Chemical Science

Electronic Supplementary Information

Donor-substituted Octacyano[4]dendralenes: a New Class of Cyano-rich Nonplanar Organic Acceptors

Benjamin Breiten,^a Yi-Lin Wu,^a Peter D. Jarowski,^a Jean-Paul Gisselbrecht,^b Corinne Boudon,^b Markus Griesser,^c Christine Onitsch,^c Georg Gescheidt,^c W. Bernd Schweizer,^a Nicolle Langer,^d Christian Lennartz^e and François Diederich^a*

^aLaboratorium für Organische Chemie, ETH Zürich, Hönggerberg, HCI, CH-8093 Zürich (Switzerland). E-mail: <u>diederich@org.chem.ethz.ch</u>; Fax: (+41)-44-632-1109

^bLaboratoire d'Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie - UMR 7177, C.N.R.S., Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France

^cInstitute of Physical and Theoretical Chemistry, Graz University of Technology, Technikerstrasse 4/I, A-8010 Graz (Austria)

^d BASF SE, GVP/C-A30, 67056 Ludwigshafen (Germany)

^e BASF SE, GVC/E-B9, 67056 Ludwigshafen (Germany)

Table of Contents	Page
Experimental Section	
Materials and general methods	ESI 3
X-Ray data	ESI 6
Synthetic protocols	ESI 6
Table 1 (ESI): Optical and electrochemical gaps of 1–7 determined from	UV/Vis
spectroscopy and CV in CH ₂ Cl ₂ .	ESI 16
Table 2 (ESI): UV/Vis data for chromophores 1–7 in CH ₂ Cl ₂ at 298 K.	ESI 17
Table 3 (ESI) : Cyclic voltammetry (CV; scan rate $v = 0.1 \text{ V s}^{-1}$) and rotat	ing disk
voltammetry (RDV) data of 8–14 in CH_2Cl_2 (+ 0.1 M ^{<i>n</i>} Bu ₄ NPF ₆).	ESI 18
Figure 1 (ESI) : Variable temperature ¹ H NMR spectra of 5 in CD ₃ CN (20	0 MHz).
	ESI 19
Figure 2 (ESI): EPR spectra of 5 in CD ₃ CN at 293 and 333 K.	ESI 20
Figure 3 (ESI) : LUMO of 5 (B3LYP/6-31G(d)).	ESI 20
Figure 4 (ESI) : EPR spectra of 5 ⁻ in the solid state at 293 K.	ESI 21

Table 4 (ESI): Calculated Geometries (Å) for **3** and **5** in the compact and extendedconformations, SCF and zero-point energies, enthalpies and free-energies (kJ mol) atB3LYP/6-31G(d) level.ESI 21

Table 5 (ESI): Calculated Geometries (Å) for 5 in the compact and extended	
conformation at the (B3LYP/TZVP//BP86/SV(P)) level	ESI 24
NMR spectra	ESI 28
References	ESI 41

Experimental Section:

Materials and general methods:

Reagents and solvents were purchased at reagent grade from GFS Chemicals, Acros, ABCR, Aldrich, and Fluka and used as received. THF was freshly distilled from Na/benzophenone under N2 atmosphere. For all aqueous solutions, deionised water was used. Hay catalyst refers to a freshly prepared solution of CuCl (400 mg, 4.0 mmol) and TMEDA (N,N,N',N'-tetramethylethylenediamine, 464 mg, 4.0 mmol) in acetone (100 cm³). All reactions, except Hay couplings, were performed under an inert atmosphere by applying a positive pressure of argon. Drying was performed in *vacuo* at 10^{-2} Torr. Compounds $10^{1}, 14^{2}, 14^{2}$ as well as 4-iodo-*N*-isopropylaniline³ for the synthesis of 15, N-butyl-4-ethynylaniline⁴ for the synthesis of 9, 4-ethynyl-N,Ndiisopropylaniline⁵ for the synthesis of 11 and 9-iodo-1,2,3,5,6,7hexahydropyrido[3,2,1-*ij*]quinoline⁶ for the synthesis of **16** were prepared according to literature procedures. Solvents for column chromatography (CC), plug filtrations

and extractions were of technical quality. The chromatographic separations were carried out on SiO₂ 60 (particle size 0.040–0.063 mm, 230–400 mesh; Silicycle). CC was carried out at an overpressure of 0.1–0.6 bar. MPLC (medium-pressure LC) was performed with a Büchi Sepacore system consisting of a Büchi Pump manager C-615, a Büchi Pump Module C-601 and a Büchi Fraction collector C-660. Thin-layer chromatography (TLC) was conducted on SiO₂-layered glass plates (60 F₂₅₄, Merck); visualisation with UV light (254 or 366 nm). Compounds were prepared according to literature procedures. Melting points (mp.) were measured on a Büchi B-540 meltingpoint apparatus in open capillaries and are uncorrected; "decomp." refers to decomposition. ¹H NMR and ¹³C NMR spectra were measured on Varian Mercury 300, Bruker ARX 300, Bruker DRX400, Bruker AV400 or Bruker DRX 500 instruments at 298 K, unless otherwise stated. Chemical shifts are reported in ppm relative to the signal of tetramethylsilane. Residual solvent signals in the ¹H and ¹³C NMR spectra were used as an internal reference. Coupling constants (J) are given in Hz. The apparent resonance multiplicity is described as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublet), dt (doublet of triplets), t (triplet), q (quartet), sep (septet) and m (multiplet). Infrared spectra (IR) were recorded neat on a Varian 800 FT-IR instrument. Absorption bands are reported in cm⁻¹. UV/Vis spectra were recorded on a Varian Cary-5 spectrophotometer. The spectra were measured in CH₂Cl₂ in a quartz cuvette (1 cm) at 298 K. The absorption wavelengths are reported in nm with the molar extinction coefficient ε (dm³ mol⁻¹ cm⁻¹) in parenthesis; shoulders are indicated as sh. High-resolution- (HR) EI-MS spectra were measured on a Waters Micromass AutoSpec-Ultima spectrometer, HR-ESI-TOF-MS spectra on a Bruker maXis ESI-Q-TOF spectrometer and HR-FT-ICR-MALDI-MS and ESI-MS spectra on a Varian IonSpec Fourier Transform (FT) ICR instrument with (3hydroxypyridine-2-carboxylic acid) (3-HPA) as matrix. The most important signals are reported in m/z units with M^+ or M^- as the molecular ion. The nomenclature was generated with ACD Name 9 by Advanced Chemistry Development Inc.

Electrochemistry:

Electrochemical measurements were carried out at 20 °C in CH_2Cl_2 containing 0.1 M ^{*n*}Bu₄NPF₆ in a classical three-electrode cell. CH_2Cl_2 was purchased in spectroscopic grade from Merck, dried over molecular sieves (4 Å) and stored under Ar prior to use. ^{*n*}Bu₄NPF₆ was purchased in electrochemical grade from Fluka and used as received. The working electrode was a glassy carbon disk electrode (3 mm in diameter) used either motionless for cyclic voltammetry (CV; 0.1 to 10 V s⁻¹) or as rotating-disk electrode for rotating disk voltammetry (RDV). The auxiliary electrode was a Pt wire, and the reference electrode was either an aqueous Ag/AgCl electrode or a platinum wire used as a pseudo-reference electrode. All potentials are referenced to the ferricinium/ferrocene (Fc⁺/Fc) couple, used as an internal standard, and are uncorrected from ohmic drop. The cell was connected to an Autolab PGSTAT 30 potentiostat (Eco Chemie BV, Utrecht, The Netherlands) driven by a GPSE software running on a personal computer.

Variable-temperature NMR and EPR spectroscopies and magnetic susceptibility:

CD₃CN was obtained from Sigma-Aldrich and used as supplied. ¹H NMR experiments were performed on a Bruker AVANCE 200 MHz DPX NMR spectrometer equipped with a 5 mm BBO (BB-1H) probehead and a temperature controller (BVT 3200). EPR spectra were taken on a Bruker EMX spectrometer (variable temperature unit), and the magnetic susceptibility was determined with a SUS-10 (Anton Paar KG, Austria).

X-ray data analysis:

Suitable crystals were measured on a Bruker-Nonius Kappa-CCD diffractometer, MoKa radiation, l = 0.71073 Å, with a graphite monochromator. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft & MacScience, Japan). Structures were solved by direct methods (SIR97)⁷ and refined by full-matrix least-squares analysis (SHELXL-97).⁸ All heavy atoms were refined anisotropically; H-positions are based on stereochemical considerations and were included in the structure factor calculation with constrained isotropic thermal parameters. CCDC-775678 (**5**) and CCDC-775679 (**7**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthetic Protocols:

General Procedure for double [2+2] cycloaddition of TCNE to dianilino-endcapped buta-1,3-diynes

TCNE was added to a solution of the appropriate dianilinobutadiyne in $C_2H_2Cl_4$, and the mixture was stirred under Ar. The solvent was evaporated *in vacuo*, and the residue was purified according to the experimental details below.

3,4-Bis(dicyanomethylidene)-2,5-bis{4-[(1-methylethyl)amino]phenyl}hexa-1,5-diene-1,1,6,6-tetracarbonitrile (1)

General Procedure, starting from **8** (170 mg, 0.49 mmol) and TCNE (516 mg, 4.0 mmol) in C₂H₂Cl₄ (25 cm³), stirring for 48 h at 80 °C and purification by column chromatography (CC) (SiO₂, CH₂Cl₂/CH₃CN 20:1) to give **1** (243 mg, 82%) as a brown solid. Mp. > 400 °C; λ_{max} (CH₂Cl₂)/nm 475 (ε / dm³ mol⁻¹ cm⁻¹ 69000); v_{max} (neat)/cm⁻¹ 3339, 2971, 2214, 1605, 1436, 1168, 833; δ_{H} (500 MHz, C₂D₂Cl₄, 80 °C): 1.35 (12 H, br s), 3.86 (2 H, br s), 4.91 (2 H, br s), 6.69 (4H, d, *J* 8.0 Hz), 7.47 (4H, d, *J* 7.8 Hz); δ_{C} (100 MHz, C₂D₂Cl₄, 80 °C): 22.4, 44.8, 98.7, 109.3, 109.7, 112.7, 113.8, 120.2, 132.0, 154.0, 156.4; HR-MALDI-MS m/z (%): calcd for C₃₄H₂₄N₁₀⁻ (*M*): 572.2191; found: 572.2192 (100); elemental analysis calcd for C₃₄H₂₄N₁₀ + 0.25 CH₂Cl₂ + 0.25 pentane: C 69.68, H 4.53, N 22.89; found: C 69.63, H 4.56, N 22.78.

2,5-Bis[4-(butylamino)phenyl]-3,4-bis(dicyanomethylidene)hexa-1,5-diene-1,1,6,6-tetracarbonitrile (2)

General Procedure, starting from **9** (150 mg, 0.49 mmol) and TCNE (496 mg, 3.9 mmol) in C₂H₂Cl₄ (20 cm³), stirring for 48 h at 80 °C and purification by CC (SiO₂, CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 20:1) to give **2** (243 mg, 82%) as a brown solid. Mp. >

400 °C; $\lambda_{max}(CH_2Cl_2)/nm$ 474 (ε / dm³ mol⁻¹ cm⁻¹ 60 100); $v_{max}(neat)/cm^{-1}$ 3379, 3334, 2959, 2932, 2865, 2207, 1605, 1434, 1337, 1178, 831; $\delta_{H}(500 \text{ MHz}; C_2D_2Cl_4, 80 \text{ °C})$: 1.04 (6 H, t, *J* 7.1), 1.36 (4 H, br m), 1.59 (4 H, br m), 3.34 (4 H, br s), 5.05 (2 H, br s), 6.70 (4 H, d, *J* 6.6), 7.47 (4 H, d, *J* 6.3); $\delta_{C}(100 \text{ MHz}; C_2D_2Cl_4, 80 \text{ °C})$: 13.4, 19.9, 31.0, 43.1, 98.7, 109.3, 109.7, 113.5, 116.3, 131.9, 154.9, 156.5; HR-MALDI-MS m/z (%): calcd for $C_{36}H_{28}N_{10}^{-}(M^{-})$: 600.2504; found: 600.2504 (100).

3,4-Bis(dicyanomethylidene)-2,5-bis[4-(dimethylamino)phenyl]hexa-1,5-diene-1,1,6,6-tetracarbonitrile (3)

General Procedure, starting from **10**¹ (50 mg, 0.173 mmol) and TCNE (111 mg, 0.87 mmol) in C₂H₂Cl₄ (40 cm³); stirring for 100 h at 95 °C. During the time of the reaction, dark insoluble precipitates were formed. The solvent was removed under vacuum, and the residue was triturated with Et₂O (8 cm³, 3 x) and subsequently acetone (8 cm³, 4 x) in a centrifuge tube to afford **3** as a black solid (152 mg, 80%). Mp. > 400 °C; λ_{max} (CH₂Cl₂)/nm 494 (ε / dm³ mol⁻¹ cm⁻¹ 36700, the number is approximate, due to the very poor solubility); v_{max} (neat)/cm⁻¹ 2923, 2212, 1603, 1453, 1383, 1337, 1220, 1170, 830; δ_{H} (500 MHz, C₂D₂Cl₄, 80 °C): = 3.23 (12 H, br s), 6.80 (4 H, d, *J* 9.2), 7.54 (4 H, d, *J* 9.5); δ_{C} (100 MHz; C₂D₂Cl₄, 80 °C): not available due to low solubility; HR-MALDI-MS *m*/*z* (%): calcd for C₃₂H₂₀N₁₀⁻(*M*): 544.1878; found: 544.1878 (100).

3,4-Bis(dicyanomethylidene)-2,5-bis{4-[methyl(1-

methylethyl)amino]phenyl}hexa-1,5-diene-1,1,6,6-tetracarbonitrile (4)

General Procedure, starting from **11** (50 mg, 0.15 mmol) and TCNE (154 mg, 1.2 mmol) in C₂H₂Cl₄ (25 cm³), stirring for 24 h at 80 °C and purification by CC (SiO₂, CH₂Cl₂/CH₃CN 20:1) to give **4** (71.5 mg, 82%). Mp. > 400 °C; λ_{max} (CH₂Cl₂)/nm 501 (ε / dm³ mol⁻¹ cm⁻¹ 65 800); ν_{max} (neat)/cm⁻¹ 2978, 2933, 2208, 1600, 1444, 1395, 1126, 827; δ_{H} (500 MHz; C₂D₂Cl₄, 80 °C)): δ = 1.34 (12 H, d, *J* 6.0 Hz); 3.01 (6 H, s), 4.3 (2 H, s), 6.85 (4 H, d, *J* 7.1 Hz), 7.53 (4 H, d, *J* 7.3 Hz); δ_{C} (100 MHz, C₂D₂Cl₄, 80 °C): δ = 20.7, 49.0, 98.5, 109.7, 109.9, 113.5, 115.3, 131.4, 154.2, 155.6; δ_{C} (100 MHz; C₂D₂Cl₄): δ = 19.5, 30.4, 49.6, 98.5, 109.5, 109.7, 113.0, 113.2, 115.5, 131.2, 155.0, 155.7; HR-MALDI-MS *m/z* (%): calcd for C₃₆H₂₈N₁₀⁻(*M*⁻) : 600.2504; found: 600.2515 (100).

3,4-Bis(dicyanomethylene)-2,5-bis[4-(diisopropylamino)phenyl]hexa-1,5-diene-1,1,6,6-tetracarbonitrile (5):

General Procedure, starting from **12** (200 mg, 0.49 mmol) and TCNE (522 mg, 4.0 mmol) in C₂H₂Cl₄ (25 cm³), stirring for 24 h at 80 °C and purification by CC (SiO₂, CH₂Cl₂) to give **5** (266 mg, 81%) as a green solid. Mp. > 350 °C (decomp.); λ_{max} (CH₂Cl₂)/nm 281 (ε / dm³ mol⁻¹ cm⁻¹ 29 600) 506 (50 700); ν (neat)/cm⁻¹ 2972, 2930, 2360, 2342, 2215, 2125,1597, 1521, 1482, 1448, 1381, 1334, 1312, 1222, 1211, 1190, 1166, 1118, 1088, 1014 937, 903, 864, 822, 790, 729, 694, 653, 631; δ_{H} (500 MHz, C₂D₂Cl₄ 80 °C): 1.38 (24 H, d, *J* 6.9 Hz); 4.1-4.0 (4 H, m), 6.85 (4 H, d, *J* 8.8 Hz), 7.42 (4 H, d, *J* 8.1 Hz); δ_{C} (100 MHz, C₂D₂Cl₄, 80 °C): 20.7, 49.0, 98.5, 109.7, 109.9, 113.5, 115.3, 131.4, 154.2, 155.6; HR-MALDI-TOF (DCTB) *m/z* (%): calcd for C₃₆H₂₈N₁₀⁻ (*M*⁻) : 656.3119; found: 656.3095 (100).

3,4-Bis(dicyanomethylene)-2,5-bis(-(1,2,3,5,6,7-hexahydropyrido[3,2,1-

ij]quinolin-9-yl))hexa-1,5-diene-1,1,6,6-tetracarbonitrile (6):

General Procedure, starting from **13** (200 mg, 0.5 mmol) and TCNE (523 mg, 4.1 mmol) in C₂H₂Cl₄ (25 cm³), stirring for 24 h at 80 °C and purification by CC (SiO₂, CH₂Cl₂) to give **6** (283 mg, 87%) as a black greenish solid. Mp. dec > 350 °C; λ_{max} (CH₂Cl₂)/nm 297 (ε / dm³ mol⁻¹ cm⁻¹¹ 26 400) 524 (45 200); v_{max} (neat)/cm⁻¹ 2923, 2851, 2360, 2339, 2206, 1605, 1543, 1484, 1434, 1417, 1364, 1301, 1259, 1209, 1171, 1096, 1021, 896, 859, 850;): δ_{H} (500 MHz, C₂D₂Cl₄, 80 °C): 2.04 (8 H, br s); 2.78 (8 H, br s), 3.46 (8 H, *J* 5.4), 7.15 (4H, s); δ_{C} (100 MHz, C₂D₂Cl₄, 80 °C): not available due to low solubility; HR-FT-ICR-MALDI-MS (DCTB) *m/z* (%): calcd for C₄₀H₂₈N₁₀⁻ (*M*⁻) 648.2504; found 648.2508 (100).

3,4-Bis(dicyanomethylene)-2,5-bis(4-(dihexylamino)phenyl)hexa-1,5-diene-

1,1,6,6-tetracarbonitrile (7)

General Procedure, starting from 14² (200 mg, 0.49 mmol) and TCNE (368 mg, 2.9 mmol) in C₂H₂Cl₄ (15 cm³), stirring for 24 h at 80 °C and purification by CC (SiO₂, CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 20:1) to give 7 (257 mg, 82%) as green solid. Mp. dec > 350 °C; λ_{max} (CH₂Cl₂)/nm 296 (ε / dm³ mol⁻¹ cm⁻¹ 22 900) 507 (65400); v_{max} (neat)/cm⁻¹ 2972, 2930, 2360, 2342, 2215, 2125,1597, 1521, 1482, 1448, 1381, 1334, 1312, 1222, 1211, 1190, 1166, 1118, 1088, 1014 937, 903, 864, 822, 790, 729, 694, 653, 631; δ_{H} (500 MHz, C₂D₂Cl₄, 80 °C): 0.91 (12 H, br s) 1.33 (24 H, br s), 1.63 (8 H, br s), 6.67 (4 H, d, *J* 8.0Hz), 7.44 (4 H, br s); δ_{C} (100 MHz, C₂D₂Cl₄, 80 °C): 13.8, 22.5, 26.6, 27.4, 31.4, 51.6, 98.5, 109.6, 109.8, 111.9, 113.5, 132.0, 154.1, 155.6; HR-MALDI-TOF (DCTB) *m/z* (%): calcd for C₅₂H₆₀N₁₀⁺ (*M*⁺) 825.0998; found 825.1024 (100).

N-(1-Methylethyl)-4-[(trimethylsilyl)ethynyl]aniline (15)

Ethynyltrimethylsilane (3.8 cm³, 27 mmol) was added to the deoxygenated solution of 4-iodo-*N*-isopropylaniline³ (3.52 g, 13.5 mmol), [Pd(PPh₃)₂Cl₂] (280 mg, 0.40 mmol) and CuI (150 mg, 0.79 mmol) in Et₃N (100 cm³) under Ar atmosphere. The mixture was stirred at 25 °C overnight. The precipitate were removed by filtration, and the filtrate was concentrated and purified by CC (SiO₂; hexane/CH₂Cl₂ 4:1) to give **15** as a brown solid (2.98 g, 96%). Mp. 37–38 °C; $\nu_{max}(neat)/cm^{-1}$ 3417, 2961, 2144, 1608, 1513, 1245, 1176, 835, 822; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_3)$ 0.22 (9 H, s), 1.20 (6 H, d, *J* 6.3), 3.63 (1 H, septet, *J* 6.3), 3.70 (1 H, br), 6.47 (2 H, d, *J* 8.4), 7.27 (2 H, d, *J* 8.4); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_3)$ 0.19, 22.83, 44.08, 90.94, 106.47, 110.69, 112.59, 133.39, 147.52; HR-EI-MS *m/z* (%): calcd for C₁₄H₂₁NSi⁺ (*M*⁺): 231.1438; found: 231.1440 (100).

4,4'-Buta-1,3-diyne-1,4-diylbis[N-(1-methylethyl)aniline] (8)

 K_2CO_3 (10 g, 72.6 mmol) was added to the solution of **15** (2.8 g, 12.1 mmol) in THF/MeOH (1:1, 200 cm³). After stirring for 2 h at 25 °C, the silvl group of **15** was fully cleaved as confirmed by TLC. The solution was extracted with H₂O and CH₂Cl₂. The organic phase was collected, dried over Na₂SO₄ and concentrated by rotary evaporatoration. Without further purification, the residue was added to the freshly prepared Hay solution (CuCl 1.5 g, TMEDA 2.25 cm³, acetone 375 cm³). The mixture was stirred under air at 25 °C overnight. The green solution was first filtered through a SiO₂ plug to remove copper salts. After removal of solvents, the residue was recrystalised with hot ethyl acetate to give most of the product **8**, and the mother

liquor was further purified by CC (SiO₂; hexane/CH₂Cl₂ 2:1) to give another part of product as a yellow solid (totally 2.3 g, 82%). Mp. 193–194 °C; $v_{max}(neat)/cm^{-1}$ 3413, 2964, 2137, 1605, 1512, 1326, 1172, 822; δ_{H} (400 MHz; CDCl₃) 1.21 (12 H, d, *J* 6.3), 3.64 (2 H, m), 3.72 (2 H, d, *J* 7.5), 6.47 (4 H, d, *J* 8.8), 7.31 (4 H, d, *J* 8.8); δ_{C} (100 MHz; CDCl₃) 22.86, 43.99, 72.35, 82.21, 109.35, 112.57, 133.91, 147.87; HR-EI-MS *m/z*: calcd for C₂₂H₂₄N₂⁺ (*M*⁺): 316.1934; found: 316.1937 (100).

4,4'-Buta-1,3-diyne-1,4-diylbis(*N*-butylaniline) (9)

N-butyl-4-ethynylaniline⁴ (1.1 g, 6.40 mmol) was dissolved in the freshly prepared Hay solution (CuCl 0.79 g, TMEDA 1.19 cm³, acetone 200 cm³). The mixture was stirred under air at 25 °C overnight. The purification was done in the same way as for **8** to afford **9** as a yellow solid (1.0 g, 92%). Mp. 123–124 °C; $v_{max}(neat)/cm^{-1}$ 3397, 3384, 2996, 2866, 2138, 1602, 1512, 1320, 1172, 823; δ_{H} (300 MHz; CDCl₃) 0.96 (6 H, t, *J* 6.3), 1.42 (4 H, sextet), 1.60 (4 H, quintet), 3.12 (4 H, t, *J* 6.6), 3.86 (2 H, br, 6.49 (2 H, d, *J* 8.8), 7.32 (2 H, d, *J* 8.8); δ_{C} (75 MHz; CDCl₃) 13.84, 20.21, 31.44, 43.18, 72.36, 82.23, 109.39, 112.11, 133.83, 148.83; HR-MALDI-MS *m/z* (%): calcd for C₂₄H₂₈N₂⁺(*M*⁺): 344.2247; found: 344.2251 (100).

4,4'-Buta-1,3-diyne-1,4-diylbis[*N*-methyl-*N*-(1-methylethyl)aniline] (10)

A mixture of **8** (180 mg, 0.57 mmol), formaldehyde (37% aqueous solution, 30 cm³) and formic acid (36 cm³) was heated to 120 °C for 2 h. The solution was basified to pH ~ 12 with aqueous NaOH solution, and extracted with CH₂Cl₂. The organic phase was dried over Na₂SO₄ and concentrated to ca. 10 cm³. The residue was passed through a SiO₂ plug to remove polymeric impurities, and the filtrate was concentrated and subjected to CC (SiO₂; hexane/CH₂Cl₂ 2:1) to afford **10** as an off-white solid (22 mg, 22%). Mp. 200–202 °C; v_{max} (neat)/cm⁻¹ 2978, 2924, 2138, 2117, 1598, 1510, 1121, 813; $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.19 (12 H, d, *J* 6.6), 2.77 (6 H, s), 4.13 (2 H, septet, *J* 6.6), 6.67 (4 H, d, *J* 8.8), 7.37 (4 H, d, *J* 8.8); $\delta_{\rm C}$ (100 MHz; CDCl₃) 19.70, 29.83, 48.42, 82.36, 108.19, 111.92, 133.46, 149.67; HR-MALDI-MS *m/z* (%): calcd for C₂₄H₂₈N₂⁺ (*M*⁺):344.2247; found: 344.2243 (100).

4,4'-(Buta-1,3-diyne-1,4-diyl)bis(N,N-diisopropylaniline) (11):

A solution of *Hay* catalyst in acetone (100 cm³) was added to a solution of 4-ethynyl-*N*,*N*-diisopropylaniline⁵ (470 mg, 2.34 mmol) in acetone (10 cm³). The resulting mixture was stirred exposed to air for 18 h at 25 °C, filtered through a plug (SiO₂; acetone) and the solvent evaporated. The residue was purified by CC (hexane/CH₂Cl₂ 2:1) to afford **11** (383 mg, 82%) as a yellow solid. Mp. 198–199 °C; v_{max} (neat)/cm⁻¹ 2970, 2931, 2133, 1597, 1538, 1507, 1469, 1416, 1370, 1325, 1291, 1250, 1179, 1152, 1115, 1017, 936 906, 855, 822, 775, 733, 646; δ_{H} (300 MHz, CDCl₃): δ = 1.28 (24 H, d, *J* 6.8 Hz), 3.94-3.81 (4 H, m,), 6.74 (4 H, d, *J* 9.1 Hz), 7.33 (4 H, d, *J* 9.1 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃): 21.3, 47.5, 72.6, 82.4, 108.4, 115.3, 132.9, 148.2 ppm; HR-EI-MS m/z (%): calcd for C₂₈H₃₆N₂⁺ (M^+): 400.2878; found: 400.2874 (100).

9-((Trimethylsilyl)ethynyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline (16):

A solution of 9-iodo-1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinoline⁶ (2.5 g, 8.36 mmol) in HN(^{*i*}Pr)₂ (50 cm³) was degassed with Ar for 30 min at 20 °C. [Pd(PPh₃)₂Cl₂] (117 mg, 0.17 mmol) and CuI (47.7, 0.25 mmol) were added. Finally trimethylsilyacetylene (1.23 g, 12.54 mmol) was added, causing the solution to flocculate and slowly turn black. The resulting mixture was stirred for 14 h at 25 °C, hexane was added and the solution was filtered through a plug (SiO₂; CH₂Cl₂). The solvent was evaporated, and the residue was purified by CC (hexane/CH₂Cl₂ 1:1) to afford **16** (2.16 g, 95%) as a colorless oil. v_{max} (neat)/cm⁻¹ 2947, 2842, 2131, 1747, 1676, 1602, 1494, 1455, 1446, 1313, 1247, 1206, 1183, 1078, 1031, 1016, 982, 912, 891, 837, 755, 735, 696, 648; δ_{H} (300 MHz, CDCl₃): 0.20 (9 H, s), 2.67 (4 H, t, *J* 6.4 Hz), 3.16 (4 H, t, *J* 5.7 Hz), 6.90 (2 H, s); δ_{C} (75 MHz, CDCl₃): 0.4, 21.9, 27.6, 50.0, 90.5, 107.4, 108.7, 120.9, 130.8, 143.2 ppm; HR-EI-MS *m/z* (%): calcd for C₁₇H₂₃NSi⁺ (*M*⁺): 269.1600; found: 269.1594 (100).

1,4-bis(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)buta-1,3-diyne (13):

K₂CO₃ (4.62 g, 33.4 mmol) was added to the solution of **16** (2.0 g, 6.7 mmol) in THF/MeOH (1:1, 60 cm³). After stirring for 2 h at 25 °C, the silyl group of **16** was fully cleaved as confirmed by TLC. The solution was extracted with H₂O and CH₂Cl₂. The organic phase was collected, dried over Na₂SO₄ and concentrated *in vacuo*. Without further purification, the residue was added to the freshly prepared of *Hay* catalyst in acetone (250 cm³). The resulting mixture was stirred exposed to air for 14 h at 25 °C, filtered through a plug (SiO₂; acetone), and the solvent was evaporated. The residue was purified by CC (hexane/CH₂Cl₂ 2:1) to afford **13** (478 mg, 78%) as a yellow solid. Mp. 207–209 °C; v_{max} (neat)/cm⁻¹ 2929, 2850, 2127, 1597, 1521, 1463, 1427, 1410, 1360, 1314, 1277, 1208, 1148, 1074, 1049, 1027, 887, 876, 864; $\delta_{\rm H}$ (300 MHz, CDCl₃): 1.89-1.83 (8 H, m), 2.68 (8 H, t, *J* 6.4 Hz), 3.18 (8 H, t, *J* 5.7 Hz), 6.93 (4 H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃): 21.8, 27.7, 50.0, 72.4, 82.8, 107.7, 121.1, 131.2, 143.4 ppm; HR-EI-MS *m/z* (%): calcd for C₂₈H₂₈N₂⁺ (*M*⁺): 392.2252; found: 392.2244 (100).

Table 1 (ESI): Optical and electrochemical gaps of 1–7 determined from UV/Vis spectroscopy and CV in CH₂Cl₂.

	$\lambda_{\max} [nm (eV)]$	$\lambda_{end} [nm (eV)]$	$\Delta(E_{\text{ox},1}-E_{\text{red},1}) [V]$
1	475 (2.61)	940 (1.33)	1.14
2	474 (2.62)	940 (1.33)	1.19
3	494 (2.51)	950 (1.31)	1.08
4	501 (2.47)	950 (1.31)	1.11

5	506 (2.45)	950 (1.31)	1.07
6	524 (2.37)	950 (1.31)	0.94
7	507 (2.45)	950 (1.31)	1.11

Table 2 (ESI): UV/Vis data for chromophores 1–7 in CH₂Cl₂ at 298 K.

Compound	$\lambda_{\max} [nm (eV)]$	$\varepsilon_{\rm max} [{\rm dm}^{-3} {\rm mol}^{-1} {\rm cm}^{-1}]$
	280 (4.43)	15700
	475 (2.61)	69000
	288 (4.31)	27600
	474 (2.62)	60100
	291 (4.26)	14700
	494 (2.51)	36700
	291 (4.26)	24500
	501 (2.47)	65800
	281 (4.41)	29600
	506 (2.45)	50740
-		
	297 (4.17)	26400
	524 (2.37)	45200

Table 3 (ESI): Cyclic voltammetry (CV; scan rate $v = 0.1 \text{ V s}^{-1}$) and rotating disk

	CV			RDV	
	E°	$\Delta E_{\rm p}$	E_{pc}	$E_{1/2}$	Slope
	$(V)^{a}$	$(mV)^{b}$	$(\dot{V})^{c}$	$(V)^d$	$(mV)^{e}$
8					
			+0.37	+0.35 (2e ⁻)	70
_					
9				electrode	
10			+0.39	inhibition	
10		(0)		(0.22 (1.7))	(0
	+0.32 Strong electrode inhibition during the second	60		+0.33 (1e) Electrode inhibition	60
	oxidation step.			during the second	
11				oxidation	
11	+0.45	60		$+0.45(1e^{-})$	60
	+0.29	60		$+0.30(1e^{-})$	60
12					
	+0.44	60		+0.47 (1e ⁻)	60
	+0.29	60		$+0.30(1e^{-})$	60
13					
	+0.23	60		+0.24 (1e ⁻)	60
	+0.08	60		+0.09 (1e ⁻)	60
14					
	+0.45	90		$+0.47 (1e^{-})$	70
	+0.26	100		+0.27 (1e ⁻)	65

voltammetry (RDV) data of 8–14 in CH_2Cl_2 (vs. Fc⁺/Fc, + 0.1 M ^{*n*}Bu₄NPF₆).

^a $E^{o} = (E_{pc} + E_{pa})/2$, where E_{pc} and E_{pa} correspond to the cathodic and anodic peak potentials, respectively. ^b $\Delta E_{p} = E_{pa} - E_{pc}$. ^c E_{p} = irreversible peak potential. ^d Logarithmic analysis of the wave obtained by plotting *E* versus log[*I*/(*I*_{lim} - *I*)]. ^e Slope = Slope of the linearised plot of *E versus* log[*I*/(*I*_{lim} - *I*)], where *I*_{lim} is the limiting current and *I* the current.

Figure 1 (ESI): Variable temperature ¹H NMR spectra of 5 in CD₃CN (200 MHz).

Figure 2 (ESI): EPR spectra of 5^{-1} in CD₃CN at 293 and 333 K.

Figure 3 (ESI): LUMO of 5 (B3LYP/6-31G(d)).

Figure 4 (ESI): EPR spectra of **5**⁻ in the solid state at 293.

Table 4 (ESI): Calculated geometries (Å) (B3LYP/6-31G(d)) for **3** and **5** in the compact and extended conformations, SCF energy and zero-point (ZPE, 0 K), enthalpy (H, 298 K) and free-energy-corrections (G, 298 K) (Hartrees). Geometries were optimised using Gaussian 09⁹ and the resultant stationary states analysed with analytical harmonic frequencies to establish that they are minima.

Compound	5 (compact)		C -0.625786	1.175735	2.373481
SCF = 2003.217772			C 1.659798	2.161482	-2.454660
7DE = 0.679	217772		C 0.771029	0.101745	-3.305519
ZPE = 0.078	139		C -1.433664	0.325311	-1.155672
H = 0.730	785		C -1.320442	-1.050769	-1.478625
G = 0.588	735		C -2.316710	-1.956811	-1.183966
			C -3.528956	-1.567495	-0.539923
N 2.527685	2.937194	-2.507756	C -3.628124	-0.190983	-0.195205
N 0.939734	-0.751882	-4.079862	C -2.624392	0.706543	-0.485843
N -4.531843	-2.463755	-0.264890	C -4.538104	-3.796108	-0.918536
N -1.685669	5.779299	0.272271	C -5.533884	-2.257034	0.818067
N -2.400349	3.540171	-3.336581	C -1.143340	3.622277	-1.063032
N 1.685269	5.779527	-0.273230	C -1.410677	4.810011	-0.308426
N 2.400244	3.541433	3.336169	C -1.829151	3.559946	-2.323826
N 4.531558	-2.463971	0.265039	C 1.143296	3.622718	1.062557
N -0.938199	-0.751399	4.080329	C 1.410447	4.810311	0.307666
N -2.527416	2.937456	2.507705	C 1.829068	3.560833	2.323394
C 0.626267	1.175270	-2.373240	C 1.433874	0.325617	1.155719
C -0.391939	1.291459	-1.443158	C 2.624898	0.706797	0.486404
C -0.385404	2.566057	-0.628099	C 3.628506	-0.190891	0.195828
C 0.385538	2.566270	0.627855	C 3.528833	-1.567500	0.540024
C 0.392232	1.291874	1.443204	C 2.316268	-1.956740	1.183494

C 1.320155	-1.050532	1.478161	N -1.708456	4.406099	0.205648
C 5.533843	-2.257469	-0.817741	N -0.089193	2.815562	3.887032
C 4.537232	-3.796419	0.918484	N 1.843422	4.255670	-0.877219
C -0.770149	0.102330	3.305960	N 0.162119	2.123517	-4.242047
C -1.659488	2.161777	2.454816	N -6.131946	-0.693420	-0.000247
Н -0.412717	-1.431256	-1.928186	N -0.662581	-3.037648	-3.270780
H -2 127032	-2 997696	-1 412546	N 2 709556	-0 542015	-2 487469
H -4 519824	0 188415	0.280092	C -0 188647	-0 519953	2 256040
H -2 785243	1 738160	-0.198395	C 0.640380	0 198460	1 410208
H 2 786066	1 738470	0 199335	C 0.052000	1 360872	0.663871
H 4 520480	0 188410	-0 279027	C -0.015175	1 234716	-0.820185
Н 2 126256	-2 997678	1 411568	C -0.637661	-0.019639	-1 362857
H 0.412102	-1 430897	1 927177	C 0 169890	-0.887358	-2.081186
H 5 959238	-3 252716	-0.968397	C -1 582097	-0.233698	2.001100
Н 3 805323	3 702005	1 705650	C = 0.270365	1 505782	3 080317
П 3.893323	-3.702003	1.795059	C = 0.270303	-1.393782	1 145487
П-5.890459	-3.701774	-1./95890	C 2.037378	-0.088845	1.143467
C = 6.714021	-3.232130	0.908092	C = 2.388021 C = 2.017127	-1.391409	0.015993
U = 0.714931	-1.331109	-0.422579	C 3.91/12/	-1.028039	0.913883
$\Pi 7.300132$	-1.452462	-1.162316	C 4.820133	-0.373237	0.560012
П 0.442039	-0.293130	-0.546525	C = 4.205248	0./3410/	0.330330
H /.138988	-1.030305	0.538384	C 2.928622	0.960075	0.810207
C 4.905862	-1.8/4210	-2.10849/	C = 6.750719	-2.119978	0.059050
H 4.109063	-2.5/5/58	-2.440408	C 6.9/5/65	0.097703	-0.525150
H 4.486613	-0.865816	-2.183692	C -0.39/00/	2.467350	1.331524
H 5.677454	-1.920529	-2.944649	C -1.102096	3.542481	0.694513
C 3.959667	-4.892972	0.009188	C -0.228418	2.627425	2.748198
H 4.579659	-5.043468	-0.881910	C 0.467298	2.197950	-1.663642
H 3.915134	-5.847392	0.545687	C 1.208427	3.341807	-1.215018
H 2.947989	-4.638457	-0.323664	C 0.299441	2.123695	-3.087543
C 5.923476	-4.172666	1.466810	C -2.038576	-0.224774	-1.050524
H 5.834217	-5.093671	2.052988	C -2.895534	0.887060	-0.862915
Н 6.659759	-4.360888	0.678764	C -4.230324	0.740758	-0.555133
H 6.310314	-3.388855	2.125116	C -4.819059	-0.543727	-0.372220
C -4.905510	-1.874167	2.168756	C -3.958427	-1.658907	-0.584674
H -4.108939	-2.574061	2.440436	C -2.629062	-1.504330	-0.910155
H -4.485865	-0.865931	2.183960	C -6.874385	0.457713	0.573190
Н -5.676967	-1.920245	2.945059	C -6.925235	-1.920313	-0.277781
C -6.714650	-1.350207	0.423013	C -0.317469	-2.068862	-2.724373
Н -7.499665	-1.431107	1.183391	C 1.570730	-0.672124	-2.281789
H -6.441863	-0.294299	0.349054	H 1.949881	-2.244461	1.390073
Н -7.139124	-1.655247	-0.537611	Н 4.245678	-2.659261	0.896091
C -5.924600	-4.171939	-1.466526	Н 4.893854	1.587306	0.356395
Н -5.835657	-5.092830	-2.052929	Н 2.577796	1.987359	0.799115
Н -6.660709	-4.360215	-0.678330	H -2.518995	1.893799	-1.014866
Н -6.311477	-3.387921	-2.124566	H -4.831886	1.637431	-0.486223
C -3.960561	-4.892913	-0.009538	H -4.326031	-2.662359	-0.431332
H -4.580328	-5.043270	0.881742	Н -2.022135	-2.396727	-1.001028
Н -3.916456	-5.847324	-0.546100	Н -6.114054	1.167491	0.901310
H -2.948716	-4.638712	0.323045	Н -7.959823	-1.597412	-0.136733
			H 6.107356	-2.554516	1.426555
Compound 5	5 (extended)		Н 7.825946	-0.525225	-0.814251
SCF = -2093	221927		C -6.836630	-2.379086	-1.742785
ZPE = 0.677	919		H -5.848610	-2.755658	-2.017369
$L_1 L = 0.077$	717 517		Н -7.558207	-3.186123	-1.910605
H = 0.7303	51/		Н -7.083207	-1.554832	-2.419709
G = 0.589	189		C -6.702052	-3.066103	0.727918
			Н -5.741559	-3.571807	0.599108
N -2.715169	-0.031893	2.595666	Н -6.751495	-2.699908	1.756897
N 0.593087	-2.473679	3.773995	H -7.487169	-3.819544	0.595493
N 6.147003	-0.807980	0.319172	C -7.771146	1.146911	-0.467100

H -8.246507	2.032593	-0.030908	C -1.251628	2.907650	-0.932213
Н -7.193295	1.464726	-1.341313	C -1.436653	4.093651	-0.150641
H-8.570322	0.481381	-0.814284	C -2.067616	2.848267	-2.113128
C -7 649407	0.079283	1 845514	C -1 543916	-0 391606	-1 016596
H -8 486355	-0 599945	1 652775	C -2 670264	-0.013194	-0 241769
H -6 985930	-0.380659	2 583811	C -3 645314	-0.914475	0 129304
H -8 067117	0.990220	2.363611	C -3 557769	-2 283761	-0.238562
C = 8 + 130471	1 07/761	1 322110	C = 2.3377707	2.203701	0.087457
U 2 02104/1	-1.9/4/01	2 187204	C = 2.414112 C = 1.450607	-2.077820	1 250808
П 8.081944 Ц 9.460240	-1.300283	2.10/204	C = 1.450097	-1./0494/	-1.339898
П 0.400340	-2.930940	1.0/2002	C = 3.036447	-2.733000	0.929319
П 8.89//34	-1.001800	0.033874	C -4.400322	-4.382284	-0.209212
C 6./8/651	-3.0/4/55	-0.544643	C 0.410/41	-0.580//1	-3.395540
H /.162895	-4.058025	-0.239305	C 1.399948	1.460/84	-2.60884/
H 5.790769	-3.205724	-0.977601	H 0.590915	-2.131986	1.906031
H 7.449617	-2.698609	-1.333020	H 2.274681	-3.714875	1.269042
C 6.297769	0.500697	-1.845246	Н 4.483565	-0.555622	-0.711322
Н 5.906978	-0.376797	-2.368182	Н 2.797859	1.013927	-0.074849
Н 5.467360	1.197031	-1.713580	Н -2.796970	1.014536	0.075509
Н 7.039958	0.985711	-2.489115	H -4.483330	-0.554192	0.712096
C 7.571492	1.296034	0.237362	Н -2.276732	-3.714235	-1.269560
H 6.824903	2.049974	0.501209	H -0.592219	-2.132215	-1.906530
H 8.061691	0.971882	1.159928	H -6.305683	-3.612413	1.114882
Н 8.321955	1.787373	-0.392491	H -4.347480	-4.689064	-1.359321
			H -5.336264	-2.354042	1.898724
Compound	3 (compact)		H -6.248799	-1.986869	0.414698
SCE = 1779	715522		H -5.288886	-5.121345	0.075570
SCF = -1/70	0.713323		H -3 521330	-5 057267	0 174551
ZPE = 0.450	218		H 4 345230	-4 689732	1 360139
H = 0.492	619		Н 5 287552	-5 122826	-0.073874
G = 0.371	61		H 3 520040	-5.058994	-0.174000
0 0.571	01		H 5 334594	-2 354948	-1 898372
N 2 250726	2 236341	2 738810	H 6 303007	3 615130	1 116387
N 0 490740	1 417070	2.750010	H 6 2495092	-5.015150	-1.110587
N = 0.460740	-1.41/5/5	4.201316	11 0.240390	-1.990123	-0.414072
N 4.318090	-3.183001	-0.122013		2	
N 1.04/002	3.001937	-0.438010	Compound	s (extended)	
N 2.744384	2.830436	3.058042	SCF = -1778	.719823	
N -1.646423	5.062412	0.45/456	ZPE = 0.450	416	
N -2./43541	2.830157	-3.059208	H = 0.492	536	
N -4.520149	-3.182090	0.122061	$\begin{array}{c} 11 0.\pm 22 \\ C 0.272 \end{array}$	200	
N 0.481602	-1.419205	-4.200655	G = 0.3/3	398	
N 2.260580	2.235306	-2.738526			
C -0.375598	0.476804	2.433974	N 2.666177	-0.497090	-2.599878
C 0.537338	0.581924	1.400392	N -0.686036	-2.995032	-3.504508
C 0.449686	1.852421	0.583766	N -6.120148	-0.981370	-0.058297
C -0.449118	1.852343	-0.584012	N 1.765242	4.130973	-0.598188
C -0.537013	0.581655	-1.400335	N 0.043311	2.247707	-4.090788
C 0.376160	0.476083	-2.433676	N -1.764534	4.137216	0.557623
C -1.399169	1.461734	2.609136	N -0.043193	2.288705	4.069052
C -0.410041	-0.579802	3.396123	N 6.119404	-0.981150	0.066053
C 1.543833	-0.391776	1.016678	N 0.687486	-2.959507	3.535303
C 1.449769	-1.765117	1.359709	N -2.665772	-0.471688	2.606280
C 2.412749	-2.678465	0.987283	C 0.141404	-0.925549	-2.175886
C 3.556757	-2.284877	0.238675	C -0.663140	-0.130882	-1.377103
C 3.645154	-0.915564	-0.128895	C -0.048027	1.086490	-0.748729
C 2.670528	-0.013814	0.242150	C 0.048028	1.093984	0.738811
C 4.404718	-4.583631	0.270009	C 0.663225	-0.116954	1.379334
C 5 656993	-2 757199	-0 929765	C -0 140951	-0.903716	2 186207
C 1 252405	2,907660	0.931682	C 1 534369	-0 669197	-2 386868
C 1 437694	4 093396	0 149770	C -0 342157	-2 063727	-2.500000
C 1.75/074	T.075570	0.177770	$C = 0.5 \pm 2157$	-2.003727	1 05(702
$C_{2} 068404$	$\int \mathbf{X} d \mathbf{X} d \mathbf{M}$	/ / / / / / / / / / / /			_ 1 1136 /114

C -2.617455	-1.680894	-0.984116	C -1.533952	-0.645611	2.394823
C -3.941121	-1.880447	-0.655720	H -1.994565	-2.552248	-1.145214
C -4.809991	-0.786397	-0.389058	H -4.304599	-2.897236	-0.578599
C -4.255463	0.519006	-0.476948	H -4.869711	1.390712	-0.291818
C -2.925785	0.704062	-0.787453	H -2.557495	1.722755	-0.856585
C -6.654753	-2.332461	0.066715	H 2.558288	1.731448	0.842787
C -6.955859	0.152143	0.322809	Н 4.870333	1.393535	0.280458
C 0.402540	2.121802	-1.521418	Н 4.303333	-2.891556	0.604033
C 1.136458	3.237465	-0.996606	Н 1.993614	-2.540641	1.168543
C 0.205465	2.158725	-2.942973	Н 7.954696	-0.214590	-0.566421
C -0.402305	2.137127	1.501050	H 6.534917	-2.886468	0.890026
C -1.135944	3.247641	0.965051	Н 6.552768	0.661949	-1.207734
C -0.205279	2.188308	2.922169	H 7.048403	0.876753	0.489982
C 2.057460	-0.371588	1.061069	Н 7.717879	-2.277938	-0.274963
C 2.926184	0.712051	0.782339	H 6.159978	-2.899858	-0.851342
C 4.255711	0.523722	0.473096	Н -6.535761	-2.892620	-0.868211
C 4.809540	-0.782659	0.395955	Н -7.720397	-2.274069	0.289793
C 3.940317	-1.873979	0.672420	H -6.164180	-2.892921	0.873923
C 2.616872	-1.671011	0.999637	Н -6.553318	0.672589	1.201303
C 6.955494	0.148635	-0.325123	Н -7.955410	-0.208481	0.566560
C 6.652614	-2.333641	-0.049431	H -7.047810	0.873436	-0.498452
C 0.343168	-2.034478	2.917583			

Table 5 (ESI): Calculated geometries (Å) (B3LYP/TZVP//BP86/SV(P)) for **5** in the compact and extended conformations. For the conformer energetics, single point calculations at the optimised geometries using the B3LYP-functional¹⁰ in combination with a valence triple zeta basis set (TZVP)¹¹ were conducted. Additionally to account for dielectric solid state effects, a UPS/IEPS-calibrated version of the conductor like screening model (COSMO)¹² was used in conjunction with the single point calculations. Zero point energy corrections were taken from the BP86/SV(P) frequency calculations. Single point calculations to determine the ionisation potentials as well as the electron affinities at the optimised geometries of the charged and neutral species were performed on the BP86/TZVP level of theory including the same solid state correction as described above. The turbomole program package¹³ was used throughout.

Compound 5 (compact)

- · ·		
N 1.75725226395151	0.15205027624153	-13.59124352375467
C 0.93926846390286	0.39815302535545	-11.12239298683728
C -1.65171417683156	0.02619971387816	-10.43179700646516
C -2.47956721170301	0.29313892661806	-7.95472275609216
C -0.77679827669809	0.86558034876303	-5.96197098569511
C 1.79872607802021	1.23992430829421	-6.61842926932158
C 2.62747248129375	1.04451216027566	-9.10365656458434
Н -3.05876273786126	-0.44136856749915	-11.87752085401023

H -4.48871214328946	-0.03969395947033	-7.52706401936331
C -1.65325185081435	1.07935351625415	-3.33909342619452
H 3.17617885270149	1.74684091561351	-5.14184118831496
H 4.65103712082544	1.33469188050947	-9.46244739681963
C 4.28282671238548	1.11419046931013	-14.34332501632620
C 0.40901010590764	-1.41430281052207	-15.50289174984394
C -1.86349892002003	-0.08867377005302	-16.76330586155701
C -0 19298209287032	-4 10542149279494	-14 56644534623181
C 4 20275214132840	2 62945867966804	-16 82853468158620
C 6 29865694026891	-0.98591159543820	-14 39544341754054
C -0 30718979368924	-0 32390206158662	-1 35229701125074
C -3 77765971292209	2 58743196470033	-2 78072247644625
C -5.06565731531492	2.56745156470055	-0.40388199771277
C -4 85248776703059	<i>A</i> 24648471561188	-4 63227905644988
C 1 12426332422055	-2 48045523293511	-1 87631075316968
C 2 71845561014712	3 56157513706604	0.03605573004481
C 1 15030638071002	3 8383/176051333	A 22452617832510
N = 5.78523238667272	5 67606280146005	6 05617275857810
N 6 1838/108/52763	2 74002590002765	-0.03017273837810
N 1 20727056000084	2.74995580098705	5 00075071277000
N 1.29757050900004	-3.10233049044300	-5.900/50/15//099
H = 4.1001/29//010004	-4.42001349209937	1.34131136999739
П 4.62255520402502	2.4991//158/4040	-12.0/010042/30214
$\Pi 1.02040301003400$	-1.002000110900/9	-17.02003280007072
$\Pi -1.340131063/3660$	1.00074217(40515	-1/.41984342480903
H -2.4/8/445190/555	-1.200/421/040515	-18.438002204/310/
H - 5.525/5429001005	0.09495000559154	-15.49300090020134
H -0.89130511595843	-5.2595/360685689	-10.1/8100955/8585
H 1.52924363134595	-5.02866863035236	-13./9894860940563
H -1.655/3613301969	-4.1589488246416/	-13.065/18498/04/0
H 2.//202116810818	4.103358/402/285	-16./34001136133/0
H 6.0/9636//246240	3.51/9/0/0099448	-1/.1501//3214/232
H 3./9086590884381	1.43542049279438	-18.50800313266706
H 8.19394152848320	-0.1/208548543846	-14.80153191400/0/
H 6.398493348161//	-1.990656114056//	-12.55554507785057
H 5.89331129534/51	-2.41180555779835	-15.88/65601/32506
N 1.53403445898836	0.34656145090159	13.63063///32445/
C 0.80949/0554419/	-0.04/91208528803	11.152196/23/3402
C -1./9623004500690	-0.19981551043164	10.424541856/5696
C -2.51/8026/114251	-0.5/91529/94//2/	/.92/384382188/6
C-0./08918564//128	-0.76228451123001	5.955911291/8/84
C 1.88078396516469	-0.61829551327223	6.65189016653154
C 2.61699383845449	-0.30/62/2/608033	9.15291179194043
H -3.30460994068939	-0.06/07/75184792	11.84413117/26/55
H -4.54685161590685	-0.65433229628175	7.47165495105623
C -1.48822763136200	-1.12871663228675	3.31961711858311
H 3.35341510119379	-0.81526568545884	5.19366348294664
H 4.64479078962325	-0.19971907318634	9.55817620482260
C 4.06006829585245	-0.38525234309955	14.62902098800294
C -0.34111752390544	1.21451370211341	15.53001115870063
C 0.65544738577477	3.41086357877067	17.16109626969267
C -1.37615901887398	-0.97791897680385	17.14157527543587
C 6.19027626626906	1.52096319370325	14.04514659472957
C 4.78014976399485	-3.14314151783218	14.02965622718098
C -0.41571320999628	0.51901208989442	1.35374432010780
C -3.25980719454449	-3.02847688484449	2.72450307584550
C -4.47512127279573	-3.32152739225856	0.32710619382954
C -4.00715900674065	-4.88215030686189	4.55251668565817
C 0.54897993042423	2.91602198874762	1.89790536602892
C 1.93162788319179	4.29319785470778	0.01126056556907
C 0.26925381306057	4.25090792899837	4.24253502907574

-6.48073604612442	5.95497400678187
-3.64718157824050	-1.61066574915410
5.59262711013394	6.00582862188566
5.40940901963415	-1.47268355735612
-0.32149584195802	16.70911067683059
2.02144037989010	14.43033833150561
4.99268660439576	15.96245075988076
4.14141364556585	18.35480220859818
2.83672517930883	18.46159437059974
-0.28987605202067	18.42995699348220
-2.49291541177580	15.93363954918450
-1.83762414483410	18.33721854705357
3.47885887108340	14.51375400242466
1.05794845696800	15.20813149387874
1.50101503698737	12.03538700248188
-3.65318448473365	15.09398100361347
-4.45422575775360	14.61915605459023
-3.48136170055966	11.99570225784711
	-6.48073604612442 -3.64718157824050 5.59262711013394 5.40940901963415 -0.32149584195802 2.02144037989010 4.99268660439576 4.14141364556585 2.83672517930883 -0.28987605202067 -2.49291541177580 -1.83762414483410 3.47885887108340 1.05794845696800 1.50101503698737 -3.65318448473365 -4.45422575775360 -3.48136170055966

Compound 5 (extended)

N -5.37663739582548	-0.36484367280176	4.75097496717442
N 0.67007799725567	-5.43461023589887	6.53570354611448
N 11.50396121024796	-1.92020836261990	0.56567142470323
N -3.25954964067769	8.37946506292918	1.26656854466433
N -0.23842062457758	4.52162365512453	7.85927384780272
N 3.44858585127842	8.36022864557525	-0.71781064043377
N 0.31324225564411	5.15367794980529	-7.60063480859837
N -11.42834427034220	-1.63517717234879	-0.12881508938809
N -0.89854078996763	-4.85705520746353	-7.08751209394287
N 5.29584808513621	-0.09558638850399	-4.89917179899435
C -0.60196610511953	-1.37515234856461	4.04550800139428
C 1.05364308869558	0.10549200265162	2.59330118957646
C 0.04046210718031	2.48724931503479	1.43719310041244
C -0.02602705525037	2.60354593996341	-1.36841806519467
C -1.11053406726036	0.35542578301666	-2.71159369896466
C 0.49712778679318	-1.04669560358092	-4.28984759789540
C -3.22270542255200	-0.76830188896672	4.37822111741955
C 0.15972661026163	-3.60344230753130	5.38355637446386
C 3.68249841609747	-0.48087234300928	2.05909215029772
C 4.68037381873428	-2.98214831227828	2.00601130143169
C 7.20958696374808	-3.45308833922363	1.49895972905009
C 8.98708651861123	-1.45357593470992	1.03695632535609
C 7.97172794042394	1.05578518894507	1.09097498177029
C 5.43419182194711	1.50830942831155	1.56098220512757
C 12.59447237619352	-4.45624509478617	1.07753353776391
C 13.17679018648713	-0.10388577690788	-0.79350154034471
C -0.79846803927098	4.45282435082915	2.95788675700260
C -2.10753874133851	6.62663367695698	1.99256869408141
C -0.49281153723203	4.42058810766879	5.65714301579582
C 0.87250215336220	4.66192704861226	-2.72343061667332
C 2.24532521207520	6.70851342957155	-1.58423976781358
C 0.56592558035549	4.86285514171854	-5.41525929524759
C -3.74335376423487	-0.20849956068788	-2.17846553207015
C -5.42563016829225	1.77654907428262	-1.47100359618414
C -7.93900454108513	1.33529876451342	-0.87939573283474
C -8.98319350068612	-1.16552364123470	-0.88138002536735
C -7.30856553132969	-3.14393139631015	-1.67523440537082
C -4.80376229595821	-2.68300806860016	-2.29545765058233
C -12.83962647132222	0.29078932642701	1.35292085017648

C -12.87899352221658	-3.91413976911111	-0.91337905036700
C -0.32896305424842	-3.13864808485108	-5.79762261556478
C 3.13191485647207	-0.48263068690811	-4.57364195082658
C 3.41989071732659	-4.61446937544806	2.25805396687771
Н 7.79526787254621	-5.43921003148815	1.35415922963706
H 9.21101511864996	2.69051255850485	0.81430003827021
H 4.80362591056378	3.49169185443164	1.64787887006682
H -4.75989187527825	3.75043118553290	-1.47718305636327
H -9.12854836826735	2.97974633036206	-0.44677670195722
H -7.95504167882316	-5.11149781329473	-1.67805317634350
H -3.60570785117827	-4.31228968627938	-2.77122956181726
H -11.39188995926581	1.62039947455909	2.06735513498774
H -14.85943688501914	-3.42700577173122	-0.42600108171217
H 11.25356407495151	-5.39887761174849	2.37808634577726
H 14.85460978910895	-1.25923474933583	-1.28812441916926
H -12.86923364860464	-4.33087923564605	-3.79483179556416
C -10.98911020465911	-4.87936130538730	-4.54568953495955
H -14.21817420846617	-5.86725958840097	-4.28110884759890
H -13.47775771198556	-2.58967117456643	-4.79894125984732
H -12.26989059078417	-6.33046707574104	0.60482085918062
C -10.41857876995508	-7.18097510619530	0.10374324841963
H -12.25849532261437	-5.94549434861095	2.66686759666350
H -13.74367182297480	-7.78014702346268	0.22314467915236
H -14.72550447137785	1.77918647046022	-0.28877877780642
C -15.62852625432267	3.30475258803429	0.84027168442230
H -13.76917537127382	2.66737475983416	-1.93531466975339
H -16.26430409654788	0.54609260429363	-1.02193976172362
H -14.08006646485246	-0.83444891767427	3.73357689919835
C -15.64512974105998	-2.16780856840259	3.29780521971114
H -12.65831842970878	-1.82128821287775	4.92136388631601
H -14.89818251546267	0.72654133695130	4.87763803040577
H 15.10792604395188	-4.31195213402827	2.54050373493121
C 14.89884168121913	-3.17993464465086	4.29666087170023
H 15.69084816913169	-6.25392415078777	3.09194653724298
H 16.67615834615505	-3.49676375724856	1.40424122671121
H 12.80819264440442	-6.07142751649433	-1.33415576425448
C 13.47314291048172	-8.00830958286488	-0.85972167718468
H 10.95403187986550	-6.23519066719137	-2.30760256007454
H 14.18228291169164	-5.25016136331411	-2.69818011775469
H 12.07110712196689	0.78710292440413	-3.33388689590018
C 11.55239418394333	-0.85266988420111	-4.53607185076184
H 10.34732872494772	1.96188965973869	-3.13793604833809
H 13.51512469610219	1.92189346711516	-4.35607262470873
H 14.19451685616589	2.06724716730398	0.86822674313625
C 12.74796765011985	3.51636238668110	1.32522958690095
H 14.96532394046027	1.33696039987555	2.67877789590125
H 15.75151071705599	3.04658168643514	-0.14921777126142

NMR Spectra:

30

References:

- T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler,
 M. Gross, I. Biaggio and F. Diederich, *Chem. Commun.*, 2005, 737–739
- B. Liu, J. Liu, H.-Q. Wang, Y.-D. Zhao and Z.-L. Huang, J. Mol. Str., 2007,
 883, 82–87.
- M. Kivala, F. Mitzel, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross and F. Diederich, *Chem. Asian J.*, 2006, 1, 479–489.
- 4 R. Zentel, H. Baumann, D. Scharf, M. Eich, A. Schoenfeld and F. Kremer, *Macromol. Rapid Commun.*, 1993, **14**, 121–131.
- 5 K. Ayzat, E. Jahnke, T. Rankin and R. Tykwinski, *Chem. Commun.*, 2009, 433–435.
- R. Reutenauer, M. Kivala, P. D. Jarowski, C. Boudon, J.-P. Gisselbrecht, M. Gross, I. Biaggio and F. Diederich, *Chem. Commun.*, 2007, 4898–4900.

- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Gualiardi, A. G. G. Moliterni, G. Polidori and R. Spanga, *J. Appl. Crystallogr.*, 1999, 32, 115–119.
- 8 G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 10 D. A. Becke, J. Chem. Phys., 1993, 98, 5648.
- 11 A. Schäfer, C. Huberand and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829
- 12 A. Klamt, J. Phys. Chem., 1995, 99, 2224.
- R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Cölmel, *Chem. Phys. Lett.*, 1989, 162, 165.