Supplementary Information

X-ray Snapshots for Metallopophrin Axial Ligation

Lin X. Chen,*a,b Xiaoyi Zhang, c Erik C. Wasinger,c Jenny V. Lockard,c Andrew B. Stickrath,a Michael W. Mara,b Klaus Attenkofer,c Guy Jennings,c Grigory Smolentsevd, and Alexander Soldatovd

1. Calculation of the equilibrium constant for the ligation in the ground state NiTMP

\[\text{NiTMP} + \text{py} \xrightleftharpoons[k_1']{k_1} \text{NiTMP-py} \]

\[\text{NiTMP-py} + \text{py} \xrightleftharpoons[k_2']{k_2} \text{NiTMP-py}_2 \]

Pure pyridine has a concentration of 12.413 M (molecular weight = 79.1 g/mol; density = 0.9819 g/cm³). Pure toluene has a concentration of 9.41 M (molecular weight = 92.14 g/mol; density = 0.8669 g/cm³). In the mixed solvent, the molar ratio in pyridine:toluene (v:v = 1:3) = (12.413 * 0.25) / (9.41 * 0.75) = 3.11 / 7.06 or 1:2.27, and the pyridine concentration [py] = 3.11 M. Using the above information, we calculated the following, where the variables are self-explanatory.

\[
K_1 = \frac{[\text{NiTMP-py}]}{[\text{NiTMP}][\text{py}]}
\]

\[
K_2 = \frac{[\text{NiTMP-py}_2]}{[\text{NiTMP-py}][\text{py}]}
\]

\[
C_0 = [\text{NiTMP}] + [\text{NiTMP-py}] + [\text{NiTMP-py}_2]
\]

\[
I_0 = [\text{py}] + [\text{NiTMP}][\text{py}] + 2[\text{NiTMP-py}_2]
\]

\[
K_1 = \frac{[\text{NiTMP}] + [\text{NiTMP-py}] + [\text{NiTMP-py}_2]}{2[I_0]} - \frac{[\text{NiTMP-py}][\text{py}]}{[\text{NiTMP}][\text{py}]}
\]

\[
K_2 = \frac{[\text{NiTMP-py}_2]}{[\text{NiTMP-py}][\text{py}]}
\]

\[
K_1 = \frac{[\text{NiTMP}] + [\text{NiTMP-py}] + [\text{NiTMP-py}_2]}{2[I_0]} - \frac{[\text{NiTMP-py}][\text{py}]}{[\text{NiTMP}][\text{py}]}
\]

\[
K_2 = \frac{[\text{NiTMP-py}_2]}{[\text{NiTMP-py}][\text{py}]}
\]

\[
K_1 = \frac{[\text{NiTMP}] + [\text{NiTMP-py}] + [\text{NiTMP-py}_2]}{2[I_0]} - \frac{[\text{NiTMP-py}][\text{py}]}{[\text{NiTMP}][\text{py}]}
\]

\[
K_2 = \frac{[\text{NiTMP-py}_2]}{[\text{NiTMP-py}][\text{py}]}
\]

\[
K_1 = \frac{[\text{NiTMP}] + [\text{NiTMP-py}] + [\text{NiTMP-py}_2]}{2[I_0]} - \frac{[\text{NiTMP-py}][\text{py}]}{[\text{NiTMP}][\text{py}]}
\]

\[
K_2 = \frac{[\text{NiTMP-py}_2]}{[\text{NiTMP-py}][\text{py}]}
\]

\[
K_1 = \frac{[\text{NiTMP}] + [\text{NiTMP-py}] + [\text{NiTMP-py}_2]}{2[I_0]} - \frac{[\text{NiTMP-py}][\text{py}]}{[\text{NiTMP}][\text{py}]}
\]

\[
K_2 = \frac{[\text{NiTMP-py}_2]}{[\text{NiTMP-py}][\text{py}]}
\]
An alternative kinetics is one step axial ligation.

\[
\text{NiTMP} + 2\text{py} \rightarrow \text{NiTMPpy}_2
\]

\[
K = \frac{[\text{NiTMPpy}_2]^2}{[\text{NiTMP}][\text{py}]^2}
\]

\[
C_0 = [\text{NiTMP}] + [\text{NiTMPpy}_2]
\]

\[
L_0 = [\text{py}] + 2[\text{NiTMPpy}_2]
\]

\[
K = \frac{[\text{NiTMP}][L_0 - 2[\text{NiTMPpy}_2]]^2}{[\text{NiTMPpy}_2]^2}
\]

\[
\therefore [\text{NiTMPpy}_2] \ll L_0
\]

\[
\therefore K = \frac{[\text{NiTMPpy}_2]}{[\text{NiTMP}]L_0^2} = \frac{[\text{NiTMPpy}_2]}{(C_0 - [\text{NiTMPpy}_2])L_0^2}
\]

\[
[\text{NiTMPpy}_2] = \frac{(KC_0 - KL_0^2)}{L_0^2}
\]

\[
[\text{NiTMP}] = C_0 / (1 + KL_0^2)
\]

Experimentally, we measured [NiTMP] as a function of [py] as seen in Figure 2 of the main text, see below. From the first model of the stepwise ligation, we obtained

Because the most direct measurable property is the optical density change as a function of [py] for unligated [NiTMP] at the B-band of 414 nm, directly from the above spectra, which is directly proportional to the concentration change of NiTMP.

\[
\frac{OD(\text{py})}{OD(0)} = \frac{[\text{NiTMP}]}{C_0} = \frac{1}{(1 + K_1L_0 + K_2L_0^2)}
\]

where \(OD(\text{py})\) and \(OD(0)\) are optical densities at a certain pyridine concentration and without pyridine at 414 nm, the B-band of unligated NiTMP.

Because \(C_0 / [\text{NiTMP}] = 1 + K_1L_0 + K_2L_0^2\), fitting this with a polynomial gives

\(K_1 = 0.043 \text{M}^{-1}\), and \(K_2 = 0.10 \text{M}^{-1}\) as shown in the figure below.
Using K_1 and K_2 values, we calculated fractions of NiTMP, NiTMPpy and NiTMPpy2 as functions of [py] as shown below. The sum of ligated state appears to fit the shape of the curve from the intensity of 434 nm peak from the experiment in Figure 2 of the main text.

In this case, the 25% pyridine, 3.11 M in toluene could generate 16% of ligated species, but we could not differentiate between NiTMPpy and NiTMPpy2. Therefore, if we must show an apparent equilibrium constant K as defined below.

$$K = K_1K_2 = 0.00414M^{-2} = \frac{[\text{NiTMPpy}_2]}{[\text{NiTMP}][\text{py}]^2}$$