

Pattern Generation with Synthetic Sensing Systems in Lipid Bilayer Membranes

Toshihide Takeuchi, Javier Montenegro, Andreas Hennig and Stefan Matile*

*Department of Organic Chemistry, University of Geneva, Geneva, Switzerland,
stefan.matile@unige.ch*

Supporting Information

Table of Content

1. Supporting methods	
1.1. Materials and methods	S2
1.2. Abbreviations	S3
1.3. Synthesis	
1.3.1. Synthesis of reactive counterion A1H1	S4
1.3.2. Synthesis of reactive counterion G1H1	S4
1.3.3. Synthesis of reactive counterion A1H2	S7
1.3.4. Synthesis of reactive counterion G1H2	S8
1.3.5. Synthesis of reactive counterion A1H3	S11
1.3.6. Synthesis of reactive counterion G1H3	S13
1.4. General procedures for vesicle experiments	
1.4.1. Vesicle preparation	S16
1.4.2. Preparation of odorant hydrazones	S17
1.4.3. DNA activation experiments	S17
1.4.4. Odorant sensing experiments (direct detection)	S18
1.4.5. Odorant sensing experiments (inverse detection)	S19
1.4.6. Perfume sensing experiments	S20
1.4.7. Multiwell assays	S21
1.4.8. Data analysis	S21
1.5. References	S22
2. Supporting figures	S24
3. Supporting tables	S35

1. Supporting methods

1.1. Materials and methods

As in refs. S1-S4, Supporting Information. Briefly, reagents for synthesis were purchased from Fluka and Aldrich, amino acid derivatives from Novabiochem and Bachem, buffers and salts of the best grade available from Fluka or Sigma-Aldrich and used as received. 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) was from Sigma, and *p*-xylene-bis-pyridinium bromide (DPX) was from Invitrogen. Most of the odorants were purchased from Sigma, Fluka or Acros, and the others (enantiomeric citronellals, muscones and carvones) were gifts from Firmenich, Geneva. Egg yolk phosphatidylcholine (EYPC) was from Avanti Polar Lipids.

All reactions were performed under N₂ atmosphere. Unless stated otherwise, column chromatography was carried out on silica gel 60 (Fluka, 40-63 µm). Analytical thin layer chromatography (TLC) was performed in silica gel 60 (Fluka, 0.2 mm) and silica gel GF (Analtech, 1000 µm), respectively. [α]_D²⁰ values were recorded on a Jasco P-1030 Polarimeter (reported for concentrations c in g / 100 ml solvent), melting points (Mp) on a heating table from Reichert (Austria). IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer (ATR, Golden Gate, unless stated otherwise) and are reported as wavenumbers ν in cm⁻¹ with band intensities indicated as s (strong), m (medium), w (weak), b (broad). ¹H and ¹³C NMR spectra were recorded (as indicated) either on a Bruker 300 MHz, 400 MHz or 500 MHz spectrometer and are reported as chemical shifts (δ) in ppm relative to TMS ($\delta = 0$). Spin multiplicities are reported as a singlet (s), doublet (d), triplet (t), quartet (q) and quintet (quint) with coupling constants (J) given in Hz, or multiplet (m). ¹H

and ^{13}C resonances were assigned with the aid of additional information from 1D & 2D NMR spectra (H,H-COSY, DEPT 135, HSQC and HMBC). ESI-MS for the characterization of new compounds was performed on a Finnigan MAT SSQ 7000 instrument or a ESI API 150EX and are reported as mass-per-charge ratio m/z (intensity in %, [assignment]). Accurate mass determinations using ESI (HR ESI-MS) were performed on a Sciex QSTAR Pulsar mass spectrometer.

Vesicles were prepared with a Mini-Extruder from Avanti Polar Lipids (pore size 100 nm). Sample incubation with multiwell plates was done on a Rotamax 120 (Heidolph). Fluorescence measurements were performed with a FluoroMax-2 spectrofluorometer (Jobin-Yvon Spex) equipped with a stirrer and a temperature controller, or a FluoroMax-3 spectrofluorometer equipped with a multiwell plate reader (MicroMax 384). Fluorescence images were obtained with a Gene Genius (Syngene).

1.2. Abbreviations

Boc: *tert*-Butoxycarbonyl; Calculated: Calcd; Cbz: (Benzyloxy)carbonyl; CH₃CN: Acetonitrile; DCM: Dichloromethane; DIEA: N-Ethyl-N,N-diisopropyl amine; DMSO: Dimethylsulfoxide; DPX: *p*-Xylene-bispyridinium bromide; EYPC: Egg yolk phosphatidylcholine; Et₂O: Diethyl Ether; Glu: L-Glutamic acid; Gly: Glycine; HBTU: O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate; HCl: Hydrochloric acid; HPTS: 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt; HR-MS (ESI): High resolution mass spectrometry (electrospray ionization); LUVs: Large unilamellar vesicles; Tris: Tris(hydroxymethyl)aminomethane; MeOH: Methanol; rt: Room temperature;

^tBu: *tert*-Butyl.

1.3. Synthesis

1.3.1. Synthesis of reactive counterion A1H1

Compounds **A1H1.2** and **A1H1**. This compounds were prepared from the commercially available starting material **A1H1.1** as previously reported.^{S4}

1.3.2. Synthesis of reactive counterion G1H1

G1H1.2. *General procedure A for hydrazidylation (amide synthesis) from carboxylic acids.* HBTU (906 mg, 2.39 mmol) and DIEA (2.04 ml, 11.95 mmol) were sequentially added to a solution of **G1H1.1** (500 mg, 2.39 mmol) in DCM (25 ml) under N₂. The reaction mixture was stirred for 5 min and a solution of NH₂-NHBoc (316 mg, 2.39 mmol) in DCM (5 ml) was added dropwise. The reaction mixture was stirred at rt for 1 hour and poured into a separation funnel containing DCM (15 ml) and KHSO₄ 1 M (35 ml); the aqueous phase was extracted with DCM (2 x 15 ml); the organic layer was washed with HCl 1 M (35 ml), NaHCO₃ saturated aqueous solution (35 ml), water (35 ml) and brine (35 ml) and dried over Na₂SO₄. After filtration and removal of solvent under vacuum, the residue was purified by silica gel column chromatography (DCM/MeOH 95:5, *R*_f 0.61) gave **G1H1.2** (679 mg, 88%) as a colorless oil. IR (neat): 3292 (m), 2979 (w), 1685 (s), 1236 (s), 1154 (s); ¹H NMR (400 MHz, CDCl₃): 8.63 (s, 1H), 7.38-7.29 (m, 5H), 7.10-6.84 (m, 1H), 5.98-5.62 (m, 1H), 5.12 (s, 2H), 4.92-3.75 (m, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz,

CDCl₃): 169.3 (s), 156.8 (s), 155.5 (s), 136.0 (s), 128.47 (2x, d), 128.16 (2x, d), 128.06 (d), 81.9 (s), 67.2 (t), 42.9 (t), 28.1 (3x, q); MS (ESI, MeOH/H₂O 2:1): 346 (22, [M+Na]⁺), 341 (93, [M+NH₄]⁺), 324 (27, [M+H]⁺), 268 (100, [M-O^tBu+NH₄]⁺); HR-MS (ESI): Calcd for C₁₅H₂₁N₃O₅Na: 346.1373; found: 346.1357.

G1H1.3. *General procedure B for Cbz deprotection with H₂.* Compound **G1H1.2** (450 mg, 1.39 mmol) was dissolved in MeOH (25 ml) under N₂, and Pd(OH)₂/C (20%) (49 mg, 0.07 mmol) was added in one portion. The reaction mixture was flushed with H₂ and stirred under H₂ atmosphere for 3 hours at rt. The resulting suspension was filtered through celite, and the solvent was removed under vacuum to afford **G1H1.3** (261 mg, quantitative) as a colorless solid. Mp: 162-163 °C; IR (neat): 3374 (m), 3235 (m), 2653 (m, b), 1700 (s), 1252 (s); ¹H NMR (400 MHz, D₂O): 3.49 (s, 2H), 1.48 (s, 9H); ¹³C NMR (100 MHz, D₂O): 173.9 (s), 157.1 (s), 83.2 (s), 41.8 (t), 27.5 (3x, q); MS (ESI, MeOH): 401 (44, [2M+Na]⁺), 379 (100, [2M+H]⁺), 212 (68, [M+Na]⁺), 190 (87, [M+H]⁺); HR-MS (ESI): Calcd for C₇H₁₇N₃O₃: 190.1191; found: 190.1199.

G1H1.4. *General procedure C for guanidinylation.* DIEA (678 µl, 3.96 mmol) and N,N'-di-Boc-1*H*-pyrazole-1-carboxamidine (369 mg, 1.18 mmol) were sequentially added to a solution of **G1H1.3** (150 mg, 0.79 mmol) in CH₃CN (20 ml) and water (1.5 ml) under N₂. The reaction mixture was stirred at 55 °C for 8 hours. The solvent was removed under vacuum and the residue was poured into a separation funnel containing AcOEt (25 ml) and HCl 1 M (25 ml). The aqueous phase was extracted with AcOEt (2x15 ml), and the combined organic layer was washed with water (25 ml) and brine (25 ml); dried over Na₂SO₄, filtered and removed solvent

under vacuum. The crude product was purified by column chromatography (DCM/MeOH 9:1, R_f 0.43) to afford **G1H1.4** (253 mg, 74%) as a colorless solid. Mp: 96-97 °C; IR (neat): 3313 (m, b), 2977 (m), 2653 (m, b), 1615 (w), 1134 (s); ^1H NMR (400 MHz, CDCl_3): 11.41 (s, 1H), 9.08-8.82 (m, 2H), 6.85 (s, 1H), 4.28-4.17 (m, 2H), 1.51 (s, 9H), 1.49 (s, 9H), 1.47 (s, 9H); ^{13}C NMR (100 MHz, CDCl_3): 168.4 (s), 162.7 (s), 156.2 (s), 155.2 (s), 152.6 (s), 83.4 (s), 81.5 (s), 79.6 (s), 42.8 (t), 28.09 (3x, q), 28.06 (3x, q), 27.9 (3x, q); MS (ESI, MeOH): 454 (71, $[\text{M}+\text{Na}]^+$), 432 (70, $[\text{M}+\text{H}]^+$), 354 (42, $[\text{M}-\text{Boc}+\text{Na}]^+$), 254 (41, $[\text{M}-2\text{Boc}+\text{Na}]^+$), 101 (100, $[\text{Boc}]^+$); HR-MS (ESI): Calcd for $\text{C}_{18}\text{H}_{34}\text{N}_5\text{O}_7$: 432.2452; found: 432.2458.

G1H1. *General procedure D for Boc deprotection with HCl.* HCl (1 M in Et_2O) (10 ml) was added to a solution of **G1H1.4** (170 mg, 0.39 mmol) in DCM (5 ml) under N_2 . The reaction mixture was stirred under reflux for 12 hours. The resulting suspension was then sonicated for 10 min and stirred again under reflux for 8 hours. The solvents were removed under vacuum and the colorless solid formed was dissolved in MeOH (0.5 ml), and Et_2O (20 ml) was added to obtain a colorless precipitate. The resulting suspension was centrifuged for 10 minutes and the solvent was discharged. The precipitate was washed with Et_2O (2x15 ml) and dried under high vacuum to afford **G1H1** (76 mg HCl salt, 97%) as a colorless solid. Mp: 124-125 °C; IR (neat): 3352 (m), 3183 (m), 2477 (m, b), 1646 (s), 1253 (s); ^1H NMR (400 MHz, $\text{D}_2\text{O}/\text{CD}_3\text{OD}$ 2:1): 4.13 (s, 2H); ^{13}C NMR (100 MHz, D_2O): 168.9 (s), 157.9 (s), 42.7 (t); MS (ESI, MeOH): 132 (100, $[\text{M}+\text{H}]^+$); HR-MS (ESI): Calcd for $\text{C}_3\text{H}_{10}\text{N}_5\text{O}$: 132.0879; found: 132.0880.

1.3.3. Synthesis of reactive counterion A1H2

A1H2.2.⁵⁵ *General procedure E for Boc protection.* DIEA (2.02 ml, 11.80 mmol) and Boc₂O (904 mg, 4.14 mmol) were sequentially added to a solution of **A1H2.1** (500 mg, 2.37 mmol) in DCM (50 ml) under N₂ and stirred at rt for 8 hours. The reaction mixture was then poured into a separation funnel containing HCl 1 M (45 ml); the aqueous phase was extracted with DCM (2x35 ml); the combined organic layer was washed water (25 ml) and brine (25 ml); dried over Na₂SO₄, filtered and removed solvent under vacuum. The crude product was purified by column chromatography (DCM/AcOEt 95:5) to afford **A1H2.2** (647 mg, quantitative) as a colorless oil. Spectroscopic data match those reported in the literature.⁵⁵

A1H2.3. *General procedure F for hydrazidylation from esters.* Hydrazine monohydrate (0.5 ml, 10.31 mmol) was added to a solution of **A1H2.2** (500 mg, 1.81 mmol) in MeOH (15 ml) under N₂. The reaction mixture was stirred at reflux for 12 hours. The solvent was removed under vacuum and the solid formed was washed with DCM (2x10 ml) and dried under high vacuum to afford **A1H2.3** (395 mg, 79%) as a colorless solid. Mp: 179-180 °C; [α]_D²⁰: +1.8 (c = 0.1 in MeOH); IR (neat): 3313 (s), 2967 (w), 2941 (w), 1524 (s), 1251 (m); ¹H NMR (300 MHz, CD₃OD): 4.06-3.91 (m, 1H), 2.22 (t, ³J(H,H) = 7.5 Hz, 2H), 2.09-1.79 (m, 2H), 1.44 (s, 9H); ¹³C NMR (75 MHz, CD₃OD): 174.3 (s), 173.7 (s), 157.8 (s), 80.9 (s), 54.3 (d), 31.3 (t), 29.5 (t), 28.8 (3x, q); MS (ESI, MeOH): 573 (88, [2M+Na]⁺), 551 (82, [2M+H]⁺), 298 (94, [M+Na]⁺), 276 (100, [M+H]⁺), 176 (58, [M-Boc+H]⁺); HR-MS (ESI): Calcd for C₁₀H₂₂N₅O₄: 276.1666; found: 276.1670.

A1H2. *General procedure G for Boc deprotection with TFA.* Trifluoroacetic acid (1 ml, 13.46 mmol) was added to a suspension of **A1H2.3** (250 mg, 0.90 mmol) in DCM (10 ml) under N₂. The reaction mixture was stirred at rt for 5 hours. The excess of TFA was removed by N₂ flow and the rest of the volatile materials were removed under vacuum. The solid formed was washed with DCM (2x10 ml) and dried under high vacuum to afford **A1H2** (367 mg TFA salt, 79%) of a colorless solid. Mp: 174-175 °C; [α]_D²⁰: +15.1 (c = 0.1 in MeOH); IR (neat): 2928 (m, b), 2689 (m, b), 1662 (s), 1128 (s); ¹H NMR (400 MHz, D₂O): 4.12 (t, ³J(H,H) = 6.5 Hz, 1H), 2.53 (t, ³J(H,H) = 6.5 Hz, 2H), 2.28-2.16 (m, 2H); ¹³C NMR (100 MHz, D₂O): 171.4 (s), 167.6 (s), 51.1 (d), 27.6 (t), 25.3 (t); MS (ESI, MeOH): 198 (19, [M+Na]⁺), 176 (39, [M+H]⁺), 158 (81, [M-NH₂+H]⁺), 144 (100, [M-N₂H₄+H]⁺); HR-MS (ESI): Calcd for C₅H₃₄N₅O₂: 176.1142; found: 176.1146.

1.3.4. Synthesis of reactive counterion **G1H2**

G1H2.1.^{S6} CbzCl (367 ml, 2.60 mmol) and DIEA (1.01 ml, 5.92 mmol) were sequentially added to a solution of **A1H2.1** (500 mg, 2.37 mmol) in CH₃CN (20 ml) and H₂O (3 ml) under N₂. The reaction mixture was stirred at rt for 1 hour. The solvent was removed under vacuum and the crude was purified by column chromatography (DCM/AcOEt 95:5, R_f 0.45) to afford **G1H2.1** (729 mg, quantitative) as a colorless oil. Spectroscopic data match those reported in the literature.^{S6}

G1H2.2. Following the general procedure F (see A1H2.3), reaction of **G1H2.1** (500 mg, 1.62 mmol) with hydrazine monohydrate (0.5 ml, 10.31 mmol) in MeOH (25 ml) at reflux for 6 hours followed by removal of the solvent and washings with Et₂O

(2x10 ml) afforded **G1H2.2** (451 mg, 90%) as a colorless solid. Mp: 194-195 °C; $[\alpha]_D^{20}$: -18.8 (c = 0.1 in MeOH); IR (neat): 3290 (s), 3051 (w), 1655 (s), 1533 (s), 1254 (s); ^1H NMR (400 MHz, DMSO- d_6): 9.13 (s, 1H), 8.95 (s, 1H), 7.46 (d, $^3J(\text{H},\text{H})$ = 8.2 Hz, 1H), 7.40-7.29 (m, 5H), 5.01 (s, 2H), 4.22 (s, 2H), 4.16 (s, 2H), 3.92 (dt, $^3J(\text{H},\text{H})$ = 8.2 Hz, $^3J(\text{H},\text{H})$ = 6.1 Hz, 1H), 2.12-1.95 (m, 2H), 1.95-1.58 (m, 2H); ^{13}C NMR (100 MHz, DMSO- d_6): 170.92 (s), 170.77 (s), 155.8 (s), 137.0 (s), 128.4 (2x, d), 127.81 (2x, d), 127.77 (d), 65.4 (t), 53.1 (d), 29.9 (t), 28.2 (t); MS (ESI, MeOH): 332 (100, $[\text{M}+\text{Na}]^+$), 310 (59, $[\text{M}+\text{H}]^+$), 278 (63, $[\text{M}-\text{N}_2\text{H}_4+\text{H}]^+$), 248 (35, $[\text{M}-2(\text{N}_2\text{H}_4)+\text{H}]^+$), 234 (26, $[\text{M}-\text{C}_6\text{H}_5+\text{H}]^+$); HR-MS (ESI): Calcd for $\text{C}_{13}\text{H}_{19}\text{N}_5\text{O}_4\text{Na}$: 332.1329; found: 332.1320.

G1H2.3. Following the general procedure E (see A1H2.2), reaction of **G1H2.2** (450 mg, 1.45 mmol) with DIEA (1.23 ml, 7.25 mmol) and Boc_2O (870 mg, 3.98 mmol) in CH_3CN (35 ml) and H_2O (5 ml) and purification by column chromatography (DCM/AcOEt 9:1, R_f 0.49) afforded **G1H2.3** (583 mg, 79%) as a colorless solid. Mp: 97-98 °C; $[\alpha]_D^{20}$: -24.8 (c = 0.1 in MeOH); IR (neat): 3272 (m), 2980 (w), 1674 (s), 1243 (s), 1162 (s); ^1H NMR (400 MHz, CDCl_3): 9.93 (s, 1H), 9.64 (s, 1H), 7.43-7.25 (m, 5H), 6.54 (s, 2H), 5.63-5.52 (m, 1H), 5.12 (d, $^3J(\text{H},\text{H})$ = 12.5 Hz, 1H), 5.03 (d, $^3J(\text{H},\text{H})$ = 12.5 Hz, 1H), 4.38-4.26 (m, 1H), 2.45-2.26 (m, 2H), 2.07-1.96 (m, 1H), 1.85-1.74 (m, 1H), 1.47 (s, 9H), 1.44 (s, 9H); ^{13}C NMR (100 MHz, CDCl_3): 173.3 (s), 171.6 (s), 157.11 (s), 157.01 (s), 155.7 (s), 136.1 (s), 128.44 (2x, d), 128.11 (3x, d), 82.7 (2x, s), 67.0 (t), 52.3 (d), 29.4 (2x, t), 28.07 (3x, q), 28.02 (3x, q); MS (ESI, MeOH/ H_2O 2:1): 532 (12, $[\text{M}+\text{Na}]^+$), 527 (65, $[\text{M}+\text{NH}_4]^+$), 510 (70, $[\text{M}+\text{H}]^+$), 398 (100, $[\text{M}-\text{Cbz}+\text{Na}]^+$); HR-MS (ESI): Calcd for $\text{C}_{23}\text{H}_{35}\text{N}_5\text{O}_8\text{Na}$: 532.2376; found: 532.2367.

G1H2.4. Following the general procedure B (see G1H1.3), reaction of **G1H2.3** (430 mg, 0.84 mmol) with Pd(OH)₂/C (20%) (30 mg, 0.04 mmol) in MeOH (30 ml) under H₂ for 4 h followed by filtration through celite afforded **G1H2.4** (311 mg, quantitative) as a colorless solid. Mp: 131-132 °C; [α]_D²⁰: -3.1 (c = 0.1 in MeOH); IR (neat): 3254 (w), 2977 (w), 1671 (s), 1154 (s); ¹H NMR (400 MHz, CD₃OD): 3.33 (t, ³J(H,H) = 6.8 Hz, 1H), 2.31 (t, ³J(H,H) = 6.8 Hz, 2H), 2.06-1.86 (m, 2H), 1.46 (s, 18H); ¹³C NMR (100 MHz, CD₃OD): 176.8 (s), 175.0 (s), 158.36 (s), 158.27 (s), 82.2 (s), 53.6 (d), 32.4 (t), 30.9 (t), 28.7 (6x, q); MS (ESI, MeOH): 751 (80, [2M+H]⁺), 398 (7, [M+Na]⁺), 376 (100, [M+H]⁺); HR-MS (ESI): Calcd for C₁₅H₃₀N₅O₆: 376.2190; found: 376.2190.

G1H2.5. Following the general procedure C (see G1H1.4), reaction of **G1H2.4** (150 mg, 0.40 mmol), DIEA (342 μl, 2.00 mmol) and N,N'-di-Boc-1*H*-pyrazole-1-carboxamidine (186 mg, 0.60 mmol) in CH₃CN (20 ml) and water (1.5 ml) at 55 °C for 8 hours and purification by column chromatography (DCM/MeOH 9:1, *R*_f 0.37) afforded **G1H2.5** (170 mg, 69%) as a colorless solid. Mp: 146-147 °C; [α]_D²⁰: -10.7 (c = 0.1 in MeOH); IR (neat): 3274 (m, b), 2980 (w), 1610 (s), 1152 (s), 1130 (s); ¹H NMR (400 MHz, CDCl₃): 11.11 (s, 1H), 10.05 (s, 1H), 9.22 (s, 1H), 8.95 (s, 1H), 6.59-6.31 (m, 2H), 5.06-4.89 (m, 1H), 2.50-2.14 (m, 2H), 2.12-1.96 (m, 2H), 1.38 (s, 9H), 1.37 (s, 9H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): 173.5 (s), 170.7 (s), 162.5 (s), 156.44 (s), 156.13 (s), 155.3 (s), 152.4 (s), 83.6 (s), 82.1 (s), 81.8 (s), 79.4 (s), 50.8 (d), 32.2 (t) 30.8 (t), 28.19 (3x, q), 28.14 (3x, q), 28.06 (3x, q), 27.97 (3x, q); MS (ESI, MeOH): 640 (28, [M+Na]⁺), 618 (100, [M+H]⁺), 418 (28, [M-Boc+H]⁺), 318 (24, [M-2Boc+H]⁺); HR-MS (ESI): Calcd for

$C_{26}H_{48}N_7O_{10}$: 618.3457; found: 618.3475.

G1H2. Following the general procedure D (see G1H1), reaction of **G1H2.5** (100 mg, 0.16 mmol) with 10 ml of HCl (1 M in Et_2O) in DCM (5 ml) for 12 hours under reflux followed by precipitation ($Et_2O/MeOH$ 20:1, 10.5 ml), centrifugation and washings with Et_2O (2x15 ml) afforded **G1H2** (40 mg HCl salt, 76%) as a colorless solid. Mp: 182-183 °C; $[\alpha]_D^{20}$: -12.2 (c = 0.1 in MeOH); IR (neat): 3146 (s, b), 2902 (s, b), 2638 (s, b), 1666 (s), 1495 (s); 1H NMR (400 MHz, D_2O/CD_3OD 2:1): 4.30-4.23 (m, 1H), 2.50-2.41 (m, 2H), 2.30-2.17 (m, 1H), 2.12-1.99 (m, 1H); ^{13}C NMR (100 MHz, CD_3OD): 172.5 (s), 170.6 (s), 158.7 (s), 54.5 (d), 29.9 (t), 28.8 (t); MS (ESI, MeOH/ H_2O 2:1): 218 (82, $[M+H]^+$), 186 (100, $[M-N_2H_4+H]^+$); HR-MS (ESI): Calcd for $C_6H_{16}N_7O_2$: 218.1359; found: 218.1364.

1.3.5. Synthesis of reactive counterion A1H3

A1H3.2.^{s7} Following the general procedure A (see G1H1.2), reaction of **A1H3.1** (200 mg, 0.77 mmol) with HBTU (292 mg, 0.77 mmol), DIEA (657 μ l, 3.85 mmol) and **A1H2.1** (162 mg, 0.77 mmol) in DCM (30 ml) and purification by column chromatography (DCM/MeOH 95:5, R_f 0.54) afforded **A1H3.2** (238 mg, 74%) as a colorless oil. $[\alpha]_D^{20}$: -11.8 (c = 0.1 in MeOH); IR (neat): 2939 (w, b), 2863 (w), 1607 (m), 835 (s); 1H NMR (400 MHz, $CDCl_3$): 6.96 (d, $^3J(H,H) = 8.1$ Hz, 1H), 5.25 (d, $^3J(H,H) = 8.1$ Hz, 1H), 4.59 (td, $^3J(H,H) = 8.1$ Hz, $^3J(H,H) = 5.1$ Hz, 1H), 4.23-4.10 (m, 1H), 3.74 (s, 3H), 3.69 (s, 3H), 3.67 (s, 3H), 2.57-2.31 (m, 4H), 2.28-2.07 (m, 2H), 2.06-1.85 (m, 2H), 1.43 (s, 9H); ^{13}C NMR (100 MHz, $CDCl_3$): 173.84 (s), 173.15 (s), 171.86 (s), 171.47 (s), 155.5 (s) 80.1 (s), 53.6 (d), 52.5 (q), 51.89 (q), 51.86 (d), 51.62

(q), 30.1 (t), 29.9 (t), 28.2 (3x, q), 27.91 (t), 27.08 (t); MS (ESI, MeOH): 441 (80, [M+Na]⁺), 419 (48, [M+H]⁺), 341 (73, [M-Boc+Na]⁺), 319 (100, [M-Boc+H]⁺); HR-MS (ESI): Calcd for C₁₈H₃₀N₂O₉Na: 441.1843; found: 441.1843.

A1H3.3. Following the general procedure F (see A1H2.3), reaction of **A1H3.2** (500 mg, 1.19 mmol) and hydrazine monohydrate (0.5 ml, 10.31 mmol) in MeOH (25 ml) under reflux for 12 hours, removal of solvents and washings with DCM (2x10 ml) and Et₂O (2x10 ml) afforded **A1H3.3** (449 mg, 90%) as a colorless solid. Mp: 153-154 °C; [α]_D²⁰: -26.6 (c = 0.1 in MeOH); IR (neat): 3290 (s), 3235 (m), 1630 (s), 1526 (s); ¹H NMR (400 MHz, D₂O): 4.29-4.21 (m, 1H), 4.03-3.96 (s, 1H), 2.35-2.21 (m, 4H), 2.13-1.76 (m, 4H), 1.41 (s, 9H); ¹³C NMR (100 MHz, D₂O): 174.4 (s), 173.86 (s), 173.68 (s), 171.8 (s), 157.4 (s), 81.6 (s), 54.1 (d), 51.7 (d), 29.77 (t), 29.64 (t), 27.5 (3x, q), 26.83 (t), 26.70 (t); MS (ESI, MeOH): 441 (67, [M+Na]⁺), 419 (25, [M+H]⁺), 341 (22, [M-Boc+Na]⁺), 319 (40, [M-Boc+H]⁺), 301 (44, [M-Boc-NH₂+H]⁺), 243 (100, [M-Glu(N₂H₈)₂+H]⁺); HR-MS (ESI): Calcd for C₁₅H₃₁N₈O₆: 419.2361; found: 419.2379.

A1H3. Following the general procedure G (see A1H2), reaction of **A1H3.3** (400 mg, 0.96 mmol) and TFA (1.0 ml, 13.46 mmol) in DCM (10 ml) under N₂ for 4 hours and solvent removal afforded **A1H3** (646 mg, 87%, TFA salt) as a colorless solid. Mp: >250 °C; [α]_D²⁰: -6.9 (c = 0.1 in MeOH); IR (neat): 2887 (s, b), 2644 (s, b), 1674 (s), 1486 (s); ¹H NMR (400 MHz, D₂O): 4.47 (t, ³J(H,H) = 6.3 Hz, 1H), 4.14 (t, ³J(H,H) = 6.3 Hz, 1H), 2.61-2.41 (m, 4H), 2.34-1.97 (m, 4H); ¹³C NMR (100 MHz, D₂O/TFA-*d* 8:2): 172.2 (s), 171.7 (s), 170.6 (s), 169.3 (s), 52.0 (d), 51.4 (d), 28.6 (t), 27.9 (t), 25.76 (t), 25.60 (t); MS (ESI, MeOH/H₂O 2:1): 359 (56,

$[M+H_2O+Na]^+$), 341 (37, $[M+Na]^+$), 319 (100, $[M+H]^+$); HR-MS (ESI): Calcd for $C_{10}H_{23}N_8O_4$: 319.1836; found: 319.1842.

1.3.6. Synthesis of reactive counterion G1H3

G1H3.2.⁸⁸ Following the general procedure A (see G1H1.2), reaction of **G1H3.1** (200 mg, 0.67 mmol) with **A1H2.1** (141 mg, 0.67 mmol), DIEA (572 μ l, 3.35 mmol) and HBTU (253 mg, 0.67 mmol) in DCM (25 ml) and purification by column chromatography (DCM/MeOH 95:5, R_f 0.61), afforded **G1H3.2** (257 mg, 85%) as a colorless solid. Mp: 120-121 °C; $[\alpha]_D^{20}$: -37.1 (c = 0.1 in MeOH); IR (neat): 3289 (m), 2955 (w), 1721 (s), 1214 (s); 1H NMR (400 MHz, $CDCl_3$): 7.40-7.31 (m, 5H), 7.13-7.05 (m, 1H), 5.70 (d, $^3J(H,H) = 7.5$ Hz, 1H), 5.10 (s, 2H), 4.59 (dt, $^3J(H,H) = 7.5$ Hz, $^3J(H,H) = 6.9$ Hz, 1H), 3.74 (s, 3H), 3.68 (s, 3H), 3.66 (s, 3H), 2.55-2.32 (m, 4H), 2.27-2.09 (m, 2H), 2.07-1.89 (m, 2H); ^{13}C NMR (100 MHz, $CDCl_3$): 174.1 (s), 173.5 (s), 172.1 (s), 171.4 (s), 156.3 (s), 136.4 (s), 128.7 (2x, d), 128.4 (2x, d), 128.3 (d), 67.3 (t), 54.1 (d), 52.80 (q), 52.14 (q), 52.13 (q), 51.99 (d), 30.19 (t), 30.18 (t), 28.5 (t), 27.1 (t); MS (ESI, MeOH/H₂O 2:1): 475 (97, $[M+Na]^+$), 470 (39, $[M+NH_4]^+$), 453 (100, $[M+H]^+$), 391 (93, $[M-2OMe+H]^+$); HR-MS (ESI): Calcd for $C_{21}H_{29}N_2O_9$: 453.1867; found: 453.1856.

G1H3.3. Following the general procedure F (see A1H2.3), reaction of **G1H3.2** (500 mg, 1.10 mmol) with hydrazine monohydrate (0.5 ml, 10.31 mmol) in MeOH (25 ml) and water (5 ml) under reflux for 12 hours followed by removal of solvents and washings with Et_2O (2x15 ml) afforded **G1H3.3** (402 mg, 81%) as a colorless solid.

Mp: 210-211 °C; $[\alpha]_D^{20}$: -22.3 (c = 0.1 in MeOH); IR (neat): 3288 (s), 3056 (w), 1638 (s), 1610 (s), 1243 (s); ^1H NMR (400 MHz, D_2O): 7.17-6.80 (m, 5H), 4.69-4.63 (m, 2H), 3.99 (dd, $^3J(\text{H},\text{H})$ = 8.7 Hz, $^3J(\text{H},\text{H})$ = 4.8 Hz, 1H), 3.71 (dd, $^3J(\text{H},\text{H})$ = 8.7 Hz, $^3J(\text{H},\text{H})$ = 4.8 Hz, 1H), 2.13-1.86 (m, 4H), 1.82-1.66 (m, 2H), 1.60-1.45 (m, 2H); ^{13}C NMR (100 MHz, D_2O /DMSO- d_6 /TFA- d 1:1:1): 174.6 (s), 173.4 (s), 172.2 (s), 172.1 (s), 158.5 (s), 137.6 (s), 130.0 (2x, d), 129.69 (2x, d), 129.20 (d), 68.1 (t), 55.3 (d), 52.5 (d), 30.3 (t), 30.1 (t), 27.79 (t), 27.22 (t); MS (ESI, MeOH): 475 (100, $[\text{M}+\text{Na}]^+$); HR-MS (ESI): Calcd for $\text{C}_{18}\text{H}_{29}\text{N}_8\text{O}_6$: 453.2204; found: 453.2194.

G1H3.4. Following the general procedure E (see A1H2.2), reaction of **G1H3.3** (350 mg, 0.77 mmol) with DIEA (661 μl , 3.87 mmol) and Boc_2O (970 mg, 4.45 mmol) in CH_3CN (25 ml) and H_2O (5 ml) and purification by column chromatography (DCM/MeOH 9:1, R_f 0.48), afforded **G1H3.4** (459 mg, 79%) as a colorless solid. Mp: 128-129 °C; $[\alpha]_D^{20}$: -49.3 (c = 0.1 in MeOH); IR (neat): 3277 (m, b), 2981 (w), 1666 (s), 1152 (s); ^1H NMR (400 MHz, CD_3OD): 7.42-7.29 (m, 5H), 5.16-5.03 (m, 2H), 4.51-4.41 (m, 1H), 4.16-4.04 (m, 1H), 2.51-1.90 (m, 8H), 1.48 (s, 27H); ^{13}C NMR (100 MHz, CDCl_3 /DMSO- d_6 5:1): 171.99 (s), 171.46 (2x, s), 171.04 (s), 156.0 (s), 155.80 (s), 155.08 (s), 154.9 (s), 135.0 (s), 127.33 (2x, d), 127.11 (2x, d), 127.00 (d), 80.66 (s), 80.12 (s), 80.48 (s), 65.7 (t), 52.2 (d), 49.4 (d), 28.3 (3x, t), 27.0 (9x, q), 25.4 (t); MS (ESI, MeOH/ H_2O 2:1): 775 (17, $[\text{M}+\text{Na}]^+$), 770 (32, $[\text{M}+\text{NH}_4]^+$), 753 (100, $[\text{M}+\text{H}]^+$), 653 (42, $[\text{M}-\text{Boc}+\text{H}]^+$), 553 (25, $[\text{M}-2\text{Boc}+\text{H}]^+$), 453 (27, $[\text{M}-3\text{Boc}+\text{H}]^+$); HR-MS (ESI): Calcd for $\text{C}_{33}\text{H}_{52}\text{N}_8\text{O}_{12}\text{Na}$: 775.3596; found: 775.3592.

G1H3.5. Following the general procedure B (see G1H1.3), reaction of **G1H3.4**

(410 mg, 0.54 mmol) with $\text{Pd}(\text{OH})_2/\text{C}$ (20%) (20 mg, 0.03 mmol) in MeOH (20 ml) under H_2 for 4h and filtration through celite gave **G1H3.5** (334 mg, quantitative) as a colorless solid. Mp: 141-142 $^{\circ}\text{C}$; $[\alpha]_D^{20}$: -35.2 (c = 0.1 in MeOH); IR (neat): 3278 (m), 2980 (w), 1662 (s), 1156 (s); ^1H NMR (400 MHz, CD_3OD): 4.41 (t, $^3J(\text{H},\text{H})$ = 7.8 Hz, 1H), 3.39 (dd, $^3J(\text{H},\text{H})$ = 7.8 Hz, $^3J(\text{H},\text{H})$ = 5.6 Hz, 1H), 2.47-1.82 (m, 8H), 1.49 (s, 27H); ^{13}C NMR (100 MHz, CD_3OD): 176.7 (s), 175.1 (s), 174.46 (s), 174.32 (s), 158.60 (s), 158.15 (s), 157.8 (s), 82.41 (s), 82.23 (s), 82.16 (s), 54.8 (d), 52.5 (d), 32.3 (t), 30.97 (2x, t), 30.68 (t), 28.72 (3x, q), 28.69 (6x, q); MS (ESI, MeOH): 641 (17, $[\text{M}+\text{Na}]^+$), 619 (100, $[\text{M}+\text{H}]^+$), 519 (11, $[\text{M-Boc}+\text{H}]^+$); HR-MS (ESI): Calcd for $\text{C}_{25}\text{H}_{47}\text{N}_8\text{O}_{10}$: 619.3409; found: 619.3395.

G1H3.6. Following the general procedure C (see G1H1.4), reaction of **G1H3.5** (200 mg, 0.32 mmol), DIEA (276 μl , 1.61 mmol) and N,N'-di-Boc-1*H*-pyrazole-1-carboxamidine (149 mg, 0.48 mmol) in CH_3CN (20 ml) and water (1.5 ml) at 55 $^{\circ}\text{C}$ for 8 hours and purification by column chromatography (DCM/MeOH 9:1, R_f 0.39) afforded **G1H3.6** (168 mg, 61%) as a colorless solid. Mp: 231-232 $^{\circ}\text{C}$; $[\alpha]_D^{20}$: -34.9 (c = 0.1 in MeOH); IR (neat): 3273 (m), 2980 (m), 2653 (m, b), 1667 (s), 1154 (s); ^1H NMR (400 MHz, $\text{CD}_3\text{OD}/\text{CDCl}_3$ 1:1): 4.71-4.60 (m, 1H), 4.48-4.39 (m, 1H), 2.47-2.01 (m, 8H), 1.55 (s, 9H), 1.48 (s, 36H); ^{13}C NMR (100 MHz, CDCl_3): 173.27 (s), 173.21 (s), 172.5 (s), 171.9 (s), 170.8 (s), 162.5 (s), 156.59 (s), 156.23 (s), 155.7 (s), 152.4 (s), 83.2 (s), 81.78 (s), 81.75 (s), 81.40 (s), 79.3 (s), 52.2 (d), 50.2 (d), 30.91 (t), 30.06 (t), 29.4 (t), 28.0 (3x, q), 27.96 (9x, q), 27.85 (3x, q), 27.23 (t); MS (ESI, MeOH): 883 (10, $[\text{M}+\text{Na}]^+$), 861 (100, $[\text{M}+\text{H}]^+$), 761 (19, $[\text{M-Boc}+\text{H}]^+$), 661 (14, $[\text{M-2Boc}+\text{H}]^+$); HR-MS (ESI): Calcd for $\text{C}_{36}\text{H}_{65}\text{N}_{10}\text{O}_{14}$: 861.4676; found: 861.4643.

G1H3. Following the general procedure D (see G1H1), reaction of **G1H3.6** (130 mg, 0.15 mmol) in HCl (10 ml, 1 M in Et₂O) and DCM (5 ml) under reflux for 18 hours followed by precipitation (Et₂O/MeOH 20:1, 10.5 ml) and washings with Et₂O (2x15 ml) afforded **G1H3** (55 mg HCl salt, 72%) as a colorless solid. Mp: 210-211 °C; $[\alpha]_D^{20}$: +3.2 (c = 0.1 in MeOH); IR (neat): 3152 (s, b), 2916 (s, b), 2649 (s, b), 1656 (s), 1500 (s); ¹H NMR (400 MHz, D₂O): 4.42 (dd, ³J(H,H) = 8.4 Hz, ³J(H,H) = 6.0 Hz, 1H), 4.31 (dd, ³J(H,H) = 8.4 Hz, ³J(H,H) = 6.0 Hz, 1H), 2.53-2.42 (m, 4H), 2.31-2.03 (m, 4H); ¹³C NMR (100 MHz, D₂O): 172.48 (s), 172.40 (s), 171.8 (s), 170.9 (s), 156.7 (s), 54.0 (d), 51.5 (d), 28.76 (t), 28.46 (t), 27.0 (t), 25.7 (t); MS (ESI, MeOH/H₂O 2:1): 361 (87, [M+H]⁺), 329 (100, [M-N₂H₄+H]⁺); HR-MS (ESI): Calcd for C₁₁H₂₅N₁₀O₄: 361.2054; found: 361.2056.

1.4. General procedures for vesicle experiments

1.4.1. Vesicle preparations

Following the general procedures in ref. S9, a thin lipid film was prepared by evaporating a solution of 25 mg EYPC in 1 ml MeOH/CHCl₃ (1:1) on a rotary evaporator (room temperature) and then *in vacuo* overnight. The resulting film was hydrated with 1.0 ml buffer (5 mM HPTS, 16.5 mM DPX, 10 mM Tris, 72 mM NaCl, pH 7.4) for more than 30 min, subjected to freeze-thaw cycles (5×) and extrusions (15×) through a polycarbonate membrane (pore size, 100 nm). Extravesicular components were removed by gel filtration (Sephadex G-50) with 10 mM Tris, 107 mM NaCl, pH 7.4. Final conditions: ~5 mM EYPC; inside: 5 mM HPTS, 16.5 mM

DPX, 10 mM Tris, 72 mM NaCl, pH 7.4; outside: 10 mM Tris, 107 mM NaCl, pH 7.4.

1.4.2. Preparation of odorant hydrazones

Adapting the general procedures in ref. S10, 10 μ l of 100 mM reactive counterion (**A1H1-G1H3**) in DMSO was mixed with 2 equivalent of odorant for each hydrazide of the reactive counterion (e.g., 30 μ l of 200 mM odorant in DMSO for reactive counterions with three hydrazides) and adjusted the total volume to 100 μ l with DMSO. The mixture was stirred at 60°C for 1 hr, and the resulting hydrazone was then used for DNA activation experiments.

1.4.3. DNA activation experiments

Adapting the general procedures in ref. S9, EYPC-LUV stock solutions (5 μ l) were diluted with a buffer (10 mM Tris, 107 mM NaCl, pH 7.4) and placed in a thermostated fluorescence cuvette (25 °C) and gently stirred (total volume in the cuvette, ~2000 μ l; final lipid concentration, ~13 μ M). HPTS efflux was monitored at λ_{em} 511 nm (λ_{ex} 413 nm) as a function of time after addition of activator (odorant hydrazones, 10 μ l in DMSO) at $t = 0$ s, transporter (calf thymus DNA, 20 μ l stock solution in buffer, 1.25 μ g/ml final concentration) at $t = 40$ s and 1.2% aqueous triton X-100 (40 μ l, 0.024% final concentration) at $t = 200$ s. Fluorescence intensities were normalized to fractional emission intensity $I(t)$ using equation (SI)

$$I(t) = (I_t - I_0) / (I_\infty - I_0) \quad (SI)$$

where $I_0 = I_t$ at DNA addition, $I_\infty = I_t$ at saturation after lysis. Effective concentration for hydrazone EC_{50} and Hill coefficient n were determined by plotting the fractional activity Y ($= I(t)$ at saturation just before lysis, $t = \sim 190$ s) as a function of hydrazone concentration $c_{\text{hydrazone}}$ and fitting them to the Hill equation (S2)

$$Y = Y_0 + (Y_{\text{MAX}} - Y_0) / \{1 + (EC_{50} / c_{\text{hydrazone}})^n\} \quad (\text{S2})$$

where Y_0 is Y without hydrazone, Y_{MAX} is Y with an excess hydrazone at saturation, EC_{50} is the concentration of hydrazone required to reach 50% activity and n is the Hill coefficient (e.g. Fig. S4). Results are summarized in Table S1.

1.4.4. Odorant sensing experiments (direct detection; Table S2)

2 μ l of reactive counterions (**A1H2-G1H3**) in DMSO (**A1H2**, 100 mM; **G1H2**, 30 mM; **A1H3**, 60 mM; **G1H3**, 10 mM) and 2 μ l of increasing concentrations of odorant in DMSO were mixed with 16 μ l DMSO in a tube (total 20 μ l), and the mixture was stirred at 60°C for 30 min. 10 μ l of the resulting reaction mixture was then used as an activator for DNA activation experiments following the above procedure 1.4.3. The formation of hydrazones was confirmed by ESI-MS. The final concentration of the reactive counterions in each cuvette is 50 μ M (**A1H2**), 15 μ M (**G1H2**), 30 μ M (**A1H3**) and 5 μ M (**G1H3**). Fluorescence intensities were normalized to fractional emission intensity $I(t)$ using equation (S1). Effective concentration for odorant EC_{50} and Hill coefficient n were determined by plotting the fractional activity Y ($= I(t)$ at saturation just before lysis, $t = \sim 190$ s) as a function of odorant concentration c_{odorant} and fitting them to the Hill equation (S3)

$$Y = Y_0 + (Y_{\text{MAX}} - Y_0) / \{1 + (EC_{50} / c_{\text{odorant}})^n\} \quad (S3)$$

where Y_0 is Y without odorant, Y_{MAX} is Y with an excess odorant at saturation, EC_{50} is the concentration of odorant required to reach 50% activity and n is the Hill coefficient (e.g. Fig. S6).

1.4.5. Odorant sensing experiments (inverse detection; Table S3)

2 μl of reactive counterions (**A1H2-G1H3**) in DMSO (**A1H2**, 100 mM; **G1H2**, 30 mM; **A1H3**, 60 mM; **G1H3**, 10 mM), 2 μl of increasing concentrations of odorant in DMSO and 2 μl of **O5** (octanal) in DMSO (200 mM for **A1H2**; 100 mM for **G1H2** and **A1H3**; 40 mM for **G1H3**) were mixed with 14 μl DMSO in a tube (total 20 μl), and the mixture was stirred at 60°C for 30 min. 10 μl of the resulting reaction mixture was then used as an activator for DNA activation experiments following the above procedure (1.4.3). The final concentrations of the reactive counterion and **O5** in each cuvette are 50 μM **A1H2** and 100 μM **O5**, 15 μM **G1H2** and 50 μM **O5**, 30 μM **A1H3** and 50 μM **O5**, and 5 μM **G1H3** and 20 μM **O5**. Fluorescence intensities were normalized to fractional emission intensity $I(t)$ using equation (S1). Inhibitory concentration for odorant IC_{50} and Hill coefficient n were determined by plotting the fractional activity Y_i ($= I(t)$ just before lysis, $t = \sim 190$ s) as a function of odorant concentration c_{odorant} and fitting them to the Hill equation (S4)

$$Y_i = Y_{\text{MIN},i} + (Y_{\text{MAX},i} - Y_{\text{MIN},i}) / \{1 + (c_{\text{odorant}} / IC_{50})^n\} \quad (S4)$$

where $Y_{\text{MAX},i}$ is Y in the absence of odorant, $Y_{\text{MIN},i}$ is Y with an excess odorant, IC_{50} is the concentration of odorant required for 50% inactivation and n is the Hill coefficient (e.g. Fig. S7).

1.4.6. Perfume sensing experiments (Table S4)

2 μl of reactive counterions (**A1H2-G1H3**) in DMSO (**A1H2**, 100 mM; **G1H2**, 30 mM; **A1H3**, 60 mM; **G1H3**, 10 mM) was mixed with the increasing volumes of perfume (**P1-P6**) and adjusted the total volume to 20 μl with DMSO, and the mixture was stirred at 60°C for 30 min. 10 μl of the resulting reaction mixture was then used as an activator for DNA activation experiments following the above procedure (1.4.3). The final concentration of the reactive counterion in each cuvette is 50 μM (**A1H2**), 15 μM (**G1H2**), 30 μM (**A1H3**) and 5 μM (**G1H3**). Fluorescence intensities were normalized to fractional emission intensity $I(t)$ using equation (S1). Effective volume for odorant V_{50} and Hill coefficient n were determined by plotting the fractional activity Y ($= I(t)$ at saturation just before lysis, $t = \sim 190$ s) as a function of perfume volume in a cuvette V and fitting them to the Hill equation (S5)

$$Y = Y_0 + (Y_{\text{MAX}} - Y_0) / \{1 + (V_{50} / V)^n\} \quad (\text{S5})$$

where Y_0 is Y without perfume, Y_{MAX} is Y with an excess perfume at saturation, V_{50} is the perfume volume required to reach 50% activity and n is the Hill coefficient (e.g. Fig. S8).

1.4.7. Multiwell assays

Adapting the general procedures in ref. S11, 2 μ l of reactive counterions (**G1H2** and **G1H3**) in DMSO (**G1H2**, 30 mM; **G1H3**, 10 mM) was mixed with the increasing volumes of perfume (**P1-P6**) and adjusted the total volume to 20 μ l with DMSO, and the mixture was stirred at 60°C for 30 min. 5 μ l of the resulting reaction mixture and 5 μ l of the transporter (calf thymus DNA, 125 μ g/ml) were added to the diluted EYPC-LUV solution in a 96-well plate (total volume in a well, 250 μ l; final lipid concentration, 50 μ M; final DNA concentration, 2.5 μ g/ml; final reactive-counterion concentration, 60 μ M and 20 μ M, respectively). After 1 hr incubation with Rotamax 120 (Heidolph), the fluorescence image of the plate was obtained with Gene Genius (Syngene) (λ_{ex} 365 nm, λ_{em} 500-600 nm). HPTS efflux could be monitored at λ_{em} 511 nm (λ_{ex} 413 nm) as a function of time using FluoroMax-3 spectrofluorometer equipped with a multiwell plate reader (MicroMax 384).

1.4.8. Data analysis

Statistical evaluation of above data was performed using principal component analysis (PCA) and hierarchical clustering analysis (HCA).^{S12} PCA is a statistical unsupervised method to reduce a multidimensional data set to a lower dimensional one for easier interpretation, which is achieved by calculating orthogonal eigenvectors in the direction of the maximum variance within that data set. HCA is an unsupervised method to classify the analytes by measuring the interpoint distances (in this study, the Euclidean distance) between all analytes in the multidimensional space, providing graphic output in the form of a 2-D dendrogram. Ward's method was used to define

clusters, which takes into consideration the minimum variance between the analytes. All data analysis was performed with MYSTAT software (SYSTAT).

1.5. References

S1. (a) V. Gorteau, M. D. Julliard and S. Matile, *J. Membr. Sci.*, 2008, **321**, 37-42. (b) V. Gorteau, G. Bollot, J. Mareda and S. Matile, *Org. Biomol. Chem.*, 2007, **5**, 3000-3012. (c) V. Gorteau, G. Bollot, J. Mareda, A. Perez-Velasco and S. Matile, *J. Am. Chem. Soc.*, 2006, **128**, 14788-14789.

S2. A. Perez-Velasco, V. Gorteau and S. Matile, *Angew. Chem. Int. Ed.*, 2008, **47**, 921-923.

S3. R. S. K. Kishore, V. Ravikumar, G. Bernardinelli, N. Sakai and S. Matile, *J. Org. Chem.*, 2008, **73**, 738-740.

S4. R. E. Dawson, A. Hennig, D. P. Weimann, D. Emery, V. Ravikumar, J. Montenegro, T. Takeuchi, S. Gabutti, M. Mayor, J. Mareda, C. A. Schalley and S. Matile, *Nat. Chem.*, 2010, **2**, 533-538.

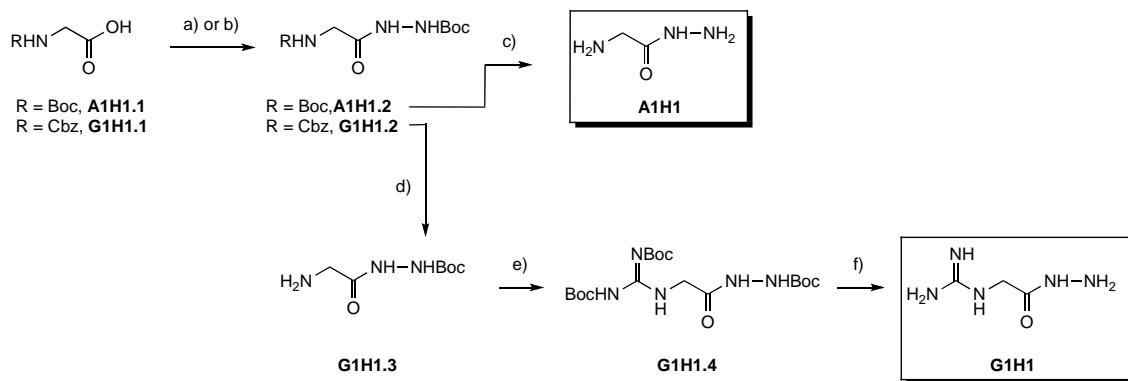
S5. Y.-C. Wu, M. Liron and J. Zhu, *J. Am. Chem. Soc.*, 2008, **130**, 7148-7152.

S6. A. Ardá, R. G. Soengas, M. I. Nieto, C. Jiménez and J. Rodríguez, *Org. Lett.*, 2008, **10**, 2175-2178.

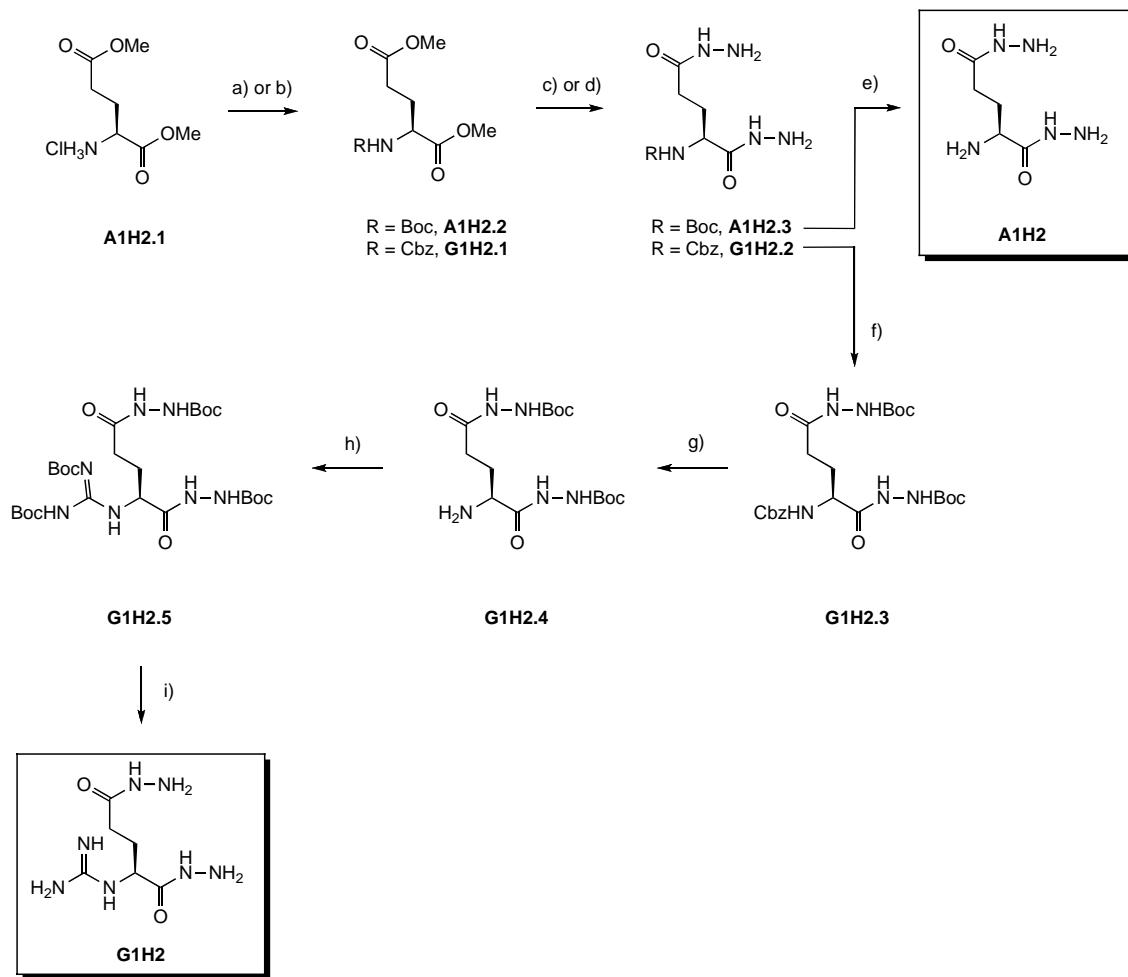
S7. A. Pichette, N. Voyer, R. Larouche and J.-C. Meillon, *Tetrahedron Lett.*, 1997, **38**, 1279-1282.

S8. Y. Shunichi, T. Shiro and W. Mitsuyoshi, *Tetrahedron Lett.*, 1970, **18**, 1501-1504.

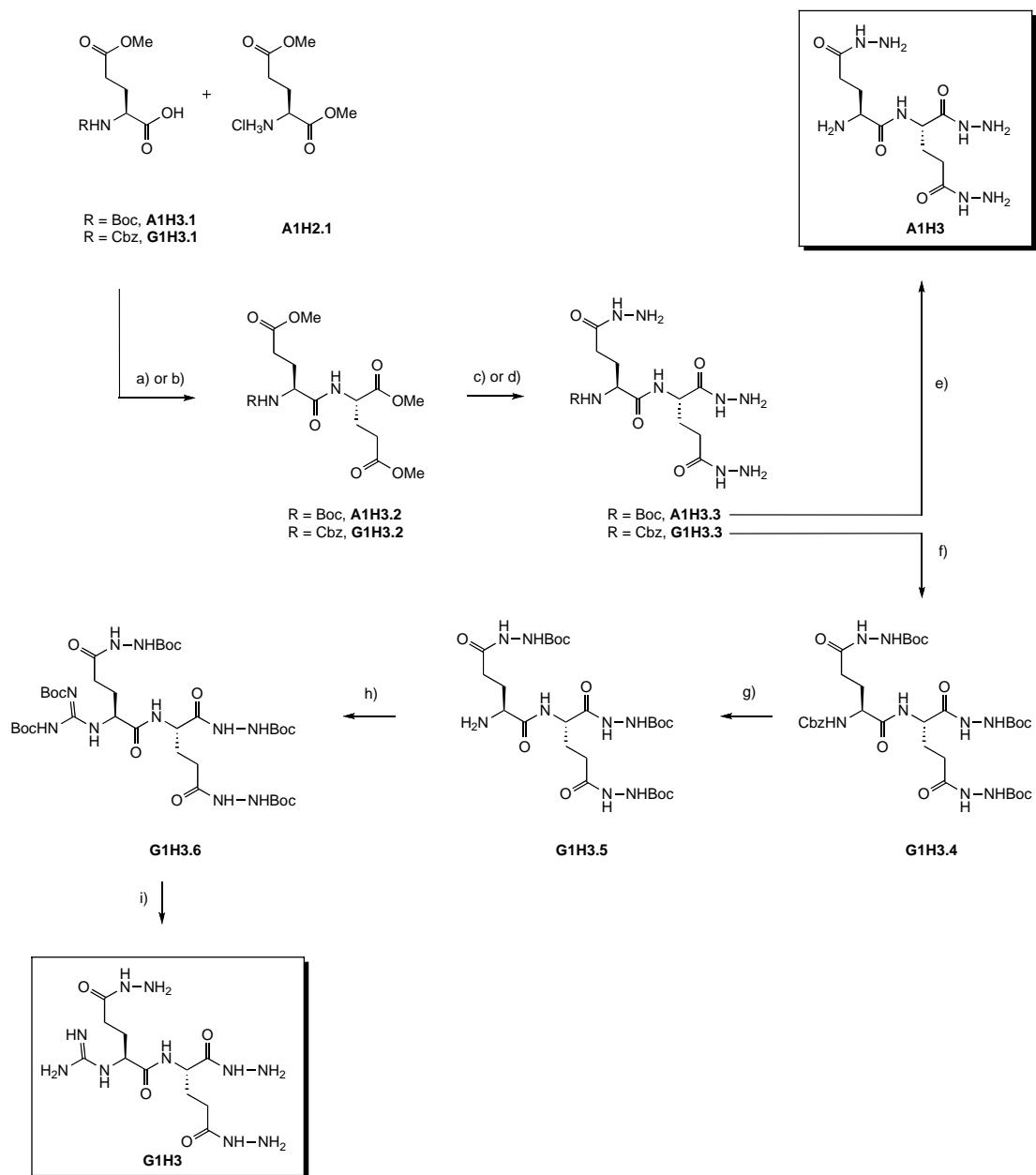
S9. T. Takeuchi and S. Matile, *J. Am. Chem. Soc.*, 2009, **131**, 18048-18049.

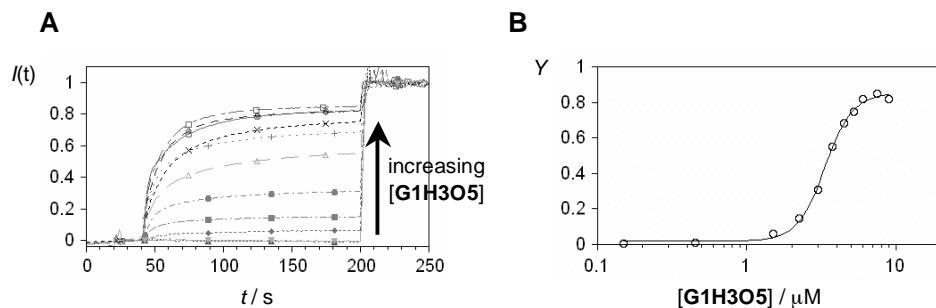

S10. S. Litvinchuk, H. Tanaka, T. Miyatake, D. Pasini, T. Tanaka, G. Bollot, J.

Mareda and S. Matile, *Nat. Mater.*, 2007, **6**, 576-580.


S11. G. Das, P. Talukdar and S. Matile, *Science*, 2002, **298**, 1600-1602.

S12. P. C. Jurs, G. A. Bakken and H. E. McClelland, *Chem. Rev.*, 2000, **100**, 2649-2678.


2. Supporting figures


Fig. S1. Synthesis of reactive counterions **A1H1** and **G1H1**. a) For $\text{R} = \text{Boc}$: $\text{NH}_2-\text{NH}\text{Boc}$, HBTU, DIEA, DCM, rt, 90%; b) for $\text{R} = \text{Cbz}$: $\text{NH}_2-\text{NH}\text{Boc}$, HBTU, DIEA, DCM, rt, 88%; c) 1 M HCl in Et_2O , DCM, reflux, 86%; d) Pd/C , H_2 , MeOH , rt, quantitative; e) $\text{N,N}'\text{-di-Boc-1H-pyrazole-1-carboxamidine}$, DIEA, CH_3CN , $55\text{ }^\circ\text{C}$, 74%; f) 1 M HCl in Et_2O , DCM, reflux, 97%.

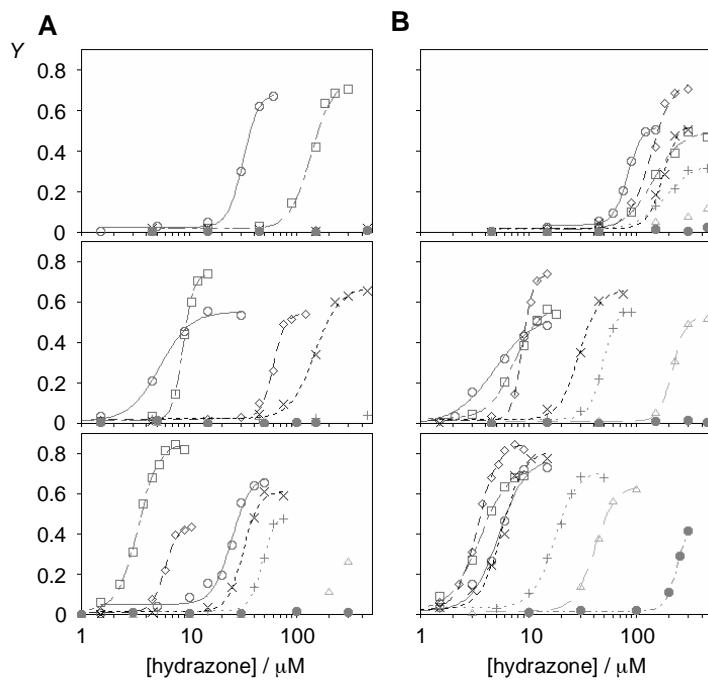
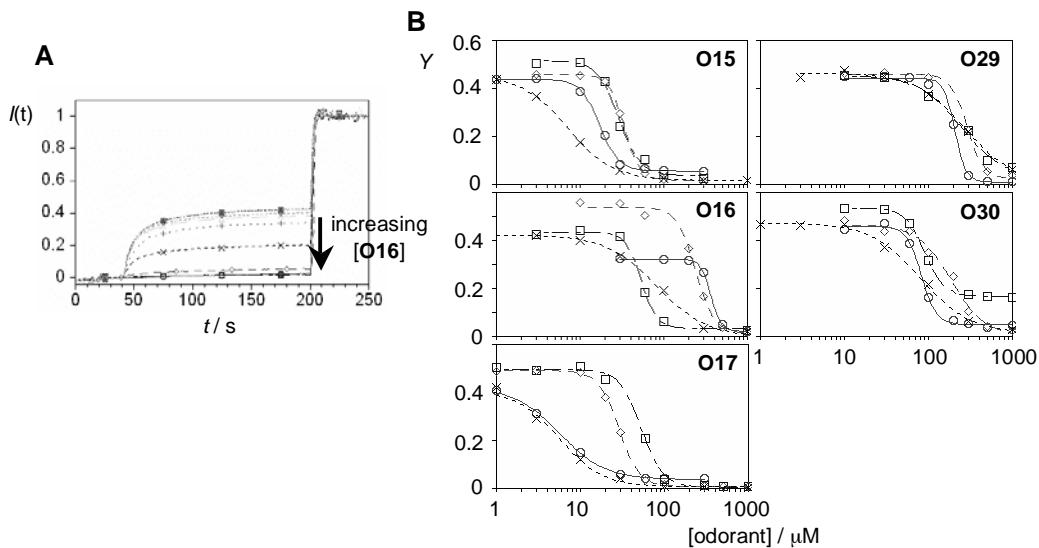
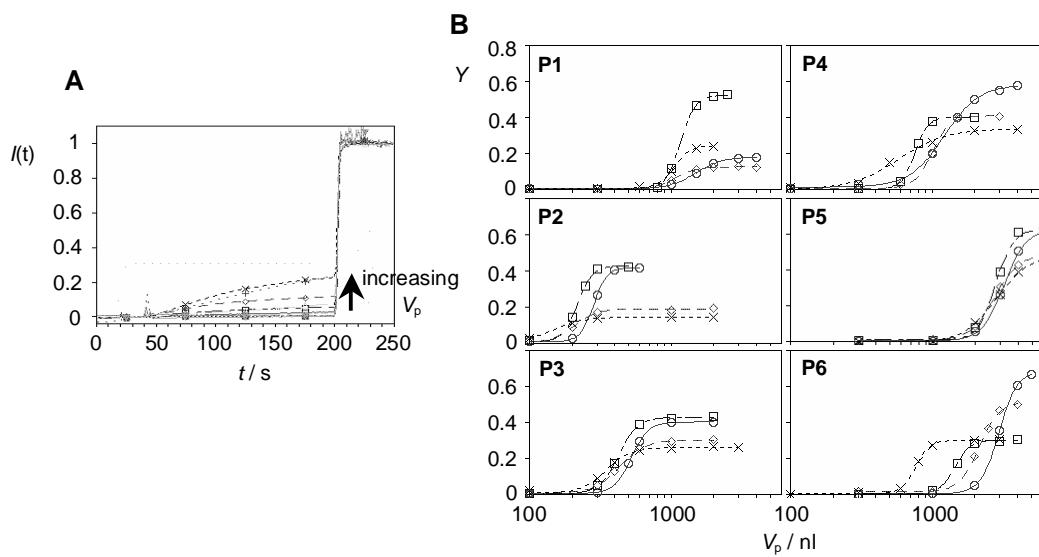
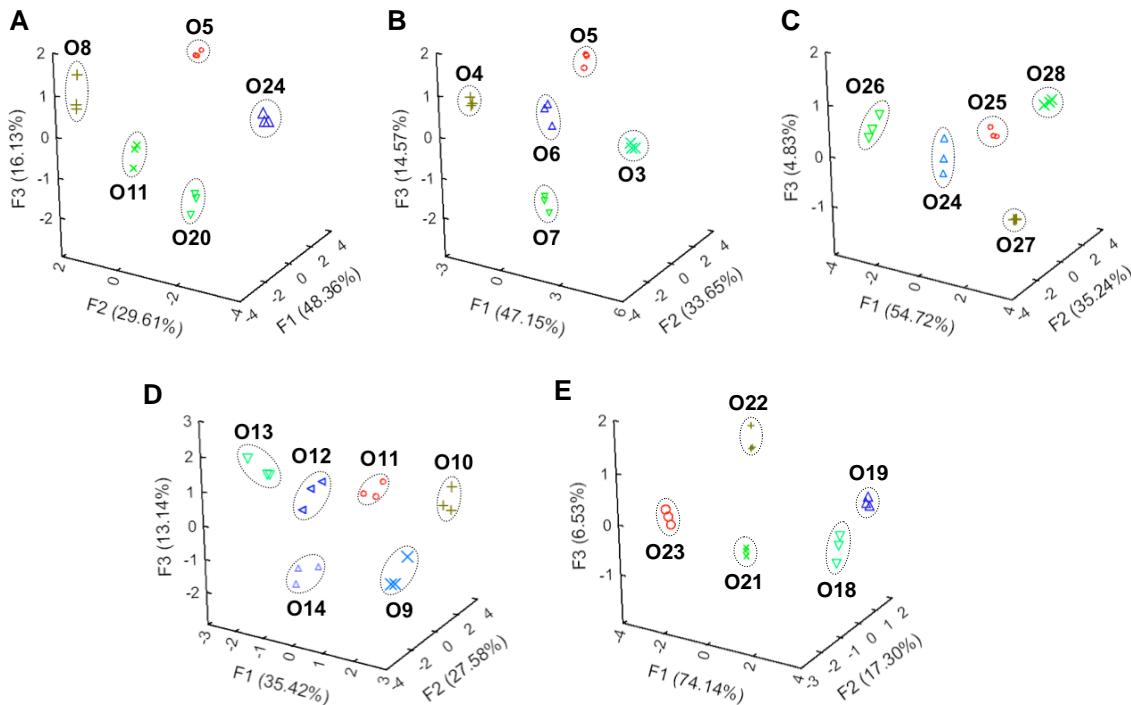
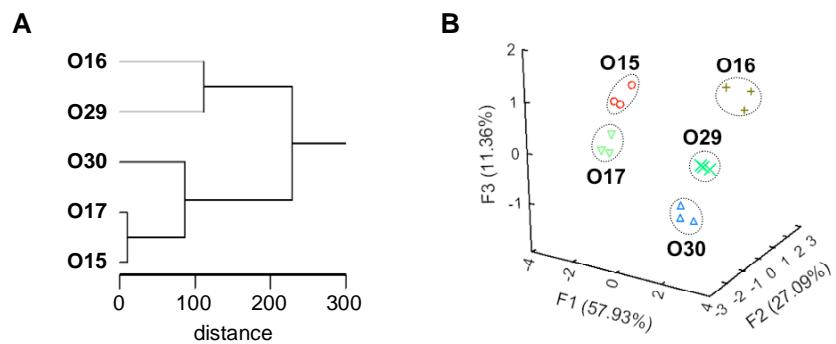

Fig. S2. Synthesis of reactive counterions **A1H2** and **G1H2**. a) For R = Boc: Boc₂O, DIEA, DCM, rt, quantitative; b) for R = Cbz: CbzCl, DIEA, CH₃CN, H₂O, quantitative; c) For R = Boc: Hydrazine monohydrate, MeOH, reflux, 79%; d) for R = Cbz: Hydrazine monohydrate, MeOH, reflux, 90%; e) TFA/DCM 1:1, rt, 79%; f) Boc₂O, DIEA, CH₃CN, H₂O, rt, 79%; g) Pd/C, H₂, MeOH, rt, quantitative; h) N,N'-di-Boc-1*H*-pyrazole-1-carboxamidine, DIEA, CH₃CN, H₂O, 55 °C, 69%; i) 1 M HCl in Et₂O, DCM, reflux, 76%.

Fig. S3. Synthesis of reactive counterions **A1H3** and **G1H3**. a) For $\text{R} = \text{Boc}$: HBTU, DIEA, DCM, rt, 74%; b) for $\text{R} = \text{Cbz}$: HBTU, DIEA, DCM, rt, 85%; c) for $\text{R} = \text{Boc}$: Hydrazine monohydrate, MeOH, reflux, 90%; d) for $\text{R} = \text{Cbz}$: Hydrazine monohydrate, MeOH, H_2O , reflux, 81%; e) TFA/DCM 1:1, rt, 87%; f) Boc_2O , DIEA, CH_3CN , H_2O , rt, 79%; g) Pd/C , H_2 , MeOH , rt, quantitative; h) $\text{N,N}'\text{-di-Boc-1H-pyrazole-1-carboxamidine}$, DIEA, CH_3CN , H_2O , 55°C , 61%; i) 1 M HCl in Et_2O , DCM, reflux, 72%.


Fig. S4. (A) Representative normalized kinetics of transporter-mediated increase in HPTS fluorescence, following addition of transporter (calf thymus DNA, 1.25 $\mu\text{g/ml}$ final concentration) at $t = 40$ s and triton X-100 (0.024% final concentration) at $t = 200$ s, demonstrating increasing transporter activity with increasing concentrations of **G1H3O5** hydrazone (0.15-9 μM). (B) Representative dose-response curve for DNA activation with **G1H3O5** hydrazone obtained by plotting the fractional activity Y as a function of **G1H3O5** hydrazone concentration, giving EC_{50} for **G1H3O5** hydrazone of $3.4 \pm 0.1 \mu\text{M}$, Y_{MAX} of $85.3 \pm 1.7\%$ and Hill coefficient n of 4.6 ± 0.4 .


Fig. S5. Dose-response curves for 7 odorants (A; **O5**, □; **O8**, ○; **O16**, ●; **O17**, △; **O18**, ×; **O24**, ◊; **O29**, +) and for 7 linear alkyl aldehydes with different chain length (B; **O1**, ●; **O2**, △; **O3**, +; **O4**, ×; **O5**, ◊; **O6**, □; **O7**, ○) derivatized with three different reactive counterions (from upper to lower: **G1H1**, **G1H2** and **G1H3**).


Fig. S6. Odorant sensing with the direct detection method. (A) Representative normalized kinetics of transporter-mediated increase in HPTS fluorescence, following addition of transporter (calf thymus DNA, 1.25 μ g/ml final concentration) at $t = 40$ s and triton X-100 (0.024% final concentration) at $t = 200$ s, demonstrating increasing transporter activity with increasing concentrations of an odorant (**O5**, 1.5-100 μ M final) coupled with a reactive counterion (**G1H3**, 5 μ M final). (B) Representative dose-response curve for DNA activation with **O5** coupled with **G1H3**, obtained by plotting the fractional activity Y as a function of **O5** concentration, giving EC_{50} for **O5** of 20.5 ± 1.3 μ M, Y_{MAX} of $75.1 \pm 3.4\%$ and Hill coefficient n of 3.2 ± 0.6 . (C) Dose-response curves for odorants coupled with **A1H2** (50 μ M, \circ), **G1H2** (15 μ M, \diamond), **A1H3** (30 μ M, \square) and **G1H3** (5 μ M, \times). A different set of reactive-counterion concentrations was used for derivatization of **O3**, **O18**, **O19** and **O21-O23** (**A1H2** and **A1H3**, 50 μ M; **G1H2** and **G1H3**, 30 μ M) because of weak responsiveness.


Fig. S7. Odorant sensing with the inverse detection method. **(A)** Representative normalized kinetics of transporter-mediated increase in HPTS fluorescence, following addition of transporter (calf thymus DNA, 1.25 $\mu\text{g}/\text{ml}$ final concentration) at $t = 40$ s and triton X-100 (0.024% final concentration) at $t = 200$ s, demonstrating increasing transporter activity with increasing concentrations of an odorant (**O16**, 0.1-1000 μM final) coupled with a reactive counterion (**G1H3**, 5 μM final) in the presence of a competitor (**O5**, 20 μM). **(B)** Dose-response curves for odorants coupled with **A1H2** (50 μM , \circ), **G1H2** (15 μM , \diamond), **A1H3** (30 μM , \square) and **G1H3** (5 μM , \times) in the presence of a competitor (**O5**, 100 μM for **A1H2**; 50 μM for **G1H2** and **A1H3**; 20 μM for **G1H3**).

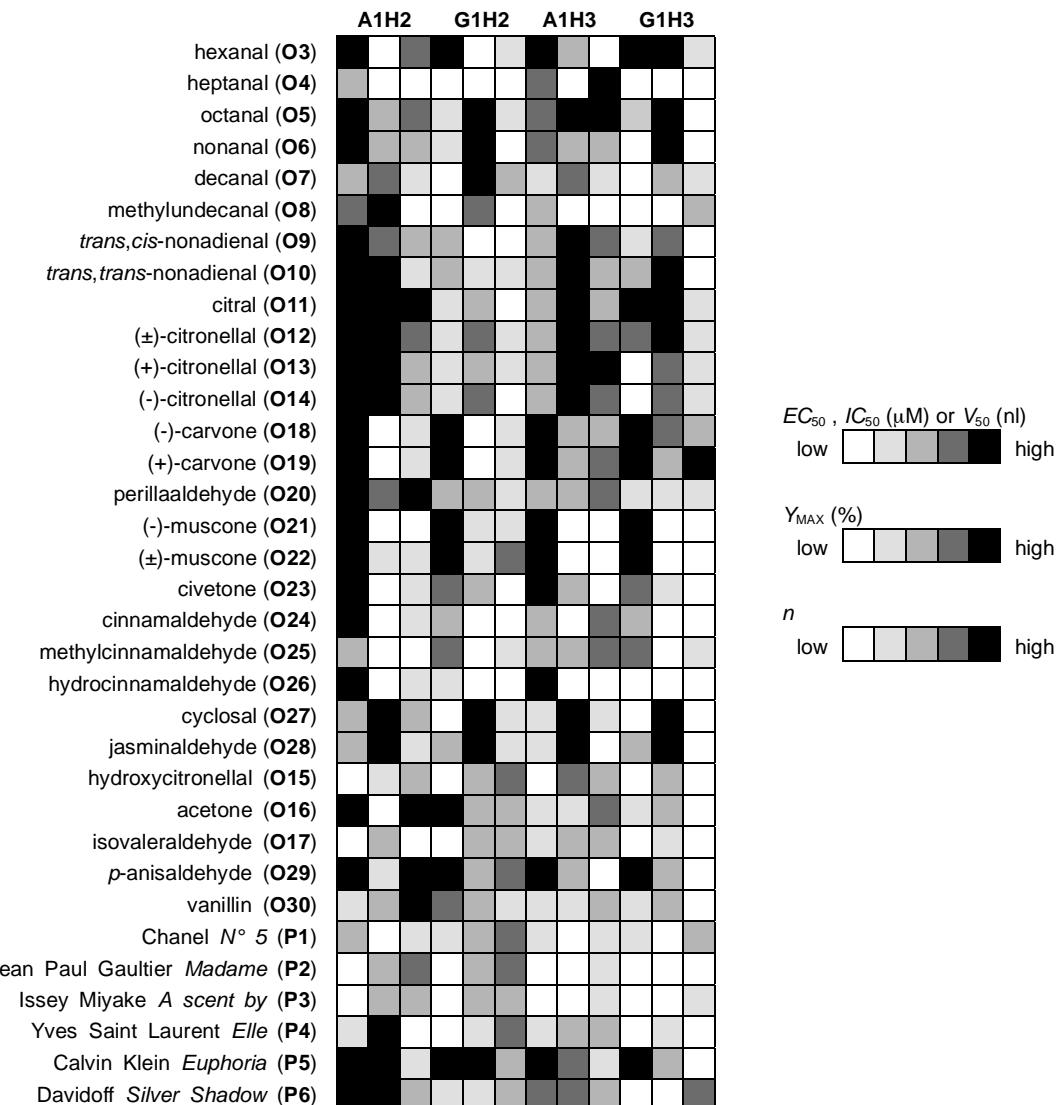

Fig. S8. Perfume sensing with the direct detection method. (A) Representative normalized kinetics of transporter-mediated increase in HPTS fluorescence, following addition of transporter (calf thymus DNA, 1.25 μ g/ml final concentration) at $t = 40$ s and triton X-100 (0.024% final concentration) at $t = 200$ s, demonstrating increasing transporter activity with increasing volumes (V_p) of a perfume (**P1**, 100-4000 nl final) coupled with a reactive counterion (**G1H3**, 5 μ M final). (B) Dose-response curves for perfumes coupled with **A1H2** (50 μ M, \circ), **G1H2** (15 μ M, \diamond), **A1H3** (30 μ M, \square) and **G1H3** (5 μ M, \times).

Fig. S9. PCA score plots for 26 odorants detected with the direct sensing method. (A) Discrimination of representative odorants. Octanal (**O5**, ○), methylundecanal (**O8**, +), citral (**O11**, ×), perillaaldehyde (**O20**, ▽) and cinnamaldehyde (**O24**, △). (B) Discrimination of linear alkyl aldehydes with different chain length. Hexanal (**O3**, ×), heptanal (**O4**, +), octanal (**O5**, ○), nonanal (**O6**, △) and decanal (**O24**, ▽). (C) Discrimination of cinnamaldehyde and close derivatives. Cinnamaldehyde (**O24**, △), methylcinnamaldehyde (**O25**, ○), hydrocinnamaldehyde (**O26**, ▽), cyclosal (**O27**, +) and jasminaldehyde (**O28**, ×). (D) Discrimination of cis/trans isomers and enantiomers. *trans,cis*-nonadienal (**O9**, ×), *trans,trans*-nonadienal (**O10**, +), citral (**O11**, ○), (\pm)-citronellal (**O12**, ▲), (+)-citronellal (**O13**, ▽) and (-)-citronellal (**O14**, △). (E) Discrimination of enantiomers. (-)-carvone (**O18**, ▽), (+)-carvone (**O19**, △), (-)-muscone (**O21**, ×), (\pm)-muscone (**O22**, +) and civetone (**O23**, ○).

Fig. S10. (A) HCA dendrogram for 5 odorants detected with the inverse sensing method, showing the Euclidean distances between average values from three independent trials. (B) PCA score plot. Hydroxycitronellal (**O15**, \circ), acetone (**O16**, +), isovaleraldehyde (**O17**, \triangledown), *p*-anisaldehyde (**O29**, \times) and vanillin (**O30**, \triangle).

Fig. S11. 12-D pattern generation for 28 odorants and 6 perfumes with reactive counterions (**A1H2-G1H3**) and three readouts each (from left to right: EC_{50} (10-60 μM), Y_{MAX} (20-70%) and n (2-12) for **O3-O14** and **O18-O28** (direct detection, HCA/PCA: Figs. 2, 3C, S9); IC_{50} (0-250 μM), response (20-70%) and n (1-6) for **O15-O17**, **O29** and **O30** (inverse detection, HCA/PCA: Fig. S10); V_{50} (500-3000 nl) Y_{MAX} (20-70%) and n (2-12) for **P1-P6**; direct detection, HCA/PCA: Figs. 3B, 3C), expressed as 5 different tones of black and white.

3. Supporting tables

Table S1. EC_{50} , Y_{MAX} and n for hydrazones.^a

odorant	reactive counterion	EC_{50} (μ M) ^b	Y_{MAX} (%) ^c	n ^d
O1	Butanal	G1H1	NA ^e	NA ^e
		G1H2	NA ^e	NA ^e
		G1H3	240.1 ± 4.0	48.9 ± 2.2
O2	pentanal	G1H1	>200	>10
		G1H2	214.7 ± 2.8	52.8 ± 1.0
		G1H3	41.0 ± 1.1	64.0 ± 1.8
O3	hexanal	G1H1	185.1 ± 19.0	34.3 ± 3.7
		G1H2	48.4 ± 0.9	56.7 ± 1.5
		G1H3	17.3 ± 0.6	71.2 ± 2.6
O4	heptanal	G1H1	172.8 ± 7.6	53.2 ± 4.2
		G1H2	29.2 ± 1.3	66.1 ± 3.2
		G1H3	5.7 ± 0.3	81.4 ± 4.9
O5	octanal	A1H1	198.8 ± 8.5	68.2 ± 3.3
		G1H1	134.8 ± 7.7	74.5 ± 4.6
		A1H2	35.7 ± 0.8	78.9 ± 1.6
		G1H2	8.8 ± 0.1	74.2 ± 1.8
		A1H3	12.1 ± 0.4	66.9 ± 0.9
O6	nonanal	G1H3	3.4 ± 0.1	85.3 ± 1.7
		G1H1	141.5 ± 10.7	49.7 ± 3.0
		G1H2	7.4 ± 0.3	58.3 ± 2.5
		G1H3	3.5 ± 0.2	73.3 ± 2.9
		G1H1	82.3 ± 1.5	52.3 ± 1.4
O7	decanal	G1H2	4.8 ± 0.6	53.7 ± 4.4
		G1H3	5.3 ± 0.3	77.6 ± 4.9
		G1H1	31.8 ± 1.0	68.9 ± 3.1
O8	methylundecanal	G1H2	5.4 ± 0.3	55.3 ± 1.8
		G1H3	24.7 ± 1.4	69.0 ± 5.1
		G1H1	3.5 ± 0.2	61.3 ± 4.1
O9	<i>trans,cis</i> -nonadienal	G1H3	3.4 ± 0.2	58.8 ± 2.7
O10	<i>trans,trans</i> -nonadienal	G1H1	20.5 ± 0.5	41.5 ± 1.3
O11	citral	G1H2	13.4 ± 0.2	67.8 ± 1.3
O12	(\pm)-citronellal	A1H3	26.3 ± 0.8	62.0 ± 1.8
		G1H3	3.7 ± 0.1	74.3 ± 1.5
		G1H2	13.9 ± 0.5	66.9 ± 2.4
O13	(+)-citronellal	G1H3	4.2 ± 0.2	75.9 ± 3.1
		G1H1	3.7 ± 0.1	68.0 ± 2.1
		G1H3	4.1 ± 0.1	76.6 ± 2.0
O14	(-)-citronellal	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O15	hydroxycitronellal	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O16	acetone	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O17	isovaleraldehyde	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O18	(-)-carvone	G1H2	>200	>30
		G1H3	NA ^e	NA ^e
		G1H1	146.4 ± 7.2	67.4 ± 2.8
O19	(+)-carvone	G1H3	31.5 ± 1.4	61.3 ± 2.6
		G1H1	33.0 ± 0.4	63.6 ± 0.8
		A1H2	43.9 ± 0.5	74.6 ± 1.4
O20	perillaaldehyde	G1H2	12.9 ± 0.6	61.4 ± 2.9
		A1H3	32.4 ± 0.3	37.3 ± 0.6
		G1H3	5.1 ± 0.2	66.5 ± 3.9
O21	(-)-muscone	G1H3	23.0 ± 2.1	33.5 ± 2.1
		G1H1	33.0 ± 3.9	33.8 ± 1.9
		G1H3	13.6 ± 0.9	34.7 ± 1.3
O22	(\pm)-muscone	A1H2	224.7 ± 8.3	52.7 ± 3.7
		G1H2	60.2 ± 1.4	54.8 ± 1.9
		A1H3	29.0 ± 1.8	24.6 ± 1.2
O23	civetone	G1H3	6.0 ± 0.1	44.8 ± 1.5
		G1H2	21.3 ± 0.7	57.9 ± 2.0
		G1H3	4.3 ± 0.1	44.0 ± 0.9
O24	cinnamaldehyde	G1H2	75.8 ± 2.9	75.3 ± 3.9
		G1H3	15.2 ± 0.9	73.1 ± 6.1
		G1H1	3.3 ± 0.2	73.4 ± 2.7
O25	methylcinnamaldehyde	G1H2	47.8 ± 1.7	50.7 ± 3.5
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O26	hydrocinnamaldehyde	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O27	cyclosal	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O28	jasminaldehyde	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O29	<i>p</i> -anisaldehyde	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e
O30	vanillin	G1H2	NA ^e	NA ^e
		G1H3	NA ^e	NA ^e
		G1H1	NA ^e	NA ^e

^aAll data were obtained from Hill analysis of dose response curves for hydrazones **A1H_nOm** and **G1H_nOm** ($n=1-3$, $m=1-30$; variable concentrations) and detected with calf thymus DNA in HPTS/DPX-LUVs. ^bEffective concentration for hydrazones needed to reach $Y_{MAX}/2$. ^cMaximal activity. ^dHill coefficient. ^eNA, no activity. ^fND, not determined.

Table S2. EC_{50} , Y_{MAX} and n for odorants detected with the direct sensing method,^a and ESI-MS.

odorant	reactive counterion	EC_{50} (μ M) ^b	Y_{MAX} (%) ^c	n ^d	ESI-MS ^e	
					found	expected for $[M+H]^+$
O3 ^f	A1H2	120.6 \pm 2.7	17.2 \pm 0.9	8.5 \pm 0.3	340.5	340.3
	G1H2	104.4 \pm 4.3	3.4 \pm 0.3	5.1 \pm 0.1	382.3	382.3
	A1H3	162.9 \pm 4.5	49.8 \pm 0.8	3.2 \pm 0.2	565.4	565.4
	G1H3	90.3 \pm 3.3	63.1 \pm 1.1	5.4 \pm 0.2	607.3	607.4
O4	A1H2	33.0 \pm 1.6	2.6 \pm 0.1	3.2 \pm 0.1	369.3	368.3
	G1H2	18.1 \pm 0.9	1.5 \pm 0.2	2.9 \pm 0.2	410.3	410.3
	A1H3	44.5 \pm 0.8	29.6 \pm 0.7	11.4 \pm 0.5	607.5	607.5
	G1H3	17.9 \pm 0.6	24.3 \pm 0.8	3.1 \pm 0.2	649.8	649.5
O5	A1H2	73.0 \pm 0.5	49.5 \pm 1.7	9.4 \pm 0.5	396.5	396.6
	G1H2	33.1 \pm 1.0	74.7 \pm 0.9	4.8 \pm 0.1	438.7	438.6
	A1H3	41.4 \pm 0.8	74.3 \pm 2.9	14.7 \pm 0.6	649.8	649.9
	G1H3	20.1 \pm 0.5	75.4 \pm 0.7	3.2 \pm 0.1	692.0	692.0
O6	A1H2	57.9 \pm 2.5	48.0 \pm 0.4	6.9 \pm 0.1	424.5	424.4
	G1H2	28.1 \pm 2.2	70.4 \pm 0.9	3.9 \pm 0.3	466.5	466.4
	A1H3	49.3 \pm 1.2	43.8 \pm 1.3	6.9 \pm 0.2	691.8	691.6
	G1H3	18.2 \pm 2.0	57.9 \pm 1.1	3.1 \pm 0.5	733.7	733.6
O7	A1H2	34.3 \pm 0.9	52.4 \pm 1.0	5.4 \pm 0.3	452.4	452.4
	G1H2	13.8 \pm 0.8	60.1 \pm 0.4	6.8 \pm 0.4	494.5	494.4
	A1H3	26.4 \pm 1.2	50.8 \pm 1.0	5.8 \pm 0.2	733.7	733.6
	G1H3	8.8 \pm 0.2	42.1 \pm 1.0	4.5 \pm 0.2	775.8	775.6
O8	A1H2	46.6 \pm 1.1	66.2 \pm 2.4	3.3 \pm 0.2	508.5	508.5
	G1H2	19.6 \pm 0.9	59.9 \pm 2.4	3.2 \pm 0.3	550.3	550.5
	A1H3	35.7 \pm 2.4	18.9 \pm 1.4	3.9 \pm 0.2	817.7	817.7
	G1H3	10.4 \pm 0.7	26.8 \pm 0.3	6.2 \pm 0.2	859.7	859.7
O9	A1H2	59.9 \pm 0.7	57.5 \pm 2.2	6.7 \pm 0.2	416.4	416.3
	G1H2	34.2 \pm 2.2	28.4 \pm 1.6	3.7 \pm 0.2	458.5	458.3
	A1H3	33.8 \pm 0.8	81.3 \pm 0.6	9.7 \pm 0.2	679.5	679.5
	G1H3	27.2 \pm 1.4	55.5 \pm 1.4	3.4 \pm 0.1	721.5	721.5
O10	A1H2	55.6 \pm 0.8	61.6 \pm 0.8	5.4 \pm 0.1	416.0	416.3
	G1H2	31.2 \pm 1.3	36.2 \pm 0.9	5.1 \pm 0.3	458.4	458.3
	A1H3	35.3 \pm 0.3	69.9 \pm 2.4	6.7 \pm 0.3	679.5	679.5
	G1H3	30.5 \pm 2.3	64.1 \pm 0.8	2.7 \pm 0.2	721.5	721.5
O11	A1H2	53.2 \pm 0.4	73.9 \pm 0.5	15.5 \pm 1.4	444.5	444.6
	G1H2	28.0 \pm 0.2	49.2 \pm 1.2	3.9 \pm 0.2	486.7	486.7
	A1H3	35.4 \pm 1.2	62.7 \pm 1.6	6.9 \pm 0.1	721.8	722.0
	G1H3	16.0 \pm 0.8	63.1 \pm 2.8	4.0 \pm 0.1	763.8	764.0
O12	A1H2	58.4 \pm 0.7	88.0 \pm 1.7	9.2 \pm 0.1	448.4	448.4
	G1H2	22.3 \pm 0.3	52.0 \pm 1.5	4.8 \pm 0.1	490.7	490.4
	A1H3	35.3 \pm 1.1	84.9 \pm 2.0	8.9 \pm 0.2	727.7	727.6
	G1H3	11.8 \pm 0.5	65.1 \pm 0.7	4.1 \pm 0.1	770.0	769.6
O13	A1H2	59.0 \pm 1.9	79.6 \pm 2.0	7.9 \pm 0.9	448.4	448.4
	G1H2	21.5 \pm 1.1	40.8 \pm 3.2	4.8 \pm 0.0	490.4	490.4
	A1H3	33.9 \pm 0.5	67.6 \pm 1.9	10.4 \pm 0.6	727.5	727.6
	G1H3	10.6 \pm 0.3	52.5 \pm 1.9	5.9 \pm 0.3	769.7	769.6
O14	A1H2	52.7 \pm 0.7	88.0 \pm 1.7	6.4 \pm 0.3	448.4	448.4
	G1H2	22.8 \pm 0.5	52.8 \pm 1.9	3.5 \pm 0.2	490.6	490.4
	A1H3	33.3 \pm 1.8	80.7 \pm 1.3	8.2 \pm 0.2	727.5	727.6
	G1H3	11.2 \pm 0.5	58.5 \pm 1.2	4.0 \pm 0.2	769.7	769.6
O18 ^f	A1H2	348.4 \pm 9.1	2.7 \pm 0.3	4.5 \pm 0.3	440.5	440.3
	G1H2	487.0 \pm 7.6	6.7 \pm 0.7	4.4 \pm 0.1	482.5	482.3
	A1H3	339.9 \pm 6.4	44.3 \pm 1.4	6.8 \pm 0.4	715.5	715.5
	G1H3	486.7 \pm 9.9	53.1 \pm 1.2	7.6 \pm 0.2	757.7	757.5
O19 ^f	A1H2	351.2 \pm 6.3	4.0 \pm 0.5	5.1 \pm 0.1	440.5	440.3
	G1H2	576.5 \pm 10.2	4.7 \pm 0.2	4.6 \pm 0.1	482.4	482.3
	A1H3	350.9 \pm 10.7	40.2 \pm 1.1	9.4 \pm 0.4	715.5	715.5
	G1H3	530.9 \pm 15.5	42.0 \pm 0.8	10.2 \pm 0.4	757.7	757.5

O20	A1H2	51.9 ± 4.1	56.2 ± 1.3	13.6 ± 0.2	440.5	440.6
	G1H2	33.1 ± 1.1	42.1 ± 1.9	4.7 ± 0.2	482.5	482.6
	A1H3	32.6 ± 0.6	45.1 ± 2.3	8.4 ± 0.2	715.8	716.0
	G1H3	29.7 ± 1.9	33.7 ± 2.7	4.1 ± 0.2	757.8	758.0
O21 ^f	A1H2	95.1 ± 3.7	23.3 ± 0.6	2.7 ± 0.2	616.8	616.6
	G1H2	95.9 ± 4.1	31.0 ± 1.2	5.8 ± 0.3	658.8	658.6
	A1H3	82.6 ± 2.3	26.5 ± 1.1	3.4 ± 0.2	979.8	979.8
	G1H3	161.4 ± 4.2	23.0 ± 0.8	3.7 ± 0.2	1022.0	1021.9
O22 ^f	A1H2	111.7 ± 1.8	31.7 ± 1.6	4.5 ± 0.2	616.7	616.6
	G1H2	138.5 ± 2.0	32.6 ± 0.9	8.8 ± 0.3	658.7	658.6
	A1H3	76.2 ± 3.7	27.3 ± 0.4	3.3 ± 0.2	979.8	979.8
	G1H3	181.3 ± 4.9	19.6 ± 1.6	3.7 ± 0.2	1021.8	1021.9
O23 ^f	A1H2	69.7 ± 1.6	28.9 ± 0.7	4.8 ± 0.2	640.8	640.6
	G1H2	46.2 ± 1.3	40.9 ± 0.6	2.0 ± 0.1	682.5	682.6
	A1H3	62.8 ± 2.5	43.7 ± 1.3	3.1 ± 0.1	1015.8	1015.8
	G1H3	42.7 ± 1.3	36.3 ± 0.7	1.3 ± 0.2	1057.6	1057.9
O24	A1H2	55.0 ± 1.7	2.9 ± 0.7	4.7 ± 0.2	404.5	404.5
	G1H2	33.3 ± 1.7	2.1 ± 0.2	3.8 ± 0.1	446.3	446.5
	A1H3	39.0 ± 0.2	23.6 ± 1.2	8.0 ± 1.1	661.5	661.8
	G1H3	30.5 ± 1.3	15.2 ± 0.2	3.9 ± 0.1	703.8	703.8
O25	A1H2	33.1 ± 3.4	3.3 ± 0.6	2.9 ± 0.1	432.5	432.2
	G1H2	42.1 ± 1.6	12.2 ± 1.4	4.5 ± 0.3	474.3	474.3
	A1H3	37.6 ± 0.7	47.4 ± 1.1	9.0 ± 0.6	703.5	703.4
	G1H3	46.4 ± 2.2	27.6 ± 2.7	4.7 ± 0.1	745.5	745.4
O26	A1H2	65.7 ± 2.6	3.5 ± 0.2	5.8 ± 0.6	408.1	408.2
	G1H2	21.5 ± 2.9	1.3 ± 0.2	2.1 ± 0.2	450.5	450.3
	A1H3	53.9 ± 2.8	7.8 ± 0.1	3.4 ± 0.4	667.5	667.4
	G1H3	7.8 ± 0.4	1.9 ± 0.2	3.9 ± 0.4	709.5	709.4
O27	A1H2	31.0 ± 0.8	63.6 ± 0.9	6.9 ± 0.3	520.3	520.4
	G1H2	15.3 ± 0.5	68.4 ± 2.6	5.3 ± 0.2	562.5	562.4
	A1H3	27.7 ± 1.1	67.0 ± 1.2	5.3 ± 0.1	835.5	835.6
	G1H3	9.2 ± 0.2	59.4 ± 1.8	3.7 ± 0.2	877.7	877.6
O28	A1H2	31.4 ± 0.8	71.9 ± 2.5	5.7 ± 0.1	544.5	544.4
	G1H2	34.8 ± 0.2	82.9 ± 1.2	5.3 ± 0.1	586.5	586.4
	A1H3	26.3 ± 0.4	74.1 ± 3.6	3.7 ± 0.2	871.5	871.6
	G1H3	33.9 ± 0.6	71.4 ± 2.6	3.8 ± 0.3	913.5	913.6

^aAll sensing data were obtained from Hill analysis of dose response curves for odorants **O**_n (*n*=3-14, 18-28; variable concentrations) coupled with reactive counterions **A1H_m** or **G1H_m** (*m*=2-3; **A1H2**, 50 µM; **G1H2**, 15 µM; **A1H3**, 30 µM; **G1H3**, 5 µM) and detected with calf thymus DNA in HPTS/DPX-LUVs. *EC*₅₀, *Y*_{MAX} and *n* are average values (± standard deviation) from three independent experiments. ^bEffective concentration for odorants needed to reach *Y*_{MAX}/2. ^cMaximal activity. ^dHill coefficient. ^eESI-MS of the reaction mixtures with excess odorants. ^fDifferent reactive-counterion concentrations were used (**A1H2**, 50 µM; **G1H2**, 30 µM; **A1H3**, 50 µM; **G1H3**, 30 µM).

Table S3. IC_{50} and n for odorants detected with the inverse sensing method,^a and ESI-MS.

odorant	reactive counterion	competitor	IC_{50} (μ M) ^b	response (%) ^c	n ^d	ESI-MS ^e	
						found	expected for $[M+H]^+$
O15	A1H2	O5 (100 μ M)	17.6 \pm 0.9	37.5 \pm 1.8	3.8 \pm 0.1	484.4	484.4
	G1H2	O5 (50 μ M)	32.0 \pm 1.8	45.6 \pm 4.6	4.6 \pm 0.2	526.5	526.4
	A1H3	O5 (50 μ M)	27.6 \pm 1.4	52.0 \pm 3.7	3.3 \pm 0.3	781.8	781.6
	G1H3	O5 (20 μ M)	7.4 \pm 0.6	42.4 \pm 2.1	1.7 \pm 0.1	823.8	823.6
O16	A1H2	O5 (100 μ M)	375.3 \pm 12.2	29.7 \pm 2.3	7.6 \pm 0.3	256.1	256.2
	G1H2	O5 (50 μ M)	238.2 \pm 1.3	49.4 \pm 5.5	3.7 \pm 0.3	298.3	298.2
	A1H3	O5 (50 μ M)	58.8 \pm 5.7	39.4 \pm 1.0	4.9 \pm 0.3	439.5	439.3
	G1H3	O5 (20 μ M)	83.8 \pm 4.7	42.2 \pm 0.8	1.5 \pm 0.1	441.5 ^f	481.3
O17	A1H2	O5 (100 μ M)	6.5 \pm 0.8	40.7 \pm 2.1	1.6 \pm 0.1	312.5	312.2
	G1H2	O5 (50 μ M)	30.0 \pm 3.2	48.1 \pm 0.3	3.8 \pm 0.3	354.3	354.3
	A1H3	O5 (50 μ M)	53.2 \pm 2.7	48.7 \pm 2.3	3.1 \pm 0.3	523.4	523.4
	G1H3	O5 (20 μ M)	6.6 \pm 1.2	39.8 \pm 1.3	1.8 \pm 0.1	565.5	565.4
O29	A1H2	O5 (100 μ M)	205.4 \pm 7.0	39.9 \pm 3.0	6.7 \pm 0.1	412.4	412.2
	G1H2	O5 (50 μ M)	291.1 \pm 8.5	47.5 \pm 3.6	4.4 \pm 0.1	454.4	454.2
	A1H3	O5 (50 μ M)	243.5 \pm 6.1	46.9 \pm 3.6	1.6 \pm 0.1	673.3	673.3
	G1H3	O5 (20 μ M)	267.1 \pm 3.7	47.3 \pm 3.2	1.5 \pm 0.1	715.5	715.3
O30	A1H2	O5 (100 μ M)	86.3 \pm 3.3	41.4 \pm 0.6	5.2 \pm 0.3	444.0	444.2
	G1H2	O5 (50 μ M)	182.2 \pm 6.5	45.4 \pm 3.0	2.2 \pm 0.2	486.5	486.2
	A1H3	O5 (50 μ M)	92.3 \pm 3.8	37.9 \pm 1.3	3.6 \pm 0.1	721.2	721.3
	G1H3	O5 (20 μ M)	77.9 \pm 1.7	43.4 \pm 2.3	1.6 \pm 0.1	763.5	763.3

^aAll sensing data were obtained from Hill analysis of inhibitory dose response curves for odorants **O_n** (n =15-17, 29, 30; variable concentrations) coupled with reactive counterions **A1H_m** or **G1H_m** (m =2-3; **A1H2**, 50 μ M; **G1H2**, 15 μ M; **A1H3**, 30 μ M; **G1H3**, 5 μ M) in the presence of a competitor odorant (**O5**, final concentrations are 100 μ M for **A1H2**, 50 μ M for **G1H2** and **A1H3**, and 20 μ M for **G1H3**) and detected with calf thymus DNA in HPTS/DPX-LUVs. IC_{50} , response and n are average values (\pm standard deviation) from three independent experiments. ^bInhibitory concentration for odorants needed to reach $Y_{MAX}/2$. ^cResponse (%) = $Y_{MAX,i} - Y_{MIN,i}$. ^dHill coefficient. ^eESI-MS of the reaction mixtures with excess odorants. ^fESI-MS corresponding to **G1H3(O16)**₂ (expected for $[M+H]^+$, 441.3), indicating the incomplete hydrazone formation due to poor reactivity of **O16**.

Table S4. V_{50} , Y_{MAX} and n for perfumes detected with the direct sensing method.^a

perfume	reactive counterion	V_{50} (nl) ^b	Y_{MAX} (%) ^c	n ^d	
P1	Chanel N° 5	A1H2 G1H2 A1H3 G1H3	1530 \pm 30 1120 \pm 60 1110 \pm 50 1090 \pm 40	17.2 \pm 0.9 12.8 \pm 0.4 49.7 \pm 3.3 23.8 \pm 0.7	4.9 \pm 0.2 5.7 \pm 0.1 8.2 \pm 0.3 7.7 \pm 0.2
	Jean Paul Gaultier Madame	A1H2 G1H2 A1H3 G1H3	283 \pm 9 211 \pm 9 216 \pm 6 141 \pm 11	43.4 \pm 1.8 19.0 \pm 0.3 40.1 \pm 2.5 14.3 \pm 0.4	9.5 \pm 0.2 5.5 \pm 0.1 8.3 \pm 0.1 3.8 \pm 0.1
	Issey Miyake A scent by	A1H2 G1H2 A1H3 G1H3	528 \pm 21 417 \pm 17 414 \pm 11 346 \pm 2	41.2 \pm 2.4 29.9 \pm 1.1 43.6 \pm 0.6 25.6 \pm 0.6	7.1 \pm 0.1 4.6 \pm 0.2 6.5 \pm 0.2 4.9 \pm 0.2
	Yves Saint Laurent Elle	A1H2 G1H2 A1H3 G1H3	1240 \pm 21 1020 \pm 21 768 \pm 29 604 \pm 21	59.1 \pm 2.2 40.3 \pm 0.6 39.0 \pm 1.0 33.3 \pm 0.4	3.7 \pm 0.2 7.2 \pm 0.4 9.6 \pm 0.1 2.7 \pm 0.1
P5	Calvin Klein Euphoria	A1H2 G1H2 A1H3 G1H3	3250 \pm 100 2780 \pm 70 2820 \pm 60 2760 \pm 60	62.7 \pm 0.9 50.3 \pm 2.7 61.3 \pm 1.2 49.2 \pm 1.7	5.6 \pm 0.2 5.0 \pm 0.3 7.2 \pm 0.2 3.7 \pm 0.1
	Davidoff Silver Shadow	A1H2 G1H2 A1H3 G1H3	3020 \pm 50 2190 \pm 50 1420 \pm 30 756 \pm 14	69.6 \pm 0.6 51.5 \pm 0.6 30.4 \pm 1.1 29.6 \pm 1.5	6.6 \pm 0.2 6.2 \pm 0.2 7.9 \pm 0.2 8.9 \pm 0.3

^aAll sensing data were obtained from Hill analysis of dose response curves for perfumes **P_n** (n =1-6; variable volumes) coupled with reactive counterions **A1H_m** or **G1H_m** (m =2-3; **A1H2**, 50 μ M; **G1H2**, 15 μ M; **A1H3**, 30 μ M; **G1H3**, 5 μ M) and detected with calf thymus DNA in HPTS/DPX-LUVs. V_{50} , Y_{MAX} and n are average values (\pm standard deviation) from three independent trials.

^bPerfume volumes needed to reach $Y_{MAX}/2$. ^cMaximal activity. ^dHill coefficient.