Supplementary Information To:

The Synthesis and Exchange Chemistry of Frustrated Lewis Pair-Nitrous Oxide Complexes

Rebecca C. Neu, Edwin Otten, Alan Lough and Douglas W. Stephan*

Experimental Section

General Considerations. All manipulations were carried out under an atmosphere of dry, O₂-free N₂ employing standard Schlenk-line and glovebox techniques. Solvents (pentane, hexanes, CH₂Cl₂) were dried by employing a Grubbs-type column system (Innovative Technology), degassed and stored under N₂. Cyclohexane was distilled under N₂ from Na/benzophenone and bromobenzene was distilled under N₂ from CaH₂. CD₂Cl₂ was vacuum transferred from CaH₂ and C₄H₈O was vacuum transferred from Na/benzophenone. Both solvents were subsequently degassed and stored under N₂. ^tBu₃P (Strem Chemicals), Cy_3P (Strem Chemicals), $[Ph_3C][B(C_6F_5)_4]$ (Strem Chemicals), N_2O (Sigma-Aldrich; 99%) and ¹⁵N₂O (Cambridge Isotope Laboratories; 99.9%, 98.8% ¹⁵N enriched) were used as received. The reagents $PhB(C_6F_5)_2$,¹ $MesB(C_6F_5)_2$,² $(C_6F_5)_2BOC_6F_5$,³ $B(C_6F_4-p-H)_3$,⁴ $B(C_6H_4-p-F)_3$,⁵ 1,4-(C₆F₅)₂BC₆F₄B(C₆F₅)₂,⁶ Cp*₂Zr(OMe)Me⁷, Cp₂ZrMe₂⁸ and Cp₂TiMe₂⁹ were prepared according to literature procedures. ¹H, ¹¹B, ¹³C, ¹⁵N, ¹⁹F and ³¹P NMR spectra were recorded at 25 °C on a Varian NMR System 400 MHz or Bruker Avance III 400 MHz spectrometer, and were referenced using (residual) solvent resonances relative to SiMe₄ (1 H, 13 C), or relative to an external standard (11 B: (Et₂O)BF₃; ¹⁹F: CFCl₃; ³¹P: 85% H₃PO₄; ¹⁵N: NH₃(l) via the ¹⁵N resonance of 90% formamide in DMSO- d_6 at 112 ppm).¹⁰ Chemical shifts are reported in ppm and coupling constants as scalar values in Hz. Combustion analyses were performed in house employing a Perkin-Elmer CHN Analyzer.

Synthesis of ${}^{t}Bu_{3}P(N_{2}O)B(C_{6}F_{5})_{2}R$ (R = C₆F₅ 1, Ph 2). These compounds were prepared in a similar fashion and thus only one preparation is detailed. A solution of $B(C_6F_5)_3$ (0.200 g, 0.391 mmol) and ^tBu₃P (0.079 g, 0.391 mmol) in C₆H₅Br (5 mL) was stirred under an atmosphere of N₂O for a day, resulting in the precipitation of a colorless product. Hexanes (15 mL) were added and the resulting precipitate was allowed to settle. The supernatant was decanted and the white residue was recrystallized by diffusion of hexanes into a CH₂Cl₂ solution to give 1 as a white microcrystalline material. Yield: 0.225 g (76 %). 1: ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 1.46 (d, ³J_{P-H} = 14.5 Hz). ¹¹B NMR (128 MHz, CD₂Cl₂, 25 °C): δ 0.4 (s). ¹³C NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.5 (d, J_{F-C} = 240 Hz, o-C₆F₅), 139.9 (d, $J_{F-C} = 246$ Hz, p-C₆F₅), 137.5 (d, $J_{C-F} = 248$ Hz, m-CF), 121.2 (br, *ipso-* $C_{6}F_{5}$), 41.8 (d, $J_{P-C} = 29$ Hz, PCMe₃), 29.7 (PCMe₃). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 566.6 $(dd, {}^{2}J_{P-N} = 19.6 \text{ Hz}, {}^{1}J_{N-N} = 15.6 \text{ Hz}, \text{ NNO}), 381.7 (dd, {}^{1}J_{P-N} = 58.7 \text{ Hz}, {}^{1}J_{N-N} = 15.6 \text{ Hz}, \text{ NNO}).$ NMR (377 MHz, CD₂Cl₂, 25 °C): δ -133.8 (dd, 6F, ${}^{1}J_{F-F} = 23.9$ Hz, ${}^{2}J_{F-F} = 6.9$ Hz, *o*-F), -160.3 (t, 3F, J = 20.2 Hz, p-F), -166.0 (m, 6F, m-F). ${}^{31}P{}^{1}H{}$ NMR (162 MHz, CD₂Cl₂, 25 °C): δ 68.5 (dd, ${}^{1}J_{P-N}$ = 58.7 Hz, ${}^{2}J_{P-N}$ = 19.6 Hz). Anal. Calcd for C₃₀H₂₇BF₁₅N₂OP: C, 47.52; H, 3.59; N, 3.69. Found: C, 47.78; H, 3.96; N, 3.47 %. 2: Yield: 0.144 g (76 %). ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.40 (d, 2H, ${}^{3}J_{H-H} = 7$ Hz, $o-C_{6}H_{5}$), 7.17 (t, 2H, ${}^{3}J_{H-H} = 8$ Hz, $m-C_{6}H_{5}$), 7.09 (t, 1H, ${}^{3}J_{H-H} = 8$ Hz, $p-C_{6}H_{5}$), 1.44 (d, 27H, ${}^{3}J_{\text{H-P}} = 14\text{Hz}$, P{C(CH₃)₃}). ${}^{11}\text{B}{}^{1}\text{H}$ NMR (128 MHz, CD₂Cl₂, 25 °C): δ 3.27 (s). ${}^{13}\text{C}{}^{1}\text{H}$ NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.25 (br d, ${}^{1}J_{C-F}$ = 240 Hz, o-C₆F₅), 139.68 (br d, ${}^{1}J_{C-F}$ = 218 Hz, $p-C_6F_5$), 137.23 (br d, ${}^{1}J_{C-F} = 226$ Hz, $m-C_6F_5$), 132.31 (s, $p-C_6H_5$), 127.35 (s, $o-C_6H_5$), 125.77 (s, $m-C_6F_5$), 137.23 (br d, ${}^{1}J_{C-F} = 226$ Hz, $m-C_6F_5$), 132.31 (s, $p-C_6H_5$), 127.35 (s, $o-C_6H_5$), 125.77 (s, $m-C_6F_5$), 132.31 (s, $p-C_6H_5$), 127.35 (s, $o-C_6H_5$), 125.77 (s, $m-C_6F_5$), 132.31 (s, $p-C_6H_5$), 127.35 (s, $o-C_6H_5$), 125.77 (s, $m-C_6F_5$), 132.31 (s, $p-C_6H_5$), 127.35 (s, $n-C_6H_5$), 125.77 (s, $m-C_6H_5$), 127.35 (s, $n-C_6H_5$), 127.35 C_6H_5 , 41.64 (d, ${}^{1}J_{C-P} = 30$ Hz, $P\{C(CH_3)_3\}$), 29.71 (s, CH₃). ${}^{15}N$ NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 577.72 (dd, ${}^{2}J_{N-P} = 19.1$ Hz, ${}^{1}J_{N-N} = 16.0$ Hz, PNNO), 377.03 (dd, ${}^{1}J_{N-P} = 59.5$ Hz, ${}^{1}J_{N-N} = 16.0$ Hz, PNNO). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -131.87 (dd, 4F, ³J_{F-F} = 25 Hz, ⁴J_{F-F} = 9 Hz, *o*-C₆F₅), -161.71 (t, 2F, ${}^{3}J_{F-F} = 20$ Hz, $m-C_{6}F_{5}$), -166.45 (td, 4F, ${}^{3}J_{F-F} = 23$ Hz, ${}^{4}J_{F-F} = 8$ Hz $m-C_{6}F_{5}$). ${}^{31}P\{{}^{1}H\}$

NMR (162 MHz, CD₂Cl₂, 25 °C): δ 67.20 (dd, ${}^{1}J_{P-N} = 59.5$ Hz, ${}^{2}J_{P-N} = 19.1$ Hz). Anal. Calcd for C₃₀H₃₂BF₁₀N₂OP: C, 53.83; H, 4.97; N, 4.18. Found: C, 54.06; H, 4.94; N, 4.27 %.

Synthesis of ${}^{t}Bu_{3}P(N_{2}O)B(C_{6}F_{5})_{2}R$ (R = Mes 3, OC₆F₅ 4). These compounds were prepared in a similar fashion and thus only one preparation is detailed. A 50 mL schlenk tube was charged with $MesB(C_6F_5)_2$ (0.103 g, 0.222 mmol) and ^tBu₃P (0.045 g, 0.222 mmol) in bromobenzene (5 mL). The reaction was degassed and backfilled with 1 bar of N₂O. The solution was left stirring for 12 hours at room temperature. At this time, the solution was clear and colorless. Pentane (10 mL) was added precipitating a white solid. The solid was isolated by filtration, washed with pentane (3 x 5 mL) and dried in vacuo for 2 hours. Yield: 0.133 g (84 %). Crystals, although not suitable for X-ray diffraction, were grown from a layered dichloromethane/cyclohexane solution at 25 °C. 3: ¹H NMR (400 MHz, CD_2Cl_2 , 25 °C): δ 6.56 (s, 2H, (CH₃)₃C₆H₂), 2.18 (s, 3H, *p*-CH₃), (s, 6H, *o*-CH₃), 1.43 (d, 27H, ³J_{H-P} = 14 Hz, P{C(CH₃)₃}). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 25 °C): δ 3.56 (s). ¹³C{¹H} NMR (101 MHz, CD_2Cl_2 , 25 °C) partial: δ 148.42 (br d, ${}^{1}J_{C-F}$ = 235 Hz, $o-C_6F_5$), 141.69 (s, $o-(CH_3)_3C_6H_2$), 139.59 (br d, ${}^{1}J_{C-F} = 227 \text{ Hz}, p-C_{6}F_{5}), 137.19 \text{ (br d, } {}^{1}J_{C-F} = 227 \text{ Hz}, m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, } p-(CH_{3})_{3}C_{6}H_{2}), 129.78 \text{ (s, } m-C_{6}F_{5}), 134.85 \text{ (s, }$ $(CH_3)_3C_6H_2$, 41.59 (d, ${}^1J_{C-P} = 30$ Hz, P{ $C(CH_3)_3$ }, 29.72 (s, P{ $C(CH_3)_3$ }), 27.49 (s, $o-(CH_3)_3C_6H_2$), 24.85 (s, *p*-(*C*H₃)₃C₆H₂). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 574.19 (dd, ²*J*_{N-P} = 20 Hz, ¹*J*_{N-N}=15 Hz, PNNO), 375.33 (dd, ${}^{1}J_{N-P}$ = 59 Hz, ${}^{1}J_{N-N}$ = 15, PNNO). 19 F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -132.70 (dd, 4F, ${}^{3}J_{F-F} = 23$ Hz, ${}^{4}J_{F-F} = 7$ Hz, $o-C_{6}F_{5}$), -162.10 (t, 2F, ${}^{3}J_{F-F} = 20$ Hz, $m-C_{6}F_{5}$), -166.71 (td, 4F, ${}^{3}J_{F-F} = 24$ Hz, ${}^{4}J_{F-F} = 8$ Hz, $p-C_{6}F_{5}$). ${}^{31}P\{{}^{1}H\}$ NMR (162 MHz, CD₂Cl₂, 25 °C): δ 67.07 (dd, ${}^{1}J_{P-N} =$ 59 Hz, ${}^{2}J_{P-N}$ = 20 Hz). Anal. Calcd. for C₃₃H₃₈BF₁₀N₂OP: C, 55.79; H, 5.39; N, 3.94. Found: C, 55.88; H, 5.75; N, 3.65 %. 4: Yield: 0.121 g (85%). ¹H NMR (400MHz, CD₂Cl₂, 25 °C): δ 1.50 (d, ³J_{H-P} = 14 Hz, $P\{C(CH_3)_3\}$). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 25 °C): δ 6.43 (s). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.77 (br d, ¹*J*_{C-F} = 255 Hz, *o*-C₆F₅), 142.25 (br d, ¹*J*_{C-F} = 244 Hz, *o*-OC₆F₅), 140.40 (br d, ¹*J*_{C-F} = 250 Hz, *p*-C₆F₅), 138.23 (br d, ¹*J*_{C-F} = 239 Hz, *p*-OC₆F₅), 137.50 (br d, ¹*J*_{C-F} = 255 Hz, *m*-C₆F₅), 135.62 (br d, ¹*J*_{C-F} = 244 Hz, *m*-OC₆F₅), 119.38 (br s, *ipso*-C₆F₅), 115.23 (br s, *ipso*-OC₆F₅), 41.93 (d, ¹*J*_{C-F} = 29 Hz, P{*C*(CH₃)₃}), 29.75 (s, P{C(CH₃)₃). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 572.49 (dd, ²*J*_{N-P} = 20 Hz, ¹*J*_{N-N} = 16 Hz, PNNO), 389.37 (dd, ¹*J*_{N-P} = 59 Hz, ¹*J*_{N-N} = 16 Hz, PNNO). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -134.05 (d, 4F, ³*J*_{F-F} = 16 Hz, *o*-C₆F₅), -157.72 (d, 2F, ³*J*_{F-F} = 19 Hz, *o*-OC₆F₅), -166.96 (t, 1F, ³*J*_{F-F} = 20 Hz, *p*-OC₆F₅), -170.29 (tt, 2F, ³*J*_{F-F} = 22 Hz, ⁴*J*_{F-F} = 6 Hz, *m*-OC₆F₅). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ 68.98 (dd, ¹*J*_{P-N} = 59 Hz, ²*J*_{P-N} = 20 Hz). Anal. Calcd. for C₃₀H₂₇BF₁₅N₂O₂P: C, 46.54; H, 3.51; N, 3.62. Found: C, 46.63; H, 3.47; N, 3.47 %.

Synthesis of R₃P(N₂O)B(C₆F₄-*p*-H)₃ (R = 'Bu 5, Cy 8). These compounds were prepared in a similar fashion and thus only one preparation is detailed. A 50 mL schlenk tube was charged with B(C₆F₄-*p*-H)₃ (0.130 g, 0.284 mmol) and 'Bu₃P in C₆H₅Br (5 mL). The resulting yellow solution was degassed and backfilled with N₂O. The reaction was left stirring under an atmosphere of N₂O for 12 hours. At this time, the solution was clear and colourless. Pentane (10 mL) was added precipitating a white solid. The product was collected by filtration, washed with pentane (3 x 5 mL) and dried *in vacuo* for 2 hours. Yield: 0.181 g (91 %). Crystals suitable for X-ray diffraction were grown from a layered bromobenzene/cyclohexane solution at 25 °C. **5**: ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 6.86 (m, 1H, C₆F₄H), 1.44 (d, 27H, ³*J*_{H-P} = 14 Hz). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 25 °C): δ 0.69 (s). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C) partial: δ 149.58 (br d, ¹*J*_{C-F} = 238 Hz, *m*-C₆F₄H), 144.91 (br d, ¹*J*_{C-F} = 240 Hz, *o*-C₆F₄H), 103.61 (t, ²*J*_{C-F} = 23 Hz, *p*-C₆F₄H), 41.74 (d, ³*J*_{H-P} = 20 Hz, ¹*J*_{N-N} = 16 Hz, P{C(CH₃)₃}). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 588.75 (dd, ²*J*_{N-P} = 20 Hz, ¹*J*_{N-N} = 16 Hz,

PNNO), 367.61 (dd, ${}^{1}J_{N-P} = 59$ Hz, ${}^{1}J_{N-N} = 16$ Hz, PNNO). ${}^{19}F$ NMR (376 MHz, CD₂Cl₂, 25 °C): δ - 134.27 (m, 6F, *o*-C₆F₄H), -143.10 (m, 6F, *m*-C₆F₄H). ${}^{31}P{}{}^{1}H{}$ NMR (162 MHz, CD₂Cl₂, 25 °C): δ 68.33 (dd, ${}^{1}J_{P-N} = 59$ Hz, ${}^{2}J_{P-N} = 20$ Hz). Anal. Calcd. for C₃₀H₃₀BF₁₂N₂OP: C, 51.16; H, 4.29; N, 3.98. Found: C, 51.24; H, 4.59; N, 4.02 %. **8**: Yield: 0.101 g (59 %). ${}^{1}H$ NMR (400 MHz, CD₂Cl₂, 25 °C): 6.87 (m, 1H, C₆F₄H), 2.37 (q, ${}^{3}J_{H-H} \approx {}^{2}J_{P-H} \approx 12.6$ Hz, 1H, Cy α-Ch), 1.81 (m, 5H, Cy), 1.42 (m, 2H, Cy), 1.23 (m, 3H, Cy). ${}^{11}B$ NMR (128 MHz, CD₂Cl₂, 25 °C): δ 0.8 (s). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.2 (d, ${}^{1}J_{F-C} = 228$ Hz, *o*-C₆F₄H), 145.8 (d, ${}^{1}J_{C-F} = 235$ Hz, *m*-C₆F₄H), 128.0 (br, *ipso*-C C₆F₄H), 103.4 (t, ${}^{2}J_{C-F} = 23$ Hz, *p*-C₆F₄H), 32.3 (d, *J*_{P-C} = 43 Hz, Cy α-C), 26.7 (d, *J*_{P-C} = 12 Hz, Cy β-C), 26.0 (d, *J*_{P-C} = 4 Hz, Cy γ-C), 25.6 (d, *J*_{P-C} = 1 Hz, Cy δ-C). ${}^{15}N$ NMR (40.6 MHz, CD₂Cl₂, 25 °C) δ 573.0 (dd, ${}^{2}J_{P-N} = 22.2$ Hz, ${}^{1}J_{N-N} = 15.6$ Hz, NNO), 376.1 (dd, ${}^{1}J_{P-N} = 52.5$ Hz, ${}^{1}J_{NN} = 15.6$ Hz, NNO). ${}^{19}F$ NMR (377 MHz, CD₂Cl₂, 25 °C): δ -134.2 (m, 6F, *o*-C₆F₄H), -143.0 (ddd, 6F, ${}^{3}J_{F-F} = 23$ Hz, ${}^{3}J_{H-F} = 11$ Hz, ${}^{4}J_{F-F} = 11$ Hz, ${}^{3}J_{H-F} = 11$ Hz, ${}^{3}J_{P-F} = 22.2$ Hz). Anal. Calcd. for C₃₆H₃₆BF₁₂N₂OP: C, 55.26; H, 4.64; N, 3.58. Found: C, 55.07; H, 4.54; N, 3.60 %.

Synthesis of ${}^{t}Bu_{3}P(N_{2}O)B(C_{6}H_{4}-p-F)_{3}$ (6). A 50 mL schlenk tube was charged with B(C₆H₄-p-F)₃ (0.212 g, 0.716 mmol) and ${}^{t}Bu_{3}P$ (0.145 g, 0.717 mmol) in bromobenzene (10 mL). The pale yellow solution was subjected to 3 freeze-pump-thaw cycles using liquid nitrogen to degas the solution. The solution was left stirring under an atmosphere of N₂O for 12 hours at room temperature. At this time, the solution was cloudy and pale yellow. Pentane (10 mL) was added precipitating a white solid. The solid was isolated by filtration, washed with pentane (3 x 5 mL) and dried *in vacuo* for 2 hours. Yield: 0.312 g (80 %). ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.33 (m, 6H, *o*-C₆H₄F), 6.87 (m, 6H, *m*-C₆H₄F), 1.38 (d, 27H, ³J_{H-P} = 14 Hz). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 25 °C): δ 6.69 (s). ¹³C{¹H}

NMR (101 MHz, CD₂Cl₂, 25 °C) partial: δ 161.25 (br d, ${}^{1}J_{C-F} = 247$ Hz, *p*-C₆H₄F), 135.54 (br s, *m*-C₆H₄F), 113.50 (br s, *o*-C₆H₄F), 41.31 (d, ${}^{1}J_{C-P} = 31$ Hz, P{*C*(CH₃)₃}), 29.85 (s, P{C(CH₃)₃}. ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 588.75 (dd, ${}^{2}J_{N-P} = 19$ Hz, ${}^{1}J_{N-N} = 18$ Hz, PNNO), 367.61 (dd, ${}^{1}J_{N-P} = 61$ Hz, ${}^{1}J_{N-N} = 18$ Hz, PNNO). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -120.87 (s). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ 64.27 (dd, ${}^{1}J_{P-N} = 61$ Hz, ${}^{2}J_{P-N} = 19$ Hz). Anal. Calcd. for C₃₀H₃₉BF₃N₂OP: C, 66.43; H, 7.25; N, 5.16. Found: C, 66.25; H, 7.27; N, 5.17 %.

Synthesis of ¹Bu₃P(N₂O)B(C₆F₅)₂C₆F₄(C₆F₅)₂B(ON₂)P⁴Bu₃ (7). A 50 mL schlenk tube was charged with 1,4-(C₆F₅)₂BC₆F₄B(C₆F₅)₂ (0.100 g, 0.119 mmol) and ¹Bu₃P (0.048 g, 0.237 mmol) in bromobenzene (5 mL). The pale yellow slurry was degassed and backfilled with N₂O. The solution was left stirring under an atmosphere of N₂O for 12 hours at room temperature. At this time, the solution was opaque. Pentane (10 mL) was added precipitating a white solid. The solid was isolated by filtration, washed with pentane (3 x 5 mL) and dried *in vacuo* **for 2 hours. Yield: 0.144 g (91 %). Crystals suitable for x-ray diffraction were grown from a layered bromobenzene/cyclohexane solution at 25 °C. ¹H NMR (400MHz, CD₂Cl₂, 25 °C): δ 1.46 (d, 27H, ³***J***_{H-P} = 14 Hz). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 25 °C): δ 0.67 (s). ¹³C{¹H} NMR (101 MHz, C4₀B₀, 25 °C): δ 149.22 (br d, ¹***J***_{C-F} = 238 Hz, C₆F₄); 148.94 (br d, ¹***J***_{C-F} = 240 Hz,** *o***-C₆F₅); 140.03 (br d, ¹***J***_{C-F} = 233 Hz,** *p***-C₆F₅); 137.58 (br d, ¹***J***_{C-F} = 229 Hz,** *m***-C₆F₅); 128.01 (br s,** *ipso***-C₆F₄); 123.76 (br s,** *ipso***-C₆F₅); 41.87 (d, ¹***J***_{C-P} = 29 Hz, P{C(CH₃)₃}). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 571.04 (dd, ²***J***_{N-P} = 20 Hz, ¹***J***_{N-N} = 15 Hz, PNNO), 381.31 (dd, ¹***J***_{N-P} = 59 Hz, ¹***J***_{N-N} = 15 Hz, PNNO). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -133.57 (d, 8F, ³***J***_{F-F} = 17 Hz,** *o***-C₆F₅), -137.48 (s, 4F, C₆F₄), -161.80 (t, 4F, ³***J***_{F-F} = 21 Hz,** *p***-C₆F₅), -166.82 (t, 8F, ³***J***_{F-F} = 18 Hz,** *m***-C₆F₅). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ ⁵¹Cl**

68.37 (dd, ${}^{1}J_{P-N} = 59$ Hz, ${}^{2}J_{P-N} = 20$ Hz). Anal. Calcd. for $C_{54}H_{54}B_{2}F_{24}N_{4}O_{2}P_{2}$: C, 48.71; H, 4.09; N, 4.21. Found: C, 48.50; H, 4.20; N, 3.80 %.

Synthesis of (Cy₃P=O)B(C₆H₄-*p***-F)₃ (9). A 50 mL schlenk tube was charged with B(C₆H₄-***p***-F)₃ (0.205 g, 0.692 mmol) and Cy₃P (0.194 g, 0.692 mmol) in C₆H₅Br (5 mL). The pale yellow solution was degassed and backfilled with N₂O. The solution was left stirring under an atmosphere of N₂O for 12 hours at room temperature. At this time, the solution was faint yellow in color. Pentane (10 mL) was added precipitating a microcrystalline solid. The solid was isolated by filtration, washed with pentane (3 x 5 mL) and dried** *in vacuo* **for 2 hours. Yield: 0.320 g (78 %). Crystals suitable for x-ray diffraction were grown from a layered dichloromethane/pentane solution at -35 °C. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.38 (m, 6H,** *o***-C₆H₄F), 6.97 (m, 6H,** *m***-C₆H₄F), 1.90-1.16 (m, 30H, Cy). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 25 °C): δ 26.39 (s). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C) partial: δ 163.64 (d, ¹***J***_{C-F} = 246 Hz,** *p***-C₆H₄F), 146.06 (br s,** *ipso***-C₆F₄H), 138.16 (d, ³***J***_{C-F} = 7 Hz,** *o***-C₆H₄F), 114.34 (d, ²***J***_{C-F} = 20 Hz, m-C₆H₄F), 35.91 (d, ¹***J***_{C-F} = 59.77 Hz, Cy₃P), 27.31 (d, ²***J***_{C-F} = 12 Hz,** *o***-C₆H₁₀), 26.78 (d, ³***J***_{C-F} = 3 Hz,** *m***-C₆H₁₀), 26.46 (d, ⁴***J***_{C-F} = 1 Hz,** *p***-C₆H₁₀). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -116.52 (s). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ 62.58 (s). Anal. Caled. for C₃₆H₄₄B₅PCl₂O: C, 65.27; H, 6.69. Found: C, 65.25; H, 7.12 %.**

Synthesis of [${}^{t}Bu_{3}P(N_{2}O)C(C_{6}H_{5})_{3}$][B(C₆F₅)₄] (10). A 20 mL scintillation vial was charged with 6 (0.081 g, 0.149 mmol) in C₆H₅Br (5 mL). A separate vial was charged with [C(C₆H₅)₃][B(C₆F₅)₄] (0.136 g, 0.149 mmol) in C₆H₅Br (5 mL). The latter solution was added slowly to the first. The reaction was noted to change from a deep orange to a bright yellow within the first 30 seconds. The reaction was allowed to stir for a period of 12 hours at room temperature. Pentane was added (15 mL)

precipitating a yellow solid. The product was isolated by filtration and was subsequently washed with pentane (3 x 5 mL) and dried *in vacuo* for 2 hours. Yield: 0.165 g (96 %). Crystals suitable for X-ray diffraction were grown from a layered CH₂Cl₂/cyclohexane solution at 25 °C. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.37 (m, 15H, C₆H₅), 1.41 (d, ³*J*_{H-P} = 15 Hz, P{C(CH₃)₃}.) ¹¹B NMR (128 MHz, CD₂Cl₂, 25 °C): δ -16.68 (s). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.74 (br d, ¹*J*_{C-F} = 235 Hz, *o*-C₆F₅), 142.73 (s, *ipso*-C₆H₅), 138.81 (br d, ¹*J*_{C-F} = 242 Hz, *p*-C₆F₅), 136.90 (br d, ¹*J*_{C-F} = 241 Hz, *m*-C₆F₅), 128.45 (s, *ipso*-C₆F₅), 129.18 (s, *p*-C₆H₅), 129.09 (s, *m*-C₆H₅), 129.04 (s, *o*-C₆H₅), 98.30 (s, *C*(C₆H₅)₃), 42.69 (d, ³*J*_{H-P} = 24 Hz, P{C(CH₃)₃}), 29.63 (s, P{C(CH₃)₃}). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 548.42 (dd, ²*J*_{N-P} = 20 Hz, ¹*J*_{N-N} = 15 Hz, PNNO), 412.30 (dd, ¹*J*_{N-P} = 58 Hz, ¹*J*_{N-R} = 21, *p*-C₆F₅), -167.52 (m, 8F, ³*J*_{F-F} = 18, *m*-C₆F₅). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ 77.31 (dd, ¹*J*_{P-N} = 58 Hz, ²*J*_{P-N} = 20 Hz). Anal. Calcd. for C₅₅H₄₂BF₂₀N₂OP: C, 56.52; H, 3.62; N, 2.40. Found: C, 56.40; H, 4.02; N, 2.29 %.

Synthesis of [^{*t*}Bu₃P(N₂O)Zr(Me)Cp₂][MeB(C₆F₅)₃] (M = Zr 11, Ti 12). These compounds were prepared in a similar fashion and thus only one preparation is detailed. A 20 mL scintillation vial was charged with Cp₂ZrMe₂ (0.076 g, 0.260 mmol) in toluene (2 mL). A second 10 mL vial was charged with B(C₆F₅)₃ (0.133 g, 0.260 mmol) in toluene (5 mL). The borane solution was slowly added to the solution of Cp₂ZrMe₂ at room temperature. The resulting solution was bright yellow and was allowed to stir for an additional 5 minutes. At this time, **6** (0.141 g, 0.260 mmol) was added resulting in an opaque pale yellow solution. The reaction was allowed to stir for a period of one hour. Pentane was added (10 mL) precipitating a beige oil. The oil was taken up in CH₂Cl₂ (2 mL) and triturated with pentane (15 mL). The solvent was then decanted from the solid. The product was washed with

pentane (3 x 5 mL) and dried *in vacuo* for 2 hours. Yield: 0.226 g (83 %). Crystals suitable for X-ray diffraction were grown from a layered CH₂Cl₂/pentane solution at -35 °C. 11: ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 6.30 (s, 10H, C₅H₅), 1.60 (d, 27H, ³J_{H-P} = 14, P{C(CH₃)₃}), 0.48 (br s, 3H, H₃CB(C₆F₅)₃), 0.46 (s, 3H, ZrCH₃). ¹¹B NMR (128 MHz, CD₂Cl₂, 25 °C): δ -14.96 (s). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.88 (br d, ${}^{1}J_{C-F}$ = 238 Hz, o-C₆F₅), 138.07 (br d, ${}^{1}J_{C-F}$ = 241 Hz, p- $C_{6}F_{5}$, 136.94 (br d, ${}^{1}J_{C-F} = 244$ Hz, $m-C_{6}F_{5}$), 129.10 (s, *ipso-C*₆F₅), 113.39 (s, C₅H₅), 42.07 (d, ${}^{1}J_{C-P} =$ 29 Hz, P{C(CH₃)₃}), 29.94 (s, P{C(CH₃)₃}), 10.59 (br s, H₃CB(C₆F₅)₃). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 587.60 (dd, ² $J_{N-P} = 16$ Hz, ¹ $J_{N-N} = 17$ Hz, PNNO), 398.46 (dd, ¹ $J_{N-P} = 61$ Hz, ¹ $J_{N-N} = 17$ Hz, PNNO). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -133.11 (d, 6F, ³J_{F-F} = 20 Hz, *o*-C₆F₅), -165.25 (t, 3F, ${}^{3}J_{\text{F-F}} = 21 \text{ Hz}, p-C_{6}F_{5}), -167.81 \text{ (m, 6F, } m-C_{6}F_{5}). {}^{31}P\{{}^{1}\text{H}\} \text{ NMR (162 MHz, CD_{2}Cl_{2}, 25 °C): } \delta 67.06$ $(dd, {}^{1}J_{P-N} = 61 \text{ Hz}, {}^{1}J_{P-N} = 16 \text{ Hz})$. Anal. Calcd. for C₄₂H₄₃BF₁₅N₂OPZr: C, 49.96; H, 4.29; N, 2.77. Found: C, 49.83; H, 4.50; N, 2.54 %. 12: Yield: 0.232 g (81 %). ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 6.30 (s, 10H, C₅H₅); 1.58 (d, 27 H, ³J_{H-P} = 14 Hz, P{C(CH₃)₃}; 1.06 (s, 3H, TiCH₃); 0.47 (br s, 3H, H₃CB(C₆F₅)₃). ¹¹B NMR (128MHz, CD₂Cl₂, 25 °C): δ 14.93 (s). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.88 (br d, ${}^{1}J_{C-F}$ = 240 Hz, o-C₆F₅); 138.11 (br d, ${}^{1}J_{C-F}$ = 244 Hz, p-C₆F₅); 136.99 (br d, ${}^{1}J_{C-F}$ $_{\rm F} = 244$ Hz, $m-C_6F_5$; 129.62 (br s, *ipso-* C_6F_5); 116.43 (s, C_5H_5); 42.07 (d, ${}^{1}J_{\rm C-P} = 29$ Hz, P{ $C(\rm CH_3)_3$ }), 29.93 (s, P{C(CH₃)₃}), 10.54 (br s, H₃CB(C₆F₅)₃). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ 132.21 (d, $6F_{,}^{3}J_{F-F} = 20 \text{ Hz}, o-C_{6}F_{5}, 164.42 \text{ (t, } 3F_{,}^{3}J_{F-F} = 20 \text{ Hz}, p-C_{6}F_{5}, 166.97 \text{ (m, } 6F_{,} m-C_{6}F_{5}), \frac{31}{2}P_{1}^{1}H_{1}^{1} \text{ NMR}$ (162 MHz, CD₂Cl₂, 25 °C): δ 64.36 (s). Anal. Calcd. for C₅₂H₄₃BF₁₅N₂OPTi: C, 52.17; H, 4.49; N, 2.90. Found: C, 52.02; H, 4.25; N, 2.80 %.

Synthesis of [${}^{t}Bu_{3}P(N_{2}O)Zr(OMe)Cp*_{2}$][B(C₆F₅)₄] (13). A 20 mL scintillation vial was charged with Cp*_{2}Zr(OMe)Me (0.060 g, 0. 147 mmol) in C₆H₅Br (5 mL). A second 10 mL vial was charged with

[Ph₃C][B(C₆F₅)₄] (0.136 g, 0.147 mmol) in C₆H₅Br (2 mL). The trityl borate solution was added in a dropwise fashion to the solution of Cp*₂Zr(OMe)Me and was stirred at room temperature for 5 minutes. At this time, ^tBu₃P (0.030 g, 0.148 mmol) in bromobenzene (1 mL) was added resulting in a deep vellow solution. The solution was then transferred to a 100 mL bomb and was degassed and backfilled with N₂O (1 atmosphere). The reaction was allowed to stir at room temperature for 12 hours. Pentane (10 mL) was then added precipitating a yellow oil which was subsequently taken up in CH₂Cl₂ (2 mL), filtered through a plug of celite and triturated with pentane (15 mL). The solvents were decanted from the pale yellow solid. The product was washed with pentane (3 x 5 mL) and dried in *vacuo* for 2 hours. Crystals suitable for X-ray diffraction were grown from a layered CH₂Cl₂/pentane solution at -35 °C. Yield: 0.142 g (74 %). ¹H NMR (400MHz, CD₂Cl₂, 25 °C): δ 3.98 (s, 3H, OCH₃), 1.91 (s, 30H, C₅(CH₃)₅), 1.63 (d, 27H, ${}^{3}J_{H,P} = 14$ Hz, P{C(CH₃)₃}₃). ¹¹B NMR (128 MHz, CD₂Cl₂, 25 °C): δ -16.66 (s). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C): δ 148.77 (br d, ¹J_{C-F} = 242 Hz, o-C₆F₅), 138.85 (br d, ${}^{1}J_{C-F} = 244$ Hz, $p-C_{6}F_{5}$), 136.90 (br d, ${}^{1}J_{C-F} = 244$ Hz, $m-C_{6}F_{5}$), 124.36 (br s, *ipso-C*₆F₅), 122.70 (s, $C_5(CH_3)_5$), 58.92 (s, OCH₃), 41.95 (d, ${}^{1}J_{C-P} = 31$ Hz, $P\{C(CH_3)_3\}$), 30.04 (s, $P\{C(CH_3)_3\}$), 11.27 (s, C₅(CH₃)₅). ¹⁵N NMR (40.6 MHz, CD₂Cl₂, 25 °C): δ 591.01 (dd, ²J_{N-P} = 16 Hz, ¹J_{N-N} = 17 Hz, PNNO), 386.28 (dd, ${}^{1}J_{N-P}$ = 62 Hz, ${}^{1}J_{N-N}$ = 17 Hz, PNNO). 19 F NMR (376 MHz, CD₂Cl₂, 25 °C): δ -133.07 (d, 8F, ${}^{3}J_{F-F} = 20$ Hz, $o-C_{6}F_{5}$), -163.73 (t, 4F, ${}^{3}J_{F-F} = 20$ Hz, $p-C_{6}F_{5}$), -167.54 (m, 8F, $m-C_{6}F_{5}$). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ 64.33 (dd, ¹J_{P-N} = 62 Hz, ²J_{P-N} = 16 Hz).. Anal. Calcd. for C₅₇H₆₀BF₂₀N₂O₂PZr: C, 51.91; H, 4.59; N, 2.13. Found: C, 51.24; H, 4.75; N, 2.28 %.

Crystallographic Data Tables

	1	2	5	7	
formula	$C_{30}H_{27}BF_{15}N_2OP$	$C_{30}H_{32}BF_{10}N_2OP$	$C_{30}H_{30}BF_{12}N_2OP$	$C_{60}H_{66}B_2F_{24}N_4O_2P_2$	
M _r	758.32	668.36	704.34	1414.73	
cryst syst	Triclinic	triclinic	Orthorhombic	Triclinic	
color, habit	Colourless, block	Colourless, block	Colourless, needles	Colourless, plates	
size (mm)	0.22 x 0.18 x 0.17	0.25 x 0.22 x 0.29	0.60 x 0.40 x 0.40	0.40 x 0.40 x 0.10	
space group	<i>P</i> -1	<i>P</i> -1	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	
a (Å)	9.5265(4)	10.3832(8)	11.6507(6)	11.6910(5)	
b (Å)	11.6603(5)	11.9066(9)	13.7877(6)	12.8326(5)	
c (Å)	14.3458(7)	14.5601(12)	19.5448(8)	13.5442(6)	
α (°)	76.6040(10)	70.621(4)	90	63.637(2)	
β(°)	89.0710(10)	76.818(4)	90	88.082(2)	
γ(°)	87.1940(10)	65.912(4)	90	72.341(2)	
V (Å ³)	1548.32(12)	1541.2(2)	3139.6(2)	1722.62(13)	
Z	2	2	4	1	
$\rho_{calc}, g.cm^{-3}$	1.627	1.440	1.490	1.364	
$\mu(MoK_{\alpha}), cm^{-1}$	0.210	0.178	0.187	0.171	
F(000)	768	688	1440	726	
temp (K)	150(2)	150(2)	150(2)	150(2)	
θ range (°)	1.80-25.04	2.11-37.83	1.81-27.49	1.69-27.53	
data collected (h,k,l)	-11:11, -11:13, -16:17	-17:17, -20:20, -25:25	-15:15, -17:17, -25:25	-14:15, -16:16, -17:16	
min and max transm	0.6888, 0.7452	0.6920, 0.7474	0.6472, 0.7456	0.9348, 0.9831	
no. of rflns collected	19946	60932	28943	27807	
no. of indpndt reflns	5446	16452	7187	7846	
reflns $F_o \ge 2.0 \sigma (F_o)$	4919	12630	6151	5627	
R(F) (%)	2.86	3.77	3.67	4.77	
$wR(F^2)$ (%)	7.78	11.51	8.56	13.37	
GooF	1.013	1.021	1.029	1.061	
weighting a,b	0.0396, 0.7977	0.0590, 0.2143	0.0404, 0.5434	0.0780, 0.0529	
params refined	451	415	445	433	
min, max resid dens	-0.281, 0.306	-0.259, 0.543	-0.273, 0.307	-0.279, 0.385	

	8	9	10	11	13
chem formula	$C_{36}H_{36}BF_{12}N_2OP$	C ₃₇ H ₄₇ BClF ₃ OP ₂	$C_{55}H_{42}BF_{20}N_2OP$	$C_{42}H_{42}BF_{15}N_2OPZr$	C ₅₇ H ₆₀ BF ₂₀ N ₂ O ₂ PZr
Mr	782.45	672.95	1168.69	1009.78	1318.07
cryst syst	Orthorhombic	Monoclinic	$C_{55}H_{42}BF_{20}N_2OP$	Monoclinic	Monoclinic
color, habit	Colourless, blocks	Colourless, blocks	Yellow, plates	Colourless, blocks	Yellow, blocks
size (mm)	0.55 x 0.35 x 0.10	0.65 x 0.50 x 0.45	0.80 x 0.60 x 0.40	0.65 x 0.50 x 0.45	0.25 x 0.22 x 0.20
space group	Pbca	$P2_{1}/c$	P-1	$P2_1/n$	C2/c
a (Å)	19.5019(10)	9.5346(5)	12.3838(3)	15.6655(7)	36.218(7)
b (Å)	16.3963(7)	21.1476(9)	12.5415(3)	12.5681(6)	12.304(3)
c (Å)	21.7273(11)	17.6877(8)	18.4914(5)	21.5094(10)	31.224(10)
α (°)	90	90	94.7030(10)	90	90.00
β (°)	90	102.6040(10)	103.5460(10)	93.812(2)	122.397(5)
γ (°)	90	90	101.7340(10)	90	90.00
V (Å ³)	6947.5(6)	3480.5(3)	2708.21(12)	4225.5(3)	11749(5)
Ζ	8	4	2	8	8
$\rho_{calc}, g.cm^{-3}$	1.496	1.284	1.433	1.587	1.490
μ (Mo K _{α}), cm ⁻¹	0.178	0.247	0.161	0.401	0.321
F(000)	3216	1424	1188	2048	5376
temp (K)	150(2)	150(2)	150(2)	150(2)	150(2)
θ range (°)	1.87-27.57	1.52-30.95	1.67-28.50	1.56-27.42	1.78-27.61
data collected (h,k,l)	-21:25, -21:21, -	-13:13, -30:30, -	-15:16, -16:16, -	-20:12, -16:14, -	-46:39, 0:16, 0:40
	25:28	25:25	24:24	21:27	
Min/max transm	0.9086, 0.9825	0.8562, 0.8971	0.6711, 0.7457	0.6714, 0.7461	0.6741, 0.7456
rflns collected	60514	44879	51443	35224	13566
indpndt reflns	7992	11037	13665	9538	13566
reflns $F_o \ge 2.0 \sigma (F_o)$	5435	8728	9659	6004	7588
R(F) (%)	4.21	4.37	4.24	5.76	5.87
$wR(F^2)$ (%)	10.42	11.65	10.77	14.90	14.25
GooF	1.010	1.035	1.047	1.037	0.997
weighting a,b	0.0394, 3.3204	0.0540, 1.1971	0.0529, 0.0857	0.0661, 3.7172	0.0638, 0.0000
params refined	478	432	730	568	760
min, max resid	-0.338, 0.395	-0.334, 0.747	-0.266, 0.351	-0.877, 1.599	-0.688, 0.826

Figure S1. NMR (CD_2Cl_2) of solid product precipitated by addition of hexane to the reaction of tBu_3P and BPh₃ in bromobenzene under an N₂O atmosphere (1 bar).

2.4 1.6 1.2 0.8 7.2 6.8 6.4 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.0 . 6.0 5.6 DDN

¹⁹F EXSY NMR details.

EXSY spectra were acquired on a Bruker AVANCE III spectrometer operating at 376.7 MHz (¹⁹F) in phase-sensitive mode, using the standard Bruker pulse sequence (noesyph). In the indirectly detected dimension 64 complex points were collected with 8 scans and 1024 points per increment. EXSY spectra were recorded with appropriate mixing times at each temperature (see Figure S2). Sample temperatures were calibrated with a 4% CH₃OH in CD₃OD sample using the standard method implemented in Bruker Topspin 2.1.

Figure S2. Example of an ¹⁹F EXSY NMR spectrum

Integration of diagonal- and cross-peak volumes of the ¹⁹F resonances was performed using the Gaussian fit integration method implemented in Sparky.¹¹ Using Mathematica 5.0,¹² cross-peak volumes of all spectra were normalized (I_x/I_d) and plotted against mixing time. The data points were all at once fitted against equation (1)¹³ by non-linear regression (black lines, figure S3).

$$\frac{I_x}{I_d} = \frac{1 - e^{-2k\tau_{mix}}}{1 + e^{-2k\tau_{mix}}} \quad \text{with} \qquad k = \frac{k_B T}{h} e^{-\frac{\Delta H^{\ddagger} - T\Delta S^{\ddagger}}{RT}}$$
(1)

The error in determining the activation parameters from the EXSY data is related to the error in the normalized peak volumes ($0 \le I_x/I_d \le 1$) introduced in the integration routine. An estimate of the errors in the activation parameters was obtained by generating peak volumes ($I_x/I_d + R$), in which R was randomly chosen from a normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 0.025$ (corresponding to ca. 5% of the average I_x/I_d). Non-linear regression (equation (1)) was performed on the simulated peak data ($I_x/I_d + R$), and the procedure independently repeated 1000 times. This gave 1000 simulated values for the activation parameters, for which the mean and standard deviation are reported in the text as $\Delta H^{\ddagger} = \mu(\Delta H^{\ddagger}_{sim}) \pm \sigma(\Delta H^{\ddagger}_{sim})$ and $\Delta S^{\ddagger} = \mu(\Delta S^{\ddagger}_{sim}) \pm \sigma(\Delta S^{\ddagger}_{sim})$.

Figure S3. Plot of experimental I_x/I_d values, and fitted curve (black line)

- 1. P. A. Deck, C. L. Beswick and T. J. Marks, *Journal of the American Chemical Society*, 1998, **120**, 1772-1784.
- S. A. Cummings, M. Iimura, C. J. Harlan, R. J. Kwaan, I. V. Trieu, J. R. Norton, B. M. Bridgewater, F. Jäkle, A. Sundararaman and M. Tilset, *Organometallics*, 2006, 25, 1565-1568.
- 3. G. J. P. Britovsek, J. Ugolotti and A. J. P. White, Organometallics, 2005, 24, 1685-1691.
- 4. M. Ullrich, A. J. Lough and D. W. Stephan, *Journal of the American Chemical Society*, 2009, **131**, 52-53.
- 5. D. Naumann, H. Butler and R. Gnann, *Zeitschrift fur Anorganische und Allgemeine Chemie*, 1992, **618**, 74-76.
- 6. H. Li, L. Li, D. J. Schwartz, M. V. Metz, T. J. Marks, L. Liable-Sands and A. L. Rheingold, *Journal of the American Chemical Society*, 2005, **127**, 14756-14768.

- 7. D. D. Devore, F. J. Timmers and D. R. Neithamer, WO: 9736937 A1, 1997.
- 8. E. Samuel and M. D. Rausch, *Journal of the American Chemical Society*, 1973, **95**, 6263-6267.
- 9. G. J. Erskine, D. A. Wilson and J. D. McCowan, *Journal of Organometallic Chemistry*, 1976, **114**, 119-125.
- 10. G. E. Martin and C. E. Hadden, Journal of Natural Products, 2000, 63, 543-585.
- 11. T. D. Goddard and D. G. Kneller, *SPARKY 3*, University of California, San Francisco.
- 12. Mathematica 5.2, *Wolfram Research Inc.*
- 13. R. R. Ernst, G. Bodenhausen and A. Wokaun, in *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*, Clarendon Press, Oxford, 1987, p. p. 490.