Highly Enantioselective Synthesis of 1,3-Bis(hydroxymethyl)-2-oxindoles from Unprotected Oxindoles and Formalin Using a Chiral Nd^{III} Complex

Ke Shen, Xiaohua Liu, Wentao Wang, Gang Wang, Weidi Cao, Wei Li, Xiaolei Hu, Lili Lin, and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

E-mail: xmfeng@scu.edu.cn

Fax: +86 28 85418249

1. General remarks	S2
2. General procedure for chiral <i>N</i> , <i>N</i> '-dioxides preparation	S2
3. Typical procedure for the hydroxymethylation reaction of oxindoles 1 with formalin	S2
4. Optimization of reaction conditions	
5. Preliminary mechanism studies.	S7-9
6. Experimental procedure for the structural expansion of 3a and 3f	
7. The analytical and spectral characterization data of 3a-w	S11-23
8. Copies of NMR spectra of the products	S24-47
9. References	S48

1. General remarks

¹H NMR spectra were recorded on commercial instruments (400 MHz and 600 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26 and (CD₃)₂SO, δ = 2.54). Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C NMR spectra were collected on commercial instruments (100 MHz and 150 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0 and (CD₃)₂SO, δ = 40.6). Melting points (m.p.) were measured on electrothermal digital melting point apparatus and were uncorrected. Optical rotations were reported as follows: [α]^T _D (*c* g/100mL, in solvent). Enantiomeric excesses (*ee*) were determined by HPLC using corresponding commercial chiral column as stated in the experimental procedures at 23 °C with UV detector at 254 nm. HRMS was recorded on a commercial apparatus (ESI Source, TOF). Toluene, Et₂O and THF were dried and distilled from sodium benzophenone under nitrogen just before use. Formalin was purchased from Alfa Aesar (37% w/w *aq.* soln., stab. with 7-8% methanol). 3-Substituted-2-oxindoles was prepared in various methods.^[1] Racemic samples of **3a-w** were prepared with 5 mol% *N*,*N*,*N*,*N*,*N* tetramethylguanidine in CH₂Cl₂.

2. General procedure for chiral N,N'-dioxides preparation

The *N*,*N*'-dioxide ligands **L1-L9** were synthesized by the same procedure in the literature.^[2]

3. Typical procedure for the hydroxymethylation reaction of 3-substituted-2-oxindoles with formalin

A mixture of L3 (5 mol%), Nd(OTf)₃ (5 mol%), 3 Å molecular sieves (3 mg) and oxindole 1a (0.1 mmol) was stirred in CH₂ClCH₂Cl (0.6 mL) at 35 °C for 1 h. Formalin (2.0 equiv.) was added at 0 °C. The reaction was stirred at 0 °C and monitored by TLC. The crude product was directly purified by flash chromatography (petroleum ether/ ethyl acetate, 1:2) to afford a viscous solid. The *ee* value of **3a** was determined by chiral HPLC analysis using a chiralcel AS-H column.

4. Optimization of reaction conditions

	■ 0 + aq. HCHO N (2.0 equiv)	Nd(OTf) ₃ / ligand = 1:1 (5 mol%) CH ₂ CICH ₂ CI, 0 °C	HO 3a
Entry	Ligand	Yield [%] ^[b]	ee [%] ^[c]
1	L1	33	35
2	L2	65	60
3	L3	83	87
4	L4	18	30
5	L5	12	5
6	L6	50	40
7	L7	88	60
8	L8	trace	-
9	L9	trace	-

Table 1. Ligands evaluated in the hydroxymethylation reaction.^[a]

[a] Reaction conditions: **L**-RE(OTf)₃ (1:1), **1a** (0.1 mmol) in CH₂ClCH₂Cl (0.6 mL) at 0 °C under N₂ for 36 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

Figure 1. Ligands evaluated.

 Table 2. Screening of RE metals^[a]

		+	<i>aq.</i> HCHO (2.0 equiv)	RE(OTf) ₃ / L3 = 1:1 (5 mol%) CH ₂ CICH ₂ CI, 0 °C	OH OH HO 3a
Entry	RE			Yield [%] ^[b]	ee [%] ^[d]
1	La(OTf) ₃			90	78
2	$Pr(OTf)_3$			82	84

	Supplem This journa	entary Materials (ESI) for Chemical Scier al is (c) The Royal Society of Chemistry 2	nce 2010	
3	Nd(OTf) ₃	83	87	
4	$Sm(OTf)_3$	88	83	
5	Tb(OTf) ₃	60	70	
6	Dy(OTf) ₃	70	68	
7	Ho(O <i>i</i> Pr) ₄	65	70	
8	Yb(OTf) ₃	72	40	
9	Lu(OTf) ₃	50	33	
10	Sc(OTf) ₃	36	55	

[a] Unless noted otherwise, the reactions were conducted on a 0.1 mmol scale, 5 mol% catalyst in 0.6 mL CH₂ClCH₂Cl for 36 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

 Table 3. Screening of solvents^[a]

_

	N + aq. HCHO H (2.0 equiv) 1a	5 mol% L3-Nd(OTf) ₃ solvent, 0 °C	HO 3a
Entry	Solvent	Yield [%] ^[b]	ee [%] ^[c]
1	CH ₂ Cl ₂	75	75
2	ClCH ₂ CH ₂ Cl	83	87
3 ^[d]	ClCH ₂ CH ₂ Cl	80	86
4 ^[e]	ClCH ₂ CH ₂ Cl	84	85
5	$Cl_2CH_2CH_2Cl_2$	80	86
6	Cl ₃ CCH ₃	77	84
7	Et_2O	80	77
8	THF	60	60
9	PhOMe	55	72
10	EtOH	N.R.	-
11	<i>i</i> -PrOH	N.R.	-
12	Ethyl acetate	62	65
13	CH ₂ CN	56	67

Image: Construction of the end of the

Table 4. Optimization of the ratio between L3 and $Nd(OTf)_3^{[a]}$

	H H H H H H H H H H H H H H H H H H H	L3-Nd(OTf) ₃	HO 3a	
Entry	Ratio of L3/Nd(OTf) ₃	Yield [%] ^[b]	ee [%] ^[c]	
1	1.5:1	88	85	
2	1:1	83	87	
3	1:1.5	80	86	

[a] Reaction conditions: **1a** (0.1 mmol), 5 mol% catalyst in CH₂ClCH₂Cl (0.6 mL) at 0 °C under N₂ for 36 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

 Table 5. Effect of the amount of formalin.^[a]

Entry	Amount of formalin (equiv.)	Yield [%] ^[b]	<i>ee</i> [%] ^[c]
1	0.8	22	72
2	1.0	35	80
3	1.5	70	88
4	2.0	83	87
5	2.5	88	85
6	3.0	90	84

[a] Reaction conditions: **1a** (0.1 mmol), 5 mol% catalyst in CH₂ClCH₂Cl (0.6 mL) at 0 °C under N₂ for 36 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

Table 6. Optimization of additives^[a]

	N + aq. HCHO N + (2.0 equiv) 1a	2 mol% L3-Nd(OTf) ₃ 10 mol% additive $CH_2CICH_2CI, 0 °C$	HO 3a
Entry	Additive	Yield [%] ^[b]	ee [%] ^[c]
1	3 A MS (3mg)	80	89
2	4 Å MS (3mg)	89	86
3	5 Å MS (3mg)	85	82
4	phenol ^[f]	30	80
5	HCOOH ^[t]	N.R.	-
6	pyridine ^[f]	72	84

[a] Reaction conditions: **1a** (0.1 mmol) in CH₂ClCH₂Cl (0.6 mL) at 0 °C under N₂ for 20 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [f] 1 M in CH₂ClCH₂Cl. N.R. = no reaction.

 Table 7. Direct catalytic asymmetric hydroxymethylation of oxindoles 1 with formalin.^[a]

$R^{1} \xrightarrow{R^{2}} O + aq. HCHO$ $H \qquad (2.0 equiv)$ $1a-v. R^{1} = H; 1w. R^{1} = Br$	2 mol%, L3-Nd (OTf) ₃ 3 Å MS, DCE, 0 °C	R ¹ N HO 3
---	--	--------------------------------

Entry	R ²	Prod.	<i>t</i> [h]	Yield [%] ^[b]	ee [%] ^[c]
1	Me	3a	20	81	89
2	Et	3b	24	82	94
3	<i>n</i> -Pr	3c	24	77	97
4	<i>i</i> -Pr	3d	24	60	91
5	<i>n</i> -Bu	3e	24	83	94
6	Allyl	3f	24	87	93
7	Propargyl	3g	24	67	96
8	Ph	3h	6	91	90
9	Bn	3i	24	85	95

Supplementary Materials (ESI) for Chemical Science	
This journal is (c) The Royal Society of Chemistry 2010)

-

	The jea			,		
10	$2-MeC_6H_4CH_2$	3ј	24	79	95	-
11	$4-MeOC_6H_4CH_2$	3k	24	81	92	
12 ^[d]	Piperonyl	31	36	87	92	
13	$3-PhOC_6H_4CH_2$	3m	24	91	97	
14	$4-PhC_6H_4CH_2$	3n	24	87	91	
15	$2-ClC_6H_4CH_2$	30	16	90	96	
16	$4-ClC_6H_4CH_2$	3р	16	79	96	
17	$2,4-Cl_2C_6H_3CH_2$	3q	16	88	93	
18	$4-BrC_6H_4CH_2$	3r	16	79	90	
19 ^[d]	1-naphthylmethyl	3 s	16	92	92	
20 ^[d]	2-naphthylmethyl	3 t	16	93	95	
21 ^[d]	2-pyridylmethyl	3u	36	75	>99	
22 ^[d]	2-thienylmethyl	3v	24	89	>99	
23	Me	3w	8	91	89	

[a] Reaction conditions: **1a** (0.1 mmol), 2 mol% catalyst in CH₂ClCH₂Cl (0.6 mL) at 0 °C under N₂. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] The reaction was carried out in 0.6 mL of mixed DCE and CHCl₂CHCl₂ (v/v, 1:1).

Scheme 1. Investigation of N-protected oxindoles.

5. Preliminary mechanism studies.

Table 9. Relationship between reaction time and enantiomeric excess.^[a]

a] Reaction conditions: **1a** (0.1 mmol) in CH₂ClCH₂Cl (0.6 mL) at 0 °C under N₂ for indicated time. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

Figure 2. TLC spots of the reaction mixture when 0.8 equiv. formalin was used.

Scheme 2. Transformation of 2 to 3a. Yield was calculated upon the amount of 1a.

As shown in Table 7, the enantiomeric excess of **3a** was independent with the reaction time. When the amount of formalin was reduced to 0.8 equiv, **2** was isolated in 5% yield with 75% *ee* (Scheme 2). In this case, the majority product was still **3a** with 75% *ee*. Upon treatment with either 5 mol% 1,1,3,3-tetramethylguanidine or L3-Nd(OTf)₃, **2** could be converted to **3a** immediately with the maintenance of *ee*. Characterization data of **2**: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.25–7.19 (m, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 3.91–3.86 (d, *J* = 12, Hz, 1H), 3.79 (dd, *J* = 10.9, 3.6 Hz, 1H), 1.60 (s, 3H). The *ee* was determined by HPLC analysis using a chiralcel AD column, hexane/2-propanol 80:20, flow rate = 1.0 mL/min 254 nm. *tR* = 7.1 min (major), 14.2 min (minor), 75% *ee*.

Figure 3. ESIMS spectrum of the hydroxymethylation reaction, 1 h after stirring L3 and Nd(OTf)₃ in DME. HRMS: m/z calcd: 1140.3045 [L3+Nd(OTf)₂]⁺; found: 1140.3007.

Figure 4. ESIMS spectrum of the hydroxymethylation reaction, 3 h after stirring **2a** with L**5**-Sc(OTf)₃ and **1a** in CH₂Cl₂. HRMS: m/z calcd: 1168.4315 [L**3**+NdOTf+**1a**+CH₂O]⁺, 1198.4420 [L**3**+NdOTf+**1a**+2CH₂O]⁺; found: 1168.4681, 1198.4736.

6. Experimental procedure for the structural expansion of 3a and 3f

To a solution of **3a** (41.4 mg, 89% *ee*, 0.2 mmol) in MeOH (2.0 mL) was added *aq*. NaOH (5 M, 0.3 mmol, 1.5 equiv) at 0 °C. The mixture was warm to rt and stir for 2 h. Then the mixture was added 2 mL saturated NaHSO₄, and was extracted with ethyl acetate. The extraction was concentrated under reduced pressure and purified by flash chromatography (petroleum ether / ethyl acetate = 2/1) afford **2a** (30.2 mg, 85% yield, 89% *ee*). Dess-Martin reagent

(100 mg, 0.24 mmol) was added to a pre-cooled solution of **2a** (30.2 mg, 0.17 mmol) in 3 mL CH₂Cl₂. After stirring for 1 h at ambient temperature, the mixture was filtered though silica gel. The filtrate was purified by flash chromatography (petroleum ether / ethyl acetate = 5/1) afford **4** in 60% yield. Then **4** (17.9 mg, 0.1 mmol) was treated with MeMgBr (3 M, 0.12 mmol) in anhydrous THF at -78 °C for 2 h. The solution was quenched by saturated *aq*. NH₄Cl at 0 °C. The organic layer was separated and concentrated. The crude product was purified by flash chromatography (petroleum ether / ethyl acetate = 2/1). To a solution of **5** (16.6 mg, 0.087 mmol) in 3 mL CH₂Cl₂ was added Dess-Martin reagent (50 mg, 0.12 mmol) at rt. After completion of the oxidation, filtration followed by removal of solvent under reduced pressure and silica gel flash column flash to generate 6a in 95% yield with 89% *ee*. Characterization data of **6**: ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.30 (td, *J* = 7.6, 0.9 Hz, 1H), 7.14 (d, *J* = 7.0 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 2.05 (s, 3H), 1.61 (s, 3H). The *ee* was determined by HPLC analysis using a chiralcel AS-H column, hexane/2-propanol 85:15, flow rate = 1.0 mL/min 254 nm. *tR* = 7.1 min (minor), 14.2 min (major), 89% *ee*.^[3]

To a solution of **3a** (20.7 mg, 0.1 mmol) in anhydrous THF (3.0 mL) was added NaH (60%, 6 mg, 0.15 mmol, 1.5 equiv) at 0 °C. The mixture was allowed to warm to ambient temperature for 1h. Then anhydrous LiBr (17.4 mg, 0.2 mmol) and MeI (21.3 mg, 0.15 mmol) was added sequentially to the reaction mixture. The reaction was stirred at rt and monitored by TLC. When **3a** was consumed, water (5 mL) and ethyl acetate (5 mL) were added. The organic phase was saperated and concentrated under reduced pressure. The crude product was purified by flash chromatography (petroleum ether / ethyl acetate = 1/1) afford **7** in 70% yield. For **7**: ¹H NMR (400 MHz, CDCl₃) 7.31 (t, J = 7.7, 1 H), 7.23 (d, J = 7.3, 1 H), 7.10 (t, J = 7.5, 1 H), 6.88 (d, J = 7.8, 1 H), 3.90–3.80 (m, 1 H), 3.74 (dd, J = 10.8, 3.3, 1 H), 3.23 (s, 3 H), 2.29 (s, 1 H), 1.41 (s, 3 H).^[4a] Product **8** was synthesized by similar procedure. For **8**: ¹H NMR (400 MHz, CDCl₃) 7.40 (d, J = 7.3 Hz, 2H), 7.33–7.25 (m, 11H), 7.21 (t, J = 7.7 Hz, 2H), 7.06 (t, J = 7.5 Hz, 2H), 6.70 (d, J = 7.8 Hz, 2H), 5.65 (ddd, J = 16.7, 9.2,

6.3 Hz, 2H), 5.13 (dd, *J* = 18.0, 13.6 Hz, 4H), 5.02 (d, *J* = 15.7 Hz, 2H), 4.74 (d, *J* = 15.7 Hz, 2H), 4.00–3.90 (m, 1 H), 3.84 (dd, *J* = 10.6, 3.2, 1 H), 2.95 (s, 2H), 2.81 (dd, *J* = 13.3, 6.2 Hz, 2H), 2.69 (dd, *J* = 13.3, 8.5 Hz, 2H).^[4b]

7. The analytical and spectral characterization data of 3a-w

1,3-bis(hydroxymethyl)-3-methylindolin-2-one (3a):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (80% isolated yield, 89% *ee*). $[\alpha]^{26}_{D}$ = -12.28 (c = 0.08, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.10 (dd, *J* = 17.8, 7.7 Hz, 2H), 5.35 (dd, *J* = 11.1, 5.5 Hz, 1H), 5.12–4.89 (m, 1H), 4.45 (dd, *J* = 8.5, 6.4 Hz, 1H), 3.86 (dd, *J* = 10.5, 6.1 Hz, 1H), 3.71 (d, *J* = 10.8 Hz, 1H), 2.96 (s, 1H), 1.29 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 180.33, 141.90, 131.49, 128.41, 123.26, 122.79, 109.62, 67.62, 63.69, 50.84, 18.90 ppm. HRMS (ESI): calcd for C₁₁H₁₃NO₃ [M+H⁺] 208.0968, found 208.0975. The *ee* was determined by HPLC analysis using a chiralcel AS-H column, hexane/2-propanol 85:15, flow rate = 1.0 mL/min 254 nm. *t*_R = 8.37 min (major), 10.53 min (minor), 89% *ee*.

3-ethyl-1,3-bis(hydroxymethyl)indolin-2-one (3b):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to to afford viscous solid (82% isolated yield, 94% *ee*). $[\alpha]^{26}_{D} = -4.29$ (c = 0.10, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.19 (m, 1H), 7.12 (d, *J* = 7.1 Hz, 1H), 7.07–7.00 (m, 2H), 5.30 (dd, *J* = 11.1, 5.7 Hz, 1H), 4.96–4.87 (m, 1H), 4.57 (dd, *J* = 9.0, 6.1 Hz, 1H), 3.82 (dd, *J* = 10.8, 7.4 Hz, 1H), 3.71–3.65 (m, 1H), 2.98 (dd, *J* = 6.9, 4.9 Hz, 1H), 1.88–1.61 (m, 2H), 0.51 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 179.82, 142.70, 129.56, 128.41, 123.21, 123.02, 109.46, 67.14, 63.64, 56.18, 26.19, 8.12 ppm. HRMS (ESI): calcd for C₁₂H₁₅NO₃ [M+H⁺] 222.1125, found 222.1133. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 90:10, flow rate = 1.0 mL/min 254 nm. *tR* = 10.00 min (major), 19.46 min (minor), 94% *ee*.

1,3-bis(hydroxymethyl)-3-propylindolin-2-one (3c):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (77% isolated yield, 97% *ee*). $[\alpha]^{26}_{D} = 2.5$ (c = 0.11, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.7 Hz, 1H), 7.20 (d, *J* = 7.1 Hz, 1H), 7.14–7.05 (m, 2H), 5.36 (dd, *J* = 11.1, 5.6 Hz, 1H), 5.03–4.94 (m, 1H), 4.51 (dd, *J* = 8.7, 6.0 Hz, 1H), 3.88 (dd, *J* = 10.8, 7.6 Hz, 1H), 3.74 (dd, *J* = 7.2, 5.1 Hz, 2H), 3.02–2.88 (m, 1H), 2.07 (s, 1H), 1.90–1.80 (m, 2H), 1.65 (td, *J* = 12.7, 4.5 Hz, 1H), 0.76 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 179.92, 142.54, 129.89, 128.38, 123.21, 122.98, 109.48, 67.39, 63.64, 55.71, 35.28, 17.21, 14.14 ppm. HRMS (ESI): calcd for C₁₃H₁₇NO₃ [M+H⁺] 236.1281, found 236.1284. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 90:10, flow rate = 1.0 mL/min 254 nm. *tr* = 8.00 min (major), 15.51 min (minor), 97% *ee*.

3-butyl-1,3-bis(hydroxymethyl)indolin-2-one (3e):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (83% isolated yield, 94% *ee*). ¹H NMR (400 MHz, CDCl₃) 7.22 (dd, *J* = 13.5, 5.8, 1 H), 7.12 (d, *J* = 7.3, 1 H), 7.05 (t, *J* = 7.5, 1 H), 7.00 (d, *J* = 7.8, 1 H), 5.30 (dd, *J* = 11.0, 4.0, 1 H), 4.89 (t, *J* = 9.5, 1 H), 4.49 (s, 1 H), 3.80 (d, *J* = 10.0, 1 H), 3.65 (d, *J* = 10.8, 1 H), 2.93 (s, 1 H), 1.78 (td, *J* = 12.8, 4.5, 1 H), 1.59 (td, *J* = 12.8, 4.3, 1 H), 1.09 (tq, *J* = 13.5, 6.8, 2 H), 0.92 – 0.71 (m, 2 H), 0.68 (t, *J* = 7.3, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = ¹³C NMR (101 MHz, CDCl₃) δ = 179.91, 142.55, 129.91, 128.36, 123.21, 122.94, 109.52, 67.43, 63.65, 55.64, 32.85, 25.83, 22.78, 13.72 ppm. HRMS (ESI): calcd for C₁₄H₁₉NO₃ [M+H⁺] 250.1438, found 250.1435. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 93:7, flow rate = 1.0 mL/min 254 nm. *t_R* = 11.39 min (major), 16.37 min (minor), 94% *ee*.

Supplementary Materials (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

3-allyl-1,3-bis(hydroxymethyl)indolin-2-one (3f):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (87% isolated yield, 93% *ee*). $[\alpha]^{26}_{D}$ = -20.59 (c = 0.15, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (ddd, *J* = 13.9, 11.4, 5.8 Hz, 2H), 7.16–7.05 (m, 2H), 5.34 (dd, *J* = 11.2, 6.0 Hz, 2H), 5.02–4.88 (m, 3H), 4.53 (dd, *J* = 8.5, 6.2 Hz, 1H), 3.99–3.88 (m, 1H), 3.77 (tt, *J* = 8.1, 3.9 Hz, 1H), 3.09 (dd, *J* = 7.5, 4.7 Hz, 1H), 2.59–2.45 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 179.28, 142.34, 131.30, 129.22, 128.54, 123.38, 123.18, 119.24, 109.55, 66.63, 63.64, 55.09, 37.43 ppm. HRMS (ESI): calcd for C₁₃H₁₅NO₃ [M+H⁺] 234.1125, found 234.1127. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 90:10, flow rate = 1.0 mL/min 254 nm. *t_R* = 9.94 min (major), 15.70 min (minor), 93% *ee*.

1,3-bis(hydroxymethyl)-3-(prop-2-ynyl)indolin-2-one (3g):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (67% isolated yield, 96% *ee*). $[\alpha]^{26}_{D}$ = 13.88 (c = 0.13, in THF). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.14 (dd, *J* = 19.5, 7.7 Hz, 2H), 5.36–5.28 (m, 3H), 5.17 (dd, *J* = 11.0, 7.9 Hz, 1H), 4.05–3.86 (m, 2H), 3.74 (t, *J* = 6.4 Hz, 1H), 2.82 (dd, *J* = 16.7,

2.6 Hz, 1H), 2.67–2.59 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 178.52, 142.10, 129.07, 128.59, 123.81, 123.74, 123.41, 109.49, 78.57, 71.31, 67.98, 65.69, 63.91, 23.02 ppm. HRMS (ESI): calcd for C₁₃H₁₃NO₃ [M+Na⁺] 254.0788, found 254.0789. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 90: 10, flow rate = 1.0 mL/min 254 nm. *t_R* = 20.60 min (major), 26.46 min (minor), 96% *ee*.

1,3-bis(hydroxymethyl)-3-phenylindolin-2-one (3h):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (91% isolated yield, 90% *ee*). m.p. 124-126 °C. ¹H NMR (600 MHz, *d*₆-DMSO) 7.36 (d, *J* = 7.4, 1 H), 7.31 (q, *J* = 7.8, 5 H), 7.26 (dd, *J* = 8.8, 3.1, 1 H), 7.16 (d, *J* = 7.8, 1 H), 7.10 (t, *J* = 7.5, 1 H), 6.30–6.26 (m, 1 H), 5.21–5.14 (m, 1 H), 5.05 (dd, *J* = 5.5, 3.4, 1 H), 5.03–4.95 (m, 1 H), 4.20–4.13 (m, 1 H), 4.11–4.04 (m, 1 H) ppm. ¹³C NMR (151 MHz, *d*₆-DMSO) δ = 176.99, 143.29, 138.62, 131.39, 128.87, 128.32, 127.66, 127.37, 125.55, 122.65, 109.90, 66.13, 63.15, 59.16 ppm. HRMS (ESI): calcd for C₁₆H₁₅NO₃ [M+H⁺] 270.1125, found 270.1132. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 90:10, flow rate = 1.0 mL/min 254 nm. *t*_R = 26.54 min (major), 32.14 min (minor), 90% *ee*.

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (85% isolated yield, 95% *ee*). $[\alpha]^{26}_{D}$ = -41.53 (c = 0.14, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, *J* = 13.1, 5.5 Hz, 1H), 7.02 (tt, *J* = 13.7, 6.7 Hz, 5H),

6.79 (dd, J = 15.1, 7.5 Hz, 3H), 5.04 (dd, J = 11.0, 6.5 Hz, 1H), 4.80–4.70 (m, 1H), 4.00–3.91 (m, 1H), 3.78 (d, J = 10.9 Hz, 1H), 3.67 (d, J = 6.0 Hz, 1H), 3.05 (d, J = 13.1 Hz, 1H), 2.99 (d, J = 13.1 Hz, 1H), 2.97 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 179.23$, 142.22, 135.02, 129.94, 128.77, 128.57, 127.74, 126.74, 123.82, 122.94, 109.44, 66.30, 63.46, 56.42, 39.22 ppm. HRMS (ESI): calcd for C₁₇H₁₇NO₃ [M+Na⁺] 306.1101, found 306.1100. The *ee* was determined by HPLC analysis using a chiralcel AS-H column, hexane/2-propanol 95: 5, flow rate = 1.0 mL/min 254 nm. *t*_R = 33.73 min (minor), 37.46 min (major), 95% *ee*.

1,3-bis(hydroxymethyl)-3-(2-methylbenzyl)indolin-2-one (3j):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (79% isolated yield, 95% *ee*). m.p. 104-105 °C. $[\alpha]^{26}_{D}$ = -14.97 (c = 0.18, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) 7.30–7.26 (m, 1 H), 7.09–6.99 (m, 3 H), 6.96 (d, J = 7.8, 2 H), 6.89 (dd, J = 7.3, 3.5, 2 H), 5.19–5.00 (m, 2 H), 4.07 (t, J = 10.2, 1 H), 3.85 (dd, J = 11.1, 2.8, 1 H), 3.20 (s, 2 H), 2.97–2.77 (m, 1 H), 2.67 (d, J = 6.8, 1 H), 2.00 (s, 3 H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.81, 142.16, 137.24, 133.79, 130.40, 130.34, 128.77, 128.60, 126.87, 125.38, 124.01, 122.86, 109.50, 65.90, 63.55, 55.57, 34.77, 19.89 ppm. HRMS (ESI): calcd for C₁₈H₁₉NO₃ [M+H⁺] 298.1438, found 298.1437. The *ee* was determined by HPLC analysis using a chiralcel IA column, hexane/2-propanol 85:15, flow rate = 1.0 mL/min 254 nm. t_R = 9.42 min (minor), 10.11 min (major), 95% *ee*.

1,3-bis(hydroxymethyl)-3-(4-methoxybenzyl)indolin-2-one (3k):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a colorless needle (81% isolated yield, 92% *ee*). m.p. 92-93 °C. $[\alpha]^{26}_{D}$ = -45.20 (c = 0.17, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) 7.27 (d, *J* = 8.7, 2 H), 7.12 (dt, *J* = 14.7, 7.2, 2 H), 6.90 (d, *J* = 7.8, 1H), 6.79 (d, *J* = 8.0, 2 H), 6.61 (d, *J* = 8.2, 2 H), 5.05 (d, *J* = 7.7, 2 H), 4.03 (t, *J* = 10.1, 1 H), 3.91–3.82 (m, 1 H), 3.70 (3 H, s), 3.15 (d, *J* = 13. 2, 1 H), 3.08 (d, *J* = 13.3, 1 H), 2.46 (dd, *J* = 13.3, 10.2, 2 H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.34, 158.32, 142.25, 130.91, 128.91, 128.49, 127.00, 123.78, 122.90, 113.13, 109.51, 66.25, 63.47, 56.61, 55.09, 38.27 ppm. HRMS (ESI): calcd for C₁₈H₁₉NO₄ [M+Na⁺] 336.1206, found 336.1204. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 95: 5, flow rate = 1.0 mL/min 254 nm. *t*_R = 31.87 min (minor), 34.92 min (major), 92% *ee*.

3-(benzo[d][1,3]dioxol-5-ylmethyl)-1,3-bis(hydroxymethyl)indolin-2-one (3l):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (87% isolated yield, 92% *ee*). $[\alpha]^{26}_{D}$ = -38.86 (c = 0.16, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) 7.24 (d, *J* = 7.61, H), 7.11 (dt, *J* = 14.6, 7.2, 2 H), 6.93 (d, *J* = 7.8, 1 H), 6.51 (d, *J* = 7.7, 1 H), 6.34 (d, *J* = 8.6, 2 H), 5.82 (s, 2 H), 5.18 (dd, *J* = 11.1, 6.3, 1 H), 4.94–4.84 (m, 1 H), 4.04–3.95 (1 H, m), 3.83 (dd, *J* = 12.6, 8.8, 2 H), 3.05 (d, *J* = 13.5, 1 H), 2.99 (d, *J* = 13.5, 1 H), 2.95 (m, 1 H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.28, 146.96, 146.23, 142.24, 130.37, 128.75, 128.68, 128.59, 126.86, 126.38, 123.77, 123.15, 123.00, 110.20, 100.75, 66.37, 63.52, 56.50, 38.68 ppm. HRMS (ESI): calcd for C₁₈H₁₇NO₅ [M+Na⁺] 350.0999, found 350.1002. The *ee* was determined by HPLC analysis using a chiralcel IA column, hexane/2-propanol 85: 15, flow rate = 1.0 mL/min 254 nm. *t*_R = 16.19 min (minor), 20.13 min (major), 92% *ee*.

1,3-bis(hydroxymethyl)-3-(3-phenoxybenzyl)indolin-2-one (3m):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (91% isolated yield, 97% *ee*). $[\alpha]^{26}_{D}$ = -53.02 (c = 0.10, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (dt, *J* = 21.3, 7.7 Hz, 3H), 7.00 (dt, *J* = 16.0, 7.7 Hz, 4H), 6.83 (d, *J* = 7.8 Hz, 1H), 6.70–6.64 (m, 3H), 6.60 (d, *J* = 7.6 Hz, 1H), 6.38 (s, 1H), 5.07 (dd, *J* = 11.0, 6.5 Hz, 1H), 4.80–4.71 (m, 1H), 3.95–3.82 (m, 2H), 3.75 (dd, *J* = 10.8, 2.3 Hz, 1H), 3.06 (d, *J* = 13.2 Hz, 1H), 3.00 (s, 1H), 2.91 (d, *J* = 13.2 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 179.10, 157.19, 156.41, 142.19, 137.09, 129.66, 129.10, 128.57, 124.94, 123.73, 123.10, 123.01, 120.56, 118.48, 117.71, 109.46, 66.51, 63.51, 56.42, 38.94 ppm. HRMS (ESI): calcd for C₂₃H₂₁NO₄ [M+Na⁺] 398.1363, found 398.1363. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 90: 10, flow rate = 1.0 mL/min 254 nm. *t*_R = 24.31 min (major), 31.88 min (minor), 97% *ee*.

3-(biphenyl-4-ylmethyl)-1,3-bis(hydroxymethyl)indolin-2-one (3n):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (87% isolated yield, 91% *ee*). m.p. 138-140 °C. $[\alpha]_{D}^{26}$ = -63.05 (c = 0.11, in THF). ¹H NMR (400 MHz, CDCl₃) 7.49 (d, *J* = 7.8, 2 H), 7.39 (t, *J* = 7.4, 2 H), 7.35–7.26 (m, 6 H), 7.20 (d, *J* = 7.3, 1 H), 7.12 (t, *J* = 7.4, 1 H), 6.95 (d, *J* = 7.7, 2 H), 6.90 (d, *J* = 7.8, 1 H), 5.06 (d, *J* = 7.7, 2 H), 4.07 (t, *J* = 10.3, 1 H), 3.91 (dd, *J* = 11.0, 3.1, 1 H), 3.26 (d, *J* = 13.1, 1 H), 3.19 (d, *J* = 13.1, 1 H), 2.52–2.32 (2 H, m) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.30, 146.98, 146.26, 142.19, 130.39, 128.65, 126.87, 126.38, 123.79, 123.17, 123.03, 110.22, 109.46, 107.63, 100.77, 66.32, 63.58, 56.28, 38.70 ppm. HRMS (ESI): calcd for C₂₃H₂₁NO₃ [M+Na⁺] 382.1414, found 382.1412. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 90: 10, flow rate = 1.0 mL/min 254 nm. *t*_R = 19.08 min (major), 23.49 min (minor), 91% *ee*.

3-(2-chlorobenzyl)-1,3-bis(hydroxymethyl)indolin-2-one (30):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (90% isolated yield, 96% *ee*). m.p. 116-118 °C. $[\alpha]^{26}_{D}$ = 13.3 (c = 0.15, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) 7.27–7.16 (m, 3 H), 7.14–6.98 (m, 5 H), 6.94 (d, *J* = 7.8, 1 H), 5.26 (dd, *J* = 11.0, 6.9, 1 H), 5.10–4.98 (m, 1 H), 4.09–3.98 (m, 1 H), 3.86 (dd, *J* = 11.1, 3.5, 1 H), 3.44 (d, *J* = 13.8, 1 H), 3.36 (m, 1 H), 3.30 (d, *J* = 13.9, 1 H), 2.68–2.59 (m, 1 H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.44, 142.02, 134.71, 133.57, 131.37, 129.49, 128.59, 128.21, 128.17, 126.34, 124.39, 122.84, 109.31, 66.36, 63.64, 55.80, 34.74 ppm. HRMS (ESI): calcd for C₁₇H₁₆CINO₃ [M+H⁺] 318.0891, found 318.0896. The *ee* was determined by HPLC analysis using a chiralcel IA column, hexane/2-propanol 95: 5, flow rate = 1.0 mL/min 254 nm. *t*_R = 10.85 min (minor), 11.63 min (major), 96% *ee*.

3-(4-chlorobenzyl)-1,3-bis(hydroxymethyl)indolin-2-one (3p):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (87% isolated yield, 91% *ee*). $[\alpha]_{D}^{26}$ = 16.38 (c = 0.10, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, *J* = 15.6, 8.0 Hz, 2H), 7.08 (d, *J* = 7.3 Hz, 1H), 7.05–6.96 (m, 3H), 6.94 (d, *J* = 7.8 Hz, 1H), 5.28 (dd, *J* = 11.1, 3.6 Hz, 1H), 5.02–4.82 (m, 1H), 4.46 (d, *J* = 4.9 Hz, 1H), 3.98 (d, *J* = 10.4 Hz, 1H), 3.80 (d, *J* = 11.0 Hz, 1H), 3.33 (d, *J* = 13.9 Hz, 1H), 3.23 (s, 1H), 3.17 (d, *J* = 13.9 Hz, 1H) ppm. ¹³C

NMR (101 MHz, CDCl₃) δ = 179.23, 141.99, 135.35, 133.21, 132.27, 132.08, 129.24, 128.78, 127.97, 126.70, 124.32, 122.97, 109.38, 66.38, 63.65, 55.63, 34.17 ppm. HRMS (ESI): calcd for C₁₇H₁₆ClNO₃ [M+H⁺] 318.0891, found 318.0894. The *ee* was determined by HPLC analysis using a chiralcel AS-H column, hexane/2-propanol 95: 5, flow rate = 1.0 mL/min 254 nm. *t*_R = 40.03 min (minor), 47.16 min (major), 96% *ee*.

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a colorless crystal (88% isolated yield, 93% *ee*). m.p. 69-70 °C. $[\alpha]^{26}_{D}$ = -40.29 (c = 0.22, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.20–7.16 (m, 3H), 7.06 (dd, *J* = 16.1, 7.2 Hz, 4H), 6.95 (t, *J* = 5.4 Hz, 4H), 6.84 (d, *J* = 7.8 Hz, 2H), 6.71 (d, *J* = 8.3 Hz, 4H), 5.09 (dd, *J* = 11.1, 5.8 Hz, 2H), 4.79–4.71 (m, 2H), 3.92 (dd, *J* = 10.3, 6.3 Hz, 2H), 3.78 (dd, *J* = 16.2, 8.8 Hz, 4H), 3.03 (d, *J* = 13.2 Hz, 2H), 2.97 (t, *J* = 10.0 Hz, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 179.04, 142.16, 133.54, 132.69, 131.33, 131.20, 128.78, 128.41, 127.95, 123.71, 123.09, 109.58, 77.34, 77.23, 77.03, 76.71, 66.35, 63.52, 56.25, 38.29 ppm. HRMS (ESI): calcd for C₁₇H₁₅Cl₂NO₃ [M+Na⁺] 374.0321, found 374.0321. The *ee* was determined by HPLC analysis using a chiralcel AS-H column, hexane/2-propanol 90: 10, flow rate = 1.0 mL/min 254 nm. *tR* = 14.31 min (minor), 17.56 min (major), 93% *ee*.

3-(4-bromobenzyl)-1,3-bis(hydroxymethyl)indolin-2-one (3r):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (79% isolated yield, 90% *ee*). m.p. 138-140 °C. ¹H NMR (600 MHz, CDCl₃) 7.25 (d, *J* = 7.8, 1 H), 7.18 (d, *J* = 8.3, 2 H), 7.14 (d, *J* = 7.2, 1 H), 7.10 (t, *J* = 7.4, 1 H), 6.91 (d, *J* = 7.8, 1 H), 6.72 (d, *J* = 8.3, 2 H), 5.16 (dd, *J* = 11.1, 6.2, 1 H), 4.83–4.78 (m, 1 H), 3.96 (dt, *J* = 12.8, 9.1, 2 H), 3.84–3.78 (m, 1 H), 3.07 (dd, *J* = 13.1, 3.8, 1 H), 3.06-3.07 (m, 1 H), 2.99 (d, *J* = 13.1, 3.4, 1 H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.00, 142.15, 134.04, 131.57, 130.91, 128.79, 128.37, 123.70, 123.10, 120.83, 109.62, 66.37, 63.50, 56.22, 38.31 ppm. HRMS (ESI): calcd for C₁₇H₁₆BrNO₃ [M+Na⁺] 384.0206, found 384.0213. The *ee* was determined by HPLC analysis using a chiralcel AS-H column, hexane/2-propanol 97: 3, flow rate = 1.0 mL/min 254 nm. *t*_R = 73.88 min (minor), 85.86 min (major), 90% *ee*.

1,3-bis(hydroxymethyl)-3-(naphthalen-1-ylmethyl)indolin-2-one (3s):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford viscous solid (92% isolated yield, 92% *ee*). $[\alpha]^{26}_{D}$ = -14.16 (c = 0.10, in THF). ¹H NMR (600 MHz, CDCl₃) 7.91 (d, *J* = 8.2, 1 H), 7.73 (d, *J* = 7.7, 1 H), 7.64 (d, *J* = 8.2, 1 H), 7.40–7.32 (m, 2 H), 7.21 (t, *J* = 7.6, 1 H), 7.14 (t, *J* = 7.8, 1 H), 7.06 (d, *J* = 7.1, 1 H), 6.89–6.81 (m, 3 H), 5.06 (dd, *J* = 11.1, 6.2, 1 H), 4.87 (dd, *J* = 10.9, 7.9, 1 H), 4.13 (dd, *J* = 12.3, 5.4, 1 H), 3.86 (d, *J* = 11.1, 1 H), 3.64 (d, *J* = 14.1, 1 H), 3.62–3.59 (m, 1 H), 3.57 (d, *J* = 14.1, 1 H), 3.01 (s, 1 H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.79, 142.03, 133.55, 132.41, 131.66, 128.65, 128.49, 128.43, 127.63, 125.42, 125.39, 124.76, 124.51, 124.41, 122.69, 109.29, 66.19, 63.52, 55.74, 34.60 ppm. HRMS (ESI): calcd for C₂₁H₁₉NO₃ [M+Na⁺] 356.1257, found 356.1259. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 95:5, flow rate = 1.0 mL/min 254 nm. *t*_R = 35.06 min (major), 39.00 min (minor), 92% *ee*.

1,3-bis(hydroxymethyl)-3-(naphthalen-2-ylmethyl)indolin-2-one (3t):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (93% isolated yield, 95% *ee*). m.p. 126-128 °C. $[\alpha]^{26}_{D}$ = -46.59 (c = 0.10, in CHCl₃). ¹H NMR (600 MHz, CDCl₃) 7.71–7.67 (m, 1 H), 7.63–7.60 (m, 1 H), 7.53–7.51 (m, 1 H), 7.39–7.35 (m, 2 H), 7.34 (s, 1 H), 7.18 (t, *J* = 7.7, 1 H), 7.14 (d, *J* = 7.3, 1 H), 7.06 (t, *J* = 7.5, 1 H), 6.96 (d, *J* = 8.4, 1 H), 6.82 (d, *J* = 7.8, 1 H), 5.12 (dd, *J* = 11.2, 5.7, 1 H), 4.73–4.67 (m, 1 H), 4.09–3.97 (m, 2 H), 3.86 (d, *J* = 11.0, 1 H), 3.25 (d, *J* = 13.3, 1 H), 3.20-3.21 (m, 2 H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 179.30, 142.19, 132.98, 132.68, 132.16, 128.74, 128.70, 128.58, 128.21, 127.60, 127.45, 127.20, 125.85, 125.57, 123.89, 122.94, 109.52, 66.45, 63.45, 56.47, 39.14 ppm. HRMS (ESI): calcd for C₂₁H₁₉NO₃ [M+Na⁺] 356.1257, found 356.1252. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 95:5, flow rate = 1.0 mL/min 254 nm. *t*_R = 34.14 min (minor), 40.05 min (major), 95% *ee*.

1,3-bis(hydroxymethyl)-3-(pyridin-2-ylmethyl)indolin-2-one (3u):

Purified by flash chromatography (EtOAc: MeOH = 20: 1) to afford a white solid (75% isolated yield, >99% *ee*). m.p. 131-132 °C. ¹H NMR (400 MHz, DMSO) δ 8.22 (d, *J* = 4.8 Hz, 1H), 7.47 (td, *J* = 7.7, 1.6 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 2H), 7.03 (dd, *J* = 7.4, 4.9 Hz, 1H), 6.96–6.85 (m, 3H), 6.13 (t, *J* = 7.1 Hz, 1H), 5.08–4.90 (m, 3H), 3.79 (dd, *J* = 10.3, 5.1 Hz, 1H), 3.67 (dd, *J* = 10.3, 5.8 Hz, 1H), 3.29 (d, *J* = 13.8 Hz, 1H), 3.16 (d, *J* = 13.8 Hz, 1H) ppm. ¹³C NMR (101 MHz, DMSO) δ = 177.92, 157.30, 148.87, 143.26, 136.27, 130.38, 127.71, 124.64, 124.02, 121.85, 109.14, 66.65, 62.99, 55.20, 40.93 ppm. HRMS (ESI): calcd for C₁₆H₁₆N₂O₃ [M+K⁺] 323.0793, found 323.0796. The *ee* was determined by HPLC analysis using a chiralcel OD-H column, hexane/2-propanol 93: 7, flow rate = 1.0 mL/min 254 nm. *tr* = 15.78 min (major), >99% *ee*.

1,3-bis(hydroxymethyl)-3-(thiophen-2-ylmethyl)indolin-2-one (3v):

Purified by flash chromatography (petroleum ether: EtOAc = 1: 3) to afford viscous solid (89% isolated yield, >99% *ee*). $[\alpha]^{26}_{D}$ = -21.70 (c = 0.22, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.19 (m, 1H), 7.13 (d, *J* = 7.3 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.92–6.84 (m, 2H), 6.70–6.61 (m, 1H), 6.47 (d, *J* = 3.3 Hz, 1H), 5.09 (dd, *J* = 10.9, 3.7 Hz, 1H), 4.81–4.70 (m, 1H), 4.10 (s, 1H), 3.91 (d, *J* = 10.8 Hz, 1H), 3.76 (d, *J* = 11.0 Hz, 1H), 3.33 (d, *J* = 14.4 Hz, 1H), 3.17 (d, *J* = 14.4 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 178.89, 142.62, 136.73, 128.85, 128.76, 127.07, 126.34, 124.46, 123.69, 123.19, 109.57, 77.38, 77.26, 77.06, 76.74, 66.43, 63.55, 56.38, 33.27 ppm. HRMS (ESI): calcd for C₁₅H₁₅NO₃S [M+H⁺] 290.0845, found 290.0848. The *ee* was determined by HPLC analysis using a chiralcel IA column, hexane/2-propanol 98: 2, flow rate = 1.0 mL/min 254 nm. *t*_R = 50.33 min (major), >99% *ee*.

Purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to afford a white solid (91% isolated yield, 89% *ee*). m.p. 145-146 °C. $[\alpha]^{24}_{D}$ = 4.57 (c = 0.11, in THF). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.3 Hz, 1H), 7.34 (s, 1H), 6.94 (d, *J* = 8.3 Hz, 1H), 5.31 (dd, *J* = 11.1, 5.6 Hz, 1H), 4.92 (t, *J* = 10.0 Hz, 1H), 4.49 (d, *J* = 5.8 Hz, 1H), 3.81 (dd, *J* = 10.6, 5.9 Hz, 1H), 3.65 (d, *J* = 10.4 Hz, 1H), 3.13 (s, 1H), 1.26 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 179.61, 140.95, 133.69, 131.28, 126.21, 116.06, 111.13, 77.34, 77.02, 76.70, 67.48, 63.75, 51.13, 18.79 ppm. HRMS (ESI): calcd for C₁₁H₁₂BrNO₃ [M+Na⁺] 307.9893, found 307.9895. The *ee* was determined by HPLC analysis using a chiralcel OD-H column,

hexane/2-propanol 90:10, flow rate = 1.0 mL/min 254 nm. *t*_R = 10.30 min (major), 11.51 min (minor), 89% *ee*.

8. Copies of NMR spectra of the products

Current Data Parameters F2 - Acquisition Parameters DATE: 2010-05-26T00:02:00 PULPROG: zgpg30 TD: 32768 Solvent: CDC13 NS: 512 DS: undefined SWH: 24038.5 Hz AQ: undefined TE: 299.7 C CHANNEL f1 === NUC1: 13C P1: 15.5 usec SF01: undefined MHz F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 1.00 Hz First Point: 0.50 FIFSt Formt. 0.30 FT: Hyper Quadrature Phase: Manual Ph0: -117.78 Ph1: 89.58

77.242 77.223 77.204 77.194 77.105 77.105 77.065 77.065 77.028 C3.810 73.785 73.662 3.635 1.773 1.616 1.595 1.595 1.595 1.595 1.595 1.132 1.132 1.132 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.0738 1.07588 1.07588 1.0758 1.07588 1.07588 1.07588 1.07588 1.0758 5.321 5.311 5.284 5.284 5.284 64.868 -4.485 --2.931

0.98

6.5 6.0

8.5 8.0 7.5 7.0

9.0

F00.1 F66.0

5.0

5.5

-66.0

4.5 4.0 f1 (ppm)

4.0

1.03

3.5

0.97-

3.0

2.5

Current Data Parameters

F2 - Acquisition Parameters DATE: 2010-06-09T23:17:00 **PULPROG: z**g30 **TD**: 32768 Solvent: CDC13 NS: 16 DS: undefined SWH: 8223.7 Hz AQ: undefined TE: 296.2 C

= CHANNEL f1 = NUC1: 1H **P1**: 12 usec SF01: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 0.60 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: 4.78 Ph1: 16.47

2.11 Jt 3.23

0.5 0.0

2.16-

1.0

1.01 1.05 1

2.0 1.5

RUAN UNIVER

F2 - Acquisition Parameters DATE: 2010-06-09T23:46:00 PULPROG: zgpg30 TD: 32768 Solvent: CDC13 NS: 512 DS: undefined SWH: 24038.5 Hz AQ: undefined TE: 299.5 C = CHANNEL f1 ==

P1: 15.5 usec SF01: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 1.00 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -114.27 Ph1: 76.34

7.370 7.358 7.3358 7.7358 7.7359 7.7359 7.7350 7.7252 6.2277 7.7252 7.5252 7.5527 7.5527 7.5527 7.5527 7.5527 7.5527 7.5527 7.55057 7.55057 7.55057 7.50057

AQ: undefined TE: 298.9 C

NUC1: 130 P1: 15.5 usec SF01: undefined MHz

SI: 0 FT: Hyper

Phase: NoPC

- CHANNEL f1 -

F2 - Processing Parameters

-1E+08

-5E+07

-0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7,679 7,7313 7,7315 7,7355 7,7355 7,7355 7,7355 6,950 6,950 6,8136

Current Data Parameters

F2 - Acquisition Parameters DATE: 2010-05-24T10:49:00 PULPROG: zg30 TD: 32768 Solvent: CDC13 NS: 16 DS: undefined SVM: 12335.5 Hz AQ: undefined TE: 295.5 C

-7.1916 -7.1737 -7.1737 -7.1737 -7.1377 -7.1324 -6.8329 -6.8328 -7.41122 -3.008-3

-3.198-7.293-7.259-7.259-7.259-7.259-7.004-7.004-6.970-6.970-6.970-6.950-6.883-6.883-6.874-6.874

L2.681

-1.995

2.45-1

7.5

8.5 8.0

- bbd

7.0 6.5

2.98 1.83 1.95

6.0

Current Data Parameters

F2 - Acquisition Parameters DATE: 2010-04-28T11:04:00 **PULPROG: z**g30 **TD**: 32768 TD: 32768 Solvent: CDC13 NS: 16 DS: undefined SWH: 8223.7 Hz AQ: undefined TE: 298.2 C

= CHANNEL f1 = NUC1: 1H **P1**: 12 usec SF01: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 0.60 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -180.54 Ph1: 13.77

M M

1.08-I 1.00-I

4.0

4.5 4.0 f1 (ppm)

1.05<u>+</u> 0.99<u>+</u>

3.0 2.5

1.58≁

3.5

2.86-1

2.0 1.5 1.0

0.5

0.0

2.11-

5.0

5.5

F2 - Acquisition Parameters DATE: 2010-05-10T10:47:00 PULPROG: zgpg30 TD: 32768 Solvent: CDC13 NS: 512 DS: undefined SWH: 36057.7 Hz AQ: undefined TE: 295.8 C - CHANNEL f1 -NUC1: 130

P1: 11.5 usec SF01: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 1.00 Hz First Point: 0.50 First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: 30.49 Ph1: 113.17

7.282 7.1158 7.1158 7.1158 6.028 6.698 6.6799 6.6779 6.771 6.771 6.771 6.771 6.771 6.771 6.771 6.772 6.772 6.772 6.772 6.772 6.7721 7.7721 7.77210 7.77210 7.77210 7.772100000000000000000000000000000

$\begin{array}{c} 7.261\\ 7.246\\ 7.122\\ 7.109\\ 6.918\\ 6.918\\ 6.918\\ 6.521\\ 6.918\\ 6.521\\ 6.532\\ 6.918\\ 6.521\\ 6.532\\ 6.534\\ 7.073\\ 7.073\\ 7.073\\ 7.073\\ 8.85\\ 6.522\\ 7.100\\ 6.522\\ 7.3385\\$

7.260 7.211 7.221 7.221 7.221 7.221 7.221 7.221 7.225 7.064 6.955 7.061 6.954 6.954 6.954 6.954 6.955 7.061 6.954 6.954 6.955 6.954 6.955 7.061 6.954 6.954 6.955 7.061 6.954 6.954 6.954 6.955 7.061 6.954 6.954 6.955 7.061 6.954 6.954 6.954 6.954 6.955 7.061 6.954 6.954 6.954 7.005

Current Data Parameters

 F2 - Acquisition Parameters

 DATE: 2010-04-28112:39:00

 PULPROG: zg30

 Solvent: CDC13

 NS: 16

 DS: undefined

 SVM: 8223.7 Hz

 AQ: undefined

 TE: 298.1 C

 CHRNNEL f1

NUC1: 1H P1: 12 usec SF01: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 0.60 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -183.55 Ph1: 18.96

DRTE: 2010-05-15T11:29:00 PULPROG: zgpg30 TD: 32768 Solvent: CDC13 NS: 512 DS: undefined SVM: 24038.5 Hz RQ: undefined TE: 298.9 C CHRNNEL f1 NUC1: 13C P1: 15.5 usec SF01: undefined MHz F2 - Processing Parameters S1: 65536 DC: 0.05 LB: 2.00 Hz

-25000

-20000

First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -96.49 Ph1: 71.19

-5.052 -5.052 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.057 -5.052 -5

Current Data Parameters

 F2 - Acquisition Parameters

 DATE: 2010-04-28112:23:00

 PULPROG: zg30

 TD: 32768

 Solvent: CDC13

 NS: 16

 DS: undefined

 SVM: 8223.7 Hz

 AQ: undefined

 TE: 298 C

 CHRNNEL f1

NUC1: 1H P1: 12 usec SF01: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 0.60 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -181.20 Ph1: 17.23

Current Data Parameters F2 - Acquisition Parameters DATE: 2010-05-15T12:03:00 PULPROG: zgpg30 TD: 32768 Solvent: CDC13 NS: 512 DS: undefined SWH: 24038.5 Hz AQ: undefined TE: 298.9 C = CHANNEL f1 == NUC1: 130 **P1**: 15.5 usec SF01: undefined MHz F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 2.00 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -110.91 Ph1: 86.31

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) LB: 2.00 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -110.91 Ph1: 86.31

-1000

-2000

-7.1232 -7.1182 -6.022 -7.33881 -7.33881 -7.33881 -7.33881 -7.33881 -7.33826 -7.33826 -2.33862-2.33862

Current Data Parameters

F2 - Acquisition Parameters
DATE: 2010-05-24T11:21:00
PULPROG: zg30
TD: 32768
Solvent: CDC13
NS: 16
DS: undefined
SWM: 12335.5 Hz
AQ: undefined
TE: 295.6 C

 F2 - Processing Parameters

 SI: 65536

 DC: 0.05

 LB: 0.30 Hz

 First Point: 0.50

 FI: Hyper Quadrature

 Phase: Manual

 Ph0: 11.28

 Ph1: 28.90

9. References

- [1] a) B. M. Trost, Y. Zhang, T. Zhang, J. Org. Chem. 2009, 74, 5115; b) L. Cheng, L. Liu, D. Wang, Y. J. Chen, Org. Lett. 2009, 11, 3874 and references therein.
- [2] Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie, X. M. Feng, Angew. Chem. Int. Ed. 2008, 47, 1308.
- [3] T. A. Duffey, S. A. Shaw, E. Vedejs, J. Am. Chem. Soc. 2009, 131, 14.
- [4] a) K. Asakawa, N. Noguchi, M. Nakada, *Heterocycles* 2008, 76, 183; b) J. E. Thomson, A. F. Kyle, K. B. Ling, S. R. Smith, A. M. Z. Slawin, A. D. Smith, *Tetrahedron* 2010, 66, 3801.