7.65 ($2 \mathrm{H}, \mathrm{m}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\delta 14.5,14.6,20.2$, $20.3,28.06,28.12,31.4,31.8,32.0,32.1,41.3,41.4,47.5,47.6,48.8,48.9,64.49,65.54,66.3,66.6,80.76$, $80.81,112.29,112.34,127.89,127.90,127.94,128.35,128.37,128.43,128.77,128.82,129.9,130.1,136.78$, $136.82,139.80,139.83,169.7,169.9,171.5,171.6$; IR (neat) $1150,1368,1732,2976 \mathrm{~cm}^{-1}$; HRMS

Diastereo-mixture of (2R,6R)-tert-Butyl 5,6-Dimethylpiperidine-2-carboxylate 12a

$(2 R, 5 R, 6 R) /(2 R, 5 S, 6 R)=2.5 / 1 .{ }^{1} \mathrm{H}$ NMR (toluene-d8, $\left.80{ }^{\circ} \mathrm{C}\right) \delta 0.85(0.86 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 0.89(2.14 \mathrm{H}$, d, $J=7.1 \mathrm{~Hz}), 1.03(2.14 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.11(0.86 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.47-1.71(5.42 \mathrm{H}, \mathrm{m})$, $1.78-1.81(0.29 H, m), 1.95-2.00(0.29 H, m), 2.24(0.29 H, d q, J=8.8,6.4 \mathrm{~Hz}), 2.85(0.71 \mathrm{H}, \mathrm{dq}, J=6.6,2.9$ $\mathrm{Hz})$, 3.21-3.26 (1H, m); ${ }^{13} \mathrm{C}$ NMR $\delta(2 R, 5 R, 6 R / 2 R, 5 S, 6 R) 10.9 / 18.4,20.0 / 20.3,23.6 / 29.9,28.01 / 28.00$, $31.5 / 32.0,33.8 / 37.7,57.9 / 53.6,60.2 / 59.7,80.7 / 80.6,172.9 / 172.6$; IR (neat) $1155,1233,1368,1730,2930$ cm^{-1}; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{2}: 214.1802\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $214.1807\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Determination of the Enantiomeric Excess of 12a

The enantiomeric excess of 12a was determined by HPLC analysis after conversion to the corresponding benzamide. $(2 R, 5 R, 6 R) /(2 R, 5 S, 6 R)=2.5(99 \%$ ee $) / 1(99 \%$ ee $)$. Daicel Chiralpak AS-H, hexane/2-propanol $=$ $10 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: $(2 R, 5 S, 6 R: 9.8 \mathrm{~min}$ (minor), 10.9 min (major)), $\left(2 R, 5 R, 6 R: 12.1 \mathrm{~min}(\right.$ major $), 20.7 \mathrm{~min}($ minor $)$) ${ }^{1} \mathrm{H}$ NMR (toluene-d8, $\left.80{ }^{\circ} \mathrm{C}\right) \delta 0.38(2.14 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $0.61(0.86 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 0.77-0.79(0.29 \mathrm{H}, \mathrm{m}), 0.81(2.14 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 0.93(0.71 \mathrm{H}, \mathrm{m}), 0.95(0.86 \mathrm{H}$, d, $J=7.6 \mathrm{~Hz}), 1.09-1.49(11 \mathrm{H}, \mathrm{m}), 1.55-1.64(0.29 \mathrm{H}, \mathrm{m}), 1.74-1.80(0.29 \mathrm{H}, \mathrm{m}), 1.85-1.88(0.71 \mathrm{H}, \mathrm{m}), 1.96$ $(0.71 \mathrm{H}, \mathrm{d}, ~ J=13.2 \mathrm{~Hz}), 3.76-4.69(2 \mathrm{H}, \mathrm{m}), 6.82-6.90(3 \mathrm{H}, \mathrm{m}), 7.13-7.19(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR δ (2R,5R,6R/2R,5S,6R) 15.6/23.1, 21.5/21.4, 27.3/26.1, 30.9/29.3, 36.17/36.15, 37.8/37.7, 56.1/55.1, 56.9/55.4, 84.0/83.8, 130.0/129.9, 131.2/131.9, 140.4/140.7, 141.4/141.5, 174.1/174.4, 174.8/175.5; IR (neat) 1155, 1412, 1641, 1726, 2361, $2976 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3}: 318.2064\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $318.2048\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Diastereo-mixture of (2R)-tert-Butyl 2-(Diphenylmethyleneamino)-4-(1,4-dioxaspiro[4.4]nonan-6-yl) butanoate 9b

$[\alpha]_{\mathrm{D}}^{24}=91.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.21-1.42(3 \mathrm{H}, \mathrm{m}), 1.44(9 \mathrm{H}, \mathrm{s}), 1.57-1.74(4 \mathrm{H}, \mathrm{m}), 1.81-1.94$ $(4 \mathrm{H}, \mathrm{m}), 3.81-3.91(5 \mathrm{H}, \mathrm{m}), 7.17-7.19(2 \mathrm{H}, \mathrm{m}), 7.29-7.44(6 \mathrm{H}, \mathrm{m}), 7.63-7.65(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.6,25.4$, $28.1,29.4,31.6,32.5,35.8,46.0,64.4,64.6,66.3,80.7,118.2,127.9,128.3,128.4,128.8,130.1,136.8$, 139.8, 169.8, 171.6; IR (neat) 1030, 1148, 1732, $2953 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{4}$: $450.2639\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $450.2619\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Determination of the Enantiomeric Excess of 12b

The enantiomeric excess of $12 b$ was determined by HPLC analysis after conversion to the corresponding benzamide. Daicel Chiralpak AS-H, hexane $/ 2$-propanol $=10 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 16.4 min (major) and 22.3 min (minor). $[\alpha]_{\mathrm{D}}^{20}=41.6$ (c $0.7, \mathrm{CHCl}_{3} ; 99 \%$ ee); ${ }^{1} \mathrm{H}$ NMR (toluene-d8, 80 $\left.{ }^{\circ} \mathrm{C}\right) \delta 0.92-1.06(4 \mathrm{H}, \mathrm{m}), 1.12(9 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{br}), 1.51-1.57(1 \mathrm{H}, \mathrm{m}), 1.65-1.73(2 \mathrm{H}, \mathrm{m}), 1.84-1.88(1 \mathrm{H}$, m), $4.04(1 \mathrm{H}, \mathrm{br}), 4.68(1 \mathrm{H}, \mathrm{br}), 6.86-6.89(3 \mathrm{H}, \mathrm{m}), 7.13-7.15(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.4,27.7,28.1,30.9$, $31.8,33.1,39.6,57.2,60.2,83.8,129.9,131.2,140.4,141.6,174.4,174.6$; IR (neat) $1153,1368,1414,1603$, 1726, $2972 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}: 330.2064\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 330.2069 ([M +
$\mathrm{H}]^{+}$).

Diastereo-mixture of (2R)-tert-Butyl 2-(Diphenylmethyleneamino)-4-(1,4-dioxaspiro[4.5]decan-6-yl) butanoate 9c

$(2 R, 4 R) /(2 R, 4 S)=1 / 1 .[\alpha]_{\mathrm{D}}^{22}=87.9\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.18-1.34(4 \mathrm{H}, \mathrm{m}), 1.41-1.44(2 \mathrm{H}, \mathrm{m})$, $1.44(4.5 \mathrm{H}, \mathrm{s}), 1.45(4.5 \mathrm{H}, \mathrm{s}), 1.47-1.50(1 \mathrm{H}, \mathrm{m}), 1.59-1.62(2 \mathrm{H}, \mathrm{m}), 1.65-1.81(3 \mathrm{H}, \mathrm{m}), 1.97-2.00(1 \mathrm{H}, \mathrm{m})$, 3.81-3.93 ($5 \mathrm{H}, \mathrm{m}$), 7.16-7.20 ($2 \mathrm{H}, \mathrm{m}$), 7.29-7.44 $(6 \mathrm{H}, \mathrm{m}), 7.63-7.66(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.8,23.8,23.9$, $24.49,24.52,24.6,24.7,28.1,29.0,29.2,31.8,31.9,34.8,34.9,44.39,44.43,64.61,64.64,64.7,64.8,66.3$, 66.7, 80.7, 82.0, 110.80, 110.83, 127.89, 127.91, 127.93, 128.0, 128.26, 128.28, 128.36, 128.42, 128.75, $128.77,130.01,130.03,136.8,136.9,139.8,139.9,169.5,169.8,171.6,171.7$; IR (neat) $1150,1368,1732$, $2932 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{4}: 464.2795\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $464.2785\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Determination of the Enantiomeric Excess of 12c

The enantiomeric excess of 12c was determined by HPLC analysis after conversion to the corresponding benzamide. Daicel Chiralpak AS-H, hexane $/ 2$-propanol $=10 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 13.6 min (major) and 16.5 min (minor). $[\alpha]_{\mathrm{D}}^{19}=67.1$ (c $1.0, \mathrm{CHCl}_{3} ; 99 \%$ ee); ${ }^{1} \mathrm{H}$ NMR (toluene-d8, 80 $\left.{ }^{\circ} \mathrm{C}\right) \delta 1.23-1.33(4 \mathrm{H}, \mathrm{m}), 1.51(9 \mathrm{H}, \mathrm{s}), 1.54-1.67(2 \mathrm{H}, \mathrm{m}), 1.73-1.88(3 \mathrm{H}, \mathrm{m}), 2.01-2.12(2 \mathrm{H}, \mathrm{m}), 2.27-2.28$ $(1 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{br}), 5.05(1 \mathrm{H}, \mathrm{br}), 7.15-7.17(1 \mathrm{H}, \mathrm{m}), 7.23-7.30(3 \mathrm{H}, \mathrm{m})$, 7.57-7.59 (1H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 24.7,29.3,30.1,30.9,34.9,35.8,38.0,39.3,55.9,58.0,83.9,129.9,131.2$, 140.4, 141.4, 174.1, 174.2; IR (neat) 1153, 1325, 1368, 1411, 1638, 1724, $2930 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{3}: 366.2040\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $366.2033\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(R,Z)-tert-Butyl 2-(Diphenylmethyleneamino)-6,6-dimethoxy-4-methylhex-4-enoate 14a

Daicel Chiralpak OD-H, hexane/2-propanol $=50 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 17.2 min (minor) and 23.4 min (major). $[\alpha]_{\mathrm{D}}^{19}=82.2$ (c $0.9, \mathrm{CHCl}_{3} ; 92 \%$ ee); ${ }^{1} \mathrm{H} \operatorname{NMR} \delta 1.45(9 \mathrm{H}, \mathrm{s}), 1.52$ $(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.56-2.68(2 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{s}), 3.26(3 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{dd}, J=8.3,5.1 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}), 5.30(1 \mathrm{H}, \mathrm{dd}, J=6.4,0.8 \mathrm{~Hz}), 7.14-7.18(2 \mathrm{H}, \mathrm{m}), 7.28-7.46(6 \mathrm{H}, \mathrm{m}), 7.62-7.65(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 17.1,28.0,43.4,51.5,52.6,64.7,81.2,100.1,124.9,127.91,127.94,128.3,128.5,128.8,130.1$, 136.4, 138.1, 139.6, 170.0, 171.0; IR (neat) 1053, 1150, 1734, $2367 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{4}: 424.2482\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $424.2465\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(2R,4S)-tert-Butyl 4-Methylpiperidine-2-carboxylate 15a

Daicel Chiralpak AD-H, hexane/2-propanol $=10 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, retention time: 19.2 min (major) and 42.7 min (minor). $[\alpha]_{\mathrm{D}}^{21}=8.8\left(c 0.4, \mathrm{CHCl}_{3} ; 92 \%\right.$ ee); ${ }^{1} \mathrm{H} \mathrm{NMR} \delta 0.94(3 \mathrm{H}, \mathrm{d}, J=6.4$ $\mathrm{Hz}), 0.95-1.05(2 \mathrm{H}, \mathrm{m}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.48-1.63(2 \mathrm{H}, \mathrm{m}), 1.93-1.99(1 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{td}, J=12.5,2.7 \mathrm{~Hz})$, 3.11-3.16 (1H, m), $3.18(1 \mathrm{H}, \mathrm{dd}, J=11.7,2.7 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\delta 22.4,28.0,31.3,34.7,38.1,45.8,59.6,80.8$, 172.6; IR (neat) 1161, 1269, 1368, 1732, 2924, $2949 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2}$: $200.1645\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $200.1641\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Synthesis of (Z)-2-(3-(Benzyloxy)-2-(bromomethyl)prop-1-enyl)-1,3-dioxolane 13b

2-(3-Bromo-2-(bromomethyl)prop-1-enyl)-1,3-dioxolane was prepared by a similar method described in literature. ${ }^{11,12}{ }^{1} \mathrm{H}$ NMR $\delta 3.89-3.97(2 \mathrm{H}, \mathrm{m}), 3.99-4.07(2 \mathrm{H}, \mathrm{m}), 4.13(2 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 5.55$ $(1 \mathrm{H}, \mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{dd}, J=6.0,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 26.4,34.3,65.1,98.9,130.4,138.7$; IR (neat) $939,1051,1117,1207,1396,2887 \mathrm{~cm}^{-1}$.

The title compound was prepared by a similar method described in literature ${ }^{13}$ starting from 2-(3-bromo-2-(bromomethyl)prop-1-enyl)-1,3-dioxolane. ${ }^{1} \mathrm{H}$ NMR $\delta 3.82-3.93(2 \mathrm{H}, \mathrm{m}), 3.95-4.05(2 \mathrm{H}, \mathrm{m})$, $4.08(2 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{s}), 4.52(2 \mathrm{H}, \mathrm{s}), 5.50(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.27-7.36(5 \mathrm{H}$, m); ${ }^{13} \mathrm{C}$ NMR $\delta 34.1,64.9,65.0,72.5,98.8,127.7,127.8,128.4,129.6,137.8,139.9$; IR (neat) 1055,1246 , 1396, 1703, $2884 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNaO}_{3}: 335.0253\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $335.0247\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$

(R,E)-tert-Butyl 4-(Benzyloxymethyl)-5-(1,3-dioxolan-2-yl)-2-(diphenylmethyleneamino)pent-4-enoate

 14bDaicel Chiralpak AD-H, Hexane $/ \mathrm{EtOH}=50 / 1$, flow late $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 19.6 min (minor) and 20.5 min (major). $[\alpha]_{\mathrm{D}}^{21}=62.6$ (c $0.4, \mathrm{CHCl}_{3} ; 97 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $\delta 1.44(9 \mathrm{H}, \mathrm{s}), 2.67(1 \mathrm{H}, \mathrm{dd}, J$ $=14.0,8.8), 2.87(1 \mathrm{H}, \mathrm{dd}, J=14.0,4.4 \mathrm{~Hz}), 3.75-3.83(4 \mathrm{H}, \mathrm{m}), 3.90-3.92(1 \mathrm{H}, \mathrm{m}), 3.99(1 \mathrm{H}, \mathrm{d}, J=12.4)$, $4.13(1 \mathrm{H}, \mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}), 4.29(2 \mathrm{H}, \mathrm{dd}, J=31.2,11.6 \mathrm{~Hz}), 5.48(2 \mathrm{H}, \mathrm{s}), 7.16-7.19(2 \mathrm{H}, \mathrm{m}), 7.22-7.38$ $(11 \mathrm{H}, \mathrm{m}), 7.60-7.64(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.0,38.3,64.7,64.8,64.9,67.1,71.8,81.1,99.2,127.45,127.48$, $127.6,127.9,128.1,128.3,128.5,128.6,128.9,130.0,136.5,138.2,139.8,139.9,170.3,170.8$; IR (neat) 959, 1069, 1148, 1730, $2884 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{5}: 528.2745\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $528.2752\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(2R,4S)-tert-Butyl 4-(Hydroxymethyl)piperidine-2-carboxylate 15b

$[\alpha]_{\mathrm{D}}^{26}=3.1\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.08-1.21(2 \mathrm{H}, \mathrm{m}), 1.25(1 \mathrm{H}, \mathrm{br}), 1.46(9 \mathrm{H} \mathrm{s}), 1.62-1.72(2 \mathrm{H}, \mathrm{m})$, $2.08(1 \mathrm{H}, \mathrm{d}, J=14.4), 2.32(1 \mathrm{H}, \mathrm{br}), 2.67(1 \mathrm{H}, \mathrm{td}, J=12.4,2.8), 3.23-3.27(2 \mathrm{H}, \mathrm{m}), 3.48-3.55(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.0,28.8,32.4,38.9,45.3,59.0,67.8,81.3,172.1$; IR (neat) $1045,1732,1254,1732,2930 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{3}: 216.1594\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $216.1586\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Synthesis of Selfotel (CGS-19755)

Title compound was prepared by a similar method described in literature ${ }^{10}$ starting from $\mathbf{1 5 b}$ in 39%
overall yield. Spectrum data of obtained compound corresponded with literature. ${ }^{10}$

(2R,4S)-Di-tert-butyl 4-(Hydroxymethyl)piperidine-1,2-dicarboxylate

95% yield. $[\alpha]_{\mathrm{D}}^{26}=39.4\left(\mathrm{c} 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.45(9 \mathrm{H}, \mathrm{s}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.70-1.80(1 \mathrm{H}, \mathrm{m}), 1.91-1.97$ $(2 \mathrm{H}, \mathrm{m}), 2.03-2.08(1 \mathrm{H}, \mathrm{m}), 2.26(1 \mathrm{H}, \mathrm{br}), 3.08(1 \mathrm{H}, \mathrm{br}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=11.2,7.6 \mathrm{~Hz}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=$ $11.2,6.8 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{br}), 4.41(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.2,26.7,27.8,28.0,28.3,53.78,53.81,63.6,79.8$, 81.5, 155.5, 172.4; IR (neat) 1152, 1366, 1697, 1734, 2976, $3435 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NNaO}_{5}: 338.1938\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $338.1923\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(2R,4S)-tert-Butyl 4-(Bromomethyl)piperidine-2-carboxylate

71% yield. $[\alpha]_{\mathrm{D}}^{23}=7.8\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.45(9 \mathrm{H}, \mathrm{s}), 1.48(9 \mathrm{H}, \mathrm{s}), 1.66-1.68(1 \mathrm{H}, \mathrm{m}), 1.79-1.86$ $(1 \mathrm{H}, \mathrm{m}), 2.03-2.10(3 \mathrm{H}, \mathrm{m}), 3.17(1 \mathrm{H}, \mathrm{br}), 3.33-3.41(2 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{m}), 4.35-4.38(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR δ $27.5,27.9,28.0,28.3,29.3,33.9,36.0,53.7,80.0,81.5,155.5,171.8$; IR (neat) 1150, 1366, 1697, 1732, $2976 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{BrNNaO}_{4}: 400.1094$ ($[\mathrm{M}+\mathrm{Na}]^{+}$), Found: 400.1088 ($[\mathrm{M}+$ $\mathrm{Na}]^{+}$).

(2R,4S)-Di-tert-butyl 4-((Diethoxyphosphoryl)methyl)piperidine-1,2-dicarboxylate

83% yield. $[\alpha]_{\mathrm{D}}^{25}=27.0\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 1.30(6 \mathrm{H}, \mathrm{m}), 1.44(9 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.63-1.84(4 \mathrm{H}$, $\mathrm{m}), 1.95-2.08(2 \mathrm{H}, \mathrm{m}), 2.16-2.24(1 \mathrm{H}, \mathrm{m}), 3.21(1 \mathrm{H}, \mathrm{br}), 3.72(1 \mathrm{H}, \mathrm{br}), 4.04-4.12(4 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{dd}, J=$ $6.8,5.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.1,16.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 16.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 27.9,28.27,28.31,29.1(\mathrm{~d}, J=5.8$ $\mathrm{Hz}), 29.7,32.1(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 53.8,61.4(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 61.5(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 79.9,81.4,155.7$, 172.0; IR (neat) 1030, 1163, 1248, 1699, 2359, 2926, $2978 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NNaO}_{7} \mathrm{P}$: $458.2278\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $458.2285\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

References

(1) (a) Eils, S.; Rossen, K.; Jahn, W.; Klement, I. Eur. Pat. Appl. 1207151. (b) O’Donnell, M. J.; Polt, M. J. J. Org. Chem. 1982, 47, 2663-2666.
(2) Wang, X.; Kitamura, M.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 1038.
(3) Kitamura, M.; Shirakawa, S.; Arimura, Y.; Wang, X.; Maruoka, K; Chem. Asian J. 2008, 3, 1702.
(4) Townsend, C. A.; Christensen, S. B.; Davis, Steven G. J. Chem. Soc. Perkin Trans. 1 1988, 839.
(5) Collins, D. J.; James, A. M. Aust. J. Chem. 1989, 42, 215.
(6) Pumar, M. C.; Mourino, A.; Castedo, L.; Fac. Quim. Anales de Quimica, Serie C: Quimica Organica y Bioquimica, 1988, 84(1), 105.
(7) Gaonac'h, O.; Maddaluno, J.; Duhamel, L. J. Org. Chem. 1991, 56, 4045.
(8) Swarbrick, M. E.; Gosselin, F.; Lubell, W. D. J. Org. Chem. 1999, 64, 1993.
(9) Swarbrick, M. E.; Lubell, W. D. Chirality 2000, 12, 366.
(10) Hutchison, A. J.; Williams, M.; Angst, C.; Jesus, R.; Blanchard, L.; Jackson, R. H.; Wilusz, E. J.; Murphy, D. E.; Bernard, P. S.; Schneider, J.; Campbell, T.; Guida, W.; Sills, M. A. J. Med. Chem. 1989, 32, 2171.
(11) Kinoshita, M.; Takami, H.; Taniguchi, M.; Tamai, T. Bull. Chem. Soc. Jpn. 1987, 60, 2151.
(12) Lu, T.; Yang, J.; Sheu, L. J. Org. Chem. 1995, 60, 2931.
(13) Xu, L.; Reignier, T.; Lemiegre, L.; Cardinael, P.; Combret, J.; Bouillon, J.; Blanchet, J.; Rouden, J.; Marchand, A. H.; Maddaluno, J.; Org. Lett. 2008, 10(5), 729.

(

(

(

(

(

