Supporting Information

Metal-Binding Properties of Hpn from *Helicobacter pylori* and Implications for the Therapeutic Activity of Bismuth

Seraphine V. Wegner^{*a*}, Elif Ertem^{*a*}, Murat Sunbul^{*a*} and Chuan He^{*a*}*

Department of Chemistry and Institute for Biophysical Dynamics, The University of

Chicago, 929 East 57th Street, Chicago, Illinois, 60637, USA.

*Correspondence should be addressed to chuanhe@uchicago.edu

Materials and Methods

Expression and Purification of Hpn-FRET. To construct Hpn-FRET, a synthetic gene encoding Hpn was ordered (Bio Basic), amplified by PCR, and cloned between ECFP and EYFP using *Sph*I and *Sac*I in the plasmid system described in previous reports.²⁶ The Hpn-FRET plasmid was transformed into BL21star(DE3) and a 10 ml per culture grown from a single colony was diluted into 1 L autoclaved LB medium containing 50 mg ampicilin for protein expression. The cells were grown at 37 °C, 250 rpm until $OD_{600} = 0.6$. Then the temperature was lowered to 16 °C, protein expression was induced with 0.5 mM IPTG, and cells were grown overnight. The cells were harvested by centrifugation and resuspended in 30 ml buffer A (10 mM Tris-HCl [pH 6.5], 300 mM NaCl, 1 mM DTT) with 10 mM EDTA and 10 mM PMSF. The cells were lysed by sonication, and the lysate was cleared and centrifuged at 12,000 rpm for 25 min. The supernatant was incubated with DE23 cellulose resin for 1 hr at room temperature to remove DNA and filtered through a 0.45 µm filter. The supernatant was then dialyzed

against 1.5 L buffer A twice for 2hr each time at 4 °C. Then, 100 mM Tris [pH 8.8] was added, and the supernatant was applied to a Ni-NTA column pre-equilibrated with buffer B (10 mM Tris [pH 7.4], 300 mM NaCl, 1 mM DTT). The column was washed with 5% buffer C (10 mM Tris-HCl [pH 7.4], 500 mM imidazole, 300 mM NaCl, 1 mM DTT) and eluted with a linear gradient from 5% to 100% buffer C over 40 ml. Peak fractions were pooled, concentrated, and incubated with 20 mM KCN. The sample was then run on a Superdex 200 column with buffer B. The purity of Hpn-FRET was verified by SDS-PAGE gel (Figure S1).

Fluorescent Measurements. Fluorescence measurements were done on a Varian Cary Eclipse Fluorescence Spectrophotometer. The samples were excited at 433 nm, the excitation and emission slit widths were set to 5 nm and the emission spectrum was scanned from 453 nm to 650 nm at 120 nm / min using a moving average smoothing function. For the titration curves, 0 μ M to 2 μ M of each metal was added to a solution of 250 nM Hpn-FRET in buffer B without DTT and the intensity ratio at the peaks was taken as a measure of FRET change (Ratio = I₅₂₇ / I₄₇₇). Metal stock solutions (100 μ M) were prepared from the following salts with purity > 99 %: NiCl₂. 6H₂O, ZnCl₂, CoCl₂. 6H₂O, CuCl₂. 6H₂O, MnCl₂, MgCl₂, CaCl₂, Cr(NO₃)₃. 9H₂O, Fe(NH₄)₂SO₄ and FeCl₃. A 100 mM Bi(NO₃)₃ stock solution in 50% glycerol was used as the Bi³⁺ source. For selectivity measurements the response of 250 nM Hpn-FRET to 1.5 μ M of the tested metals in the presence and absence of Ni²⁺, Zn²⁺, and Co²⁺ was measured.

CD Measurements. CD measurements were done on an Aviv 202 CD spectrophotometer. The CD spectra of 2 μ M Hpn-FRET in 20 mM Tris-HCl [pH 7.4] in the absence and the presence of 12 μ M Ni²⁺, Zn²⁺, Co²⁺, and 100 μ M Bi³⁺ were scanned

in 1 nm increments in triplicates from 190 nm to 260 nm. The spectra were averaged, smoothed, and subtracted from the buffer before fitting was done using the Olis Global Works fitting program with the CDSSTR algorithm and the SDP 48 (43 soluble and 5 denatured proteins) and SMP56 (43 soluble and 13 membrane proteins) as basis sets (Table S1).

ICP-MS Analysis. 2 ml aliquots of Hpn-FRET (1 μ M) in buffer B without DTT were incubated with either 10 μ M Ni²⁺, Zn²⁺ or Co²⁺ or with 20 μ M total metal of 1:1 mixtures of Ni²⁺/Zn²⁺, Ni²⁺/Co²⁺ and Zn²⁺/Co²⁺. The samples were concentrated 10-fold with a 5000 MW cut-off filter in a centrifugal concentrating device. Each sample was then diluted 3-fold and concentrated again. This was repeated 3 times before the protein concentrations were measured by UV-vis and the samples were analyzed for metal content by ICP-MS to determine the equivalents of metal to protein in each sample (Table S2). ICP-MS measurements were performed on a Thermo Finnigan Element 2 High-Resolution ICP-MS. The samples were diluted with 0.8 N HNO₃ by a factor of 500, analyzed in medium resolution using an external calibration technique. Machine drift was monitored using ¹¹⁵In and ⁷⁵As as internal standards at ~50 ng/g. Potential interferences were monitored by comparing the measured ⁶³Cu/⁶⁵Cu, ⁶⁶Zn/⁶⁴Zn and ¹¹²Cd/¹¹¹Cd rations to those found in nature.

 K_d Measurements and Fitting. For the K_d measurement of Hpn-FRET with Ni²⁺ and Zn²⁺, Ni²⁺/ citrate, and Zn²⁺/ CN⁻ buffers were prepared respectively in 100 mM Tris-HCl (pH 7.4) and 100 mM NaCl. Free Ni²⁺ concentrations were buffered from 1.37 × 10⁻⁹ to 6.32 × 10⁻⁶ M using 0.3-1.9 mM Ni²⁺ and 1.5-20 mM citrate. Free Zn²⁺ concentrations were buffered to 3.94 × 10⁻¹¹ to 6.64 × 10⁻⁷ M using 0.1-1 mM Zn²⁺ and 5- 20 mM CN⁻.

Free metal concentrations were calculated using the program HySS2006³² and reported complexation constants and K_a values³³ (Supporting Information). The metal loading of Hpn-FRET was measured in each Ni²⁺/citrate or Zn²⁺/CN⁻ buffer. K_d measurements for Hpn-FRET with Bi³⁺ were done by adding increasing amounts of Bi³⁺ (5 μ M to 110 μ M Bi³⁺ from 1 mM Bi(NO₃)₃ stock solution in 50% glycerol) to 250 nM Hpn-FRET in buffer B without DTT. The obtained binding curves were fitted with the Hill 1 equation using Origin 8 (Table S3).

Fluorescent Measurements in *E. coli.* The Hpn-FRET plasmid was transformed into BL21*, cells were pre-cultured overnight in LB medium, harvested by centrifugation, and inoculated into freshly prepared MOPS minimal media³⁵ with 50 mg/L ampicilin by 1:500 dilution. The cells were grown at 37 °C up to $OD_{600} = 0.4 - 0.5$ and cooled down to room temperature. Protein expression was induced with 0.1 mM IPTG. 1, 2, 5, 10, 20, 50, 100, 200, and 400 μ M NiCl₂, ZnCl₂, bismuth subsalycilate (suspension in water), and Pepto Bismol were added to aliquots of the original culture. Bacterial cells were grown at 16 °C overnight. Fluorescent measurements were taken for each culture by diluting cell culture with 600 μ M TBS (10 mM Tris-HCl [pH 7.4], 150 mM NaCl) buffer to OD₆₀₀ ~ 0.5. The samples were excited at 420 nm and the emission spectrum was collected from 450 nm to 550 nm four times for each sample and a moving average smoothing function was applied. The signal from TBS was subtracted and the ratio of intensities at 527 nm and 477 nm was used in the calculation of the FRET change.

 K_d Measurements of Hpn-FRET for Ni²⁺ and Zn²⁺.

$\mathrm{H}^{+} + \mathrm{Cit}^{3-} \leftrightarrow \mathrm{HCit}^{2-}$	logK= 6.39
$2 \text{ H}^+ + \text{Cit}^{3-} \leftrightarrow \text{H}_2\text{Cit}^-$	logK=11.16

$3 H^+ + Cit^{3-} \leftrightarrow H_3Cit$	logK= 14.28
$Ni^{2+} + Cit^{3-} \leftrightarrow NiCit^{-}$	logK= 6.59
$Ni^{2+} + H^+ + Cit^{3-} \leftrightarrow NiHCit$	logK= 10.50
$Ni^{2+} + 2 H^+ + Cit^{3-} \leftrightarrow NiH_2Cit^+$	logK=13.30
$Ni^{2+} + 2 Cit^{3-} \leftrightarrow Ni(Cit)_2^{4-}$	logK= 8.77
$Ni^{2+} + H^+ + 2 Cit^{3-} \leftrightarrow NiH(Cit)_2^{3-}$	logK= 14.90

 $H^{+} + CN^{-} \leftrightarrow HCN \qquad logK = 9.04$ $Zn^{2+} + 2 CN^{-} \leftrightarrow Zn(CN)_{2} \qquad logK = 11.07$ $Zn^{2+} + 3 CN^{-} \leftrightarrow Zn(CN)_{3}^{-} \qquad logK = 16.05$ $Zn^{2+} + 4 CN^{-} \leftrightarrow Zn(CN)_{4}^{2-} \qquad logK = 19.62.$

For the K_d measurement of Hpn-FRET with Ni²⁺, Ni²⁺/citrate buffers were used to obtain free Ni²⁺ concentrations ranging from 1.37×10^{-9} M to 6.32×10^{-6} M using Ni²⁺ binding constant to citrate and the proton association constants for citrate obtained from the *NIST Critical Stability Constants of Metal Complexes* (given above).¹ Free Ni²⁺ concentration were calculated using the program HySS2006² for total Ni²⁺ concentrations in the buffer from 3.0×10^{-4} M to 1.9×10^{-3} M and citrate concentrations from 1.5×10^{-3} M to 2.0×10^{-2} M. In the preparation of these buffers, [Tris-HCl] (pH 7.4, 100 mM) > [citrate] (1.5- 20 mM) > [Ni²⁺] (300 μ M- 1.9 mM) >> [Hpn-FRET] (250 nM) are used to maintain buffering capacity at a certain citrate concentration to precisely control free Ni²⁺ concretions. Hpn-FRET concentration used in this measurement is 250 nM in 10 mM Tris-HCl (pH 7.4) and 100 mM NaCl and the Ni²⁺ loading was measured for each Ni²⁺ buffer prepared (Figure 4a). The change in the FRET ratio, which is also equal to the

nickel occupancy of Hpn-FRET, versus the free Ni²⁺ concentration in the buffer was plotted and the binding curve was fitted for the Hill 1 equation³ using Origin 8 (Table S1)

For the K_d measurement of Hpn-FRET with Zn^{2+} , Zn^{2+}/CN^{-} buffers were prepared and free Zn^{2+} was computed employing Zn^{2+} complex formation constants with cyanide given above. Free Zn^{2+} concentrations ranging from 3.94×10^{-11} M to 6.64×10^{-7} M were prepared by using total Zn^{2+} concentrations ranging from 1.0×10^{-4} M to 1.0×10^{-3} M and CN^{-} concentrations ranging from 5.0×10^{-3} M to 2.0×10^{-2} M. The obtained binding curve was fitted with the Hill 1 equation in Origin 8 (Table S1).

Hpn-FRET without His6-tag was cloned, expressed, and purified following the same procedure for Hpn-FRET (Hpn binds Ni-NTA column). It shows the same FRET response to various metal ions as Hpn-FRET with an N-terminal His6-tag (Figure S7).

Reference:

- 1 A. E. Martell and R. M. Smith, *Standard Reference Database 46*, 2001.
- L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, *Coordin. Chem. Rev.*, 1999, **184**, 311.
- J. N.Weiss, *FASEB J.*, 1997, **11**, 835.

	Hpn-FRET	+ 6 eqiv	+ 6 eqiv	+ 6 eqiv	+ 100
	-	Co ^{2÷}	Ni ^{2+[*]}	Zn ^{2∔}	µM Bi ³⁺
H1:Alpha-helix	0.13	0.11	0.13	0.23	0.23
H2:Disordered alpha-helix	0.1	0.1	0.11	0.16	0.21
S1: Beta-strand	0.23	0.21	0.19	0.16	0.12
S2: Disordered beta-strand	0.18	0.18	0.16	0.16	0.14
T: Turns	0.16	0.19	0.16	0.14	0.13
U: Unordered	0.21	0.2	0.24	0.17	0.15
No.Helix segments per					
100mer	2.6	2.6	2.7	3.9	5.3
No.strand segments per					
100mer	9	8.9	8.2	7.9	7.2
Ave length of Helix	8.9	8.3	8.9	9.8	8.4
Ave length of strand	4.6	4.4	4.4	4	3.7
Standard Deviation	0.08	0.06	0.07	0.07	0.07

Table S1.CD fitting results for Hpn-FRET in the absence and presence of variousmetal ions using Olis Global Works with CDSSTR algorithm and the SDP 48 andSMP56 basis sets.

Table S2. ICP-MS results for Hpn-FRET loaded with different metals.

	Concentration (µM)			Metal: Hpn-FRET			
	Hpn-FRET	Ni	Zn	Со	Ni	Zn	Со
Hpn-FRET	10.40	0.32	0.18		0.03	0.02	
Hpn-FRET+ Ni((II)	6.64	36.22		-	5.16	-	
Hpn-FRET+ Zn(II)	6.34		28.90	-		4.56	
Hpn-FRET+ Co(II)	5.74			21.40			3.73
Hpn-FRET +Ni(II) +Zn(II)	7.84	8.19	33.55	-	1.05	4.28	
Hpn-FRET +Ni(II) +Co(II)	5.48	20.61		3.51	3.76	-	0.64
Hpn-FRET +Zn(II) +Co(II)	6.40		29.24	1.49		4.57	0.23

	К	Ν	r ²
Ni ²⁺	$7.89 \times 10^{-8} \pm 8.8 \times 10^{-9}$	1.21 ± 0.16	0.986
Zn ²⁺	$1.03 \times 10^{-9} \pm 9.3 \times 10^{-11}$	1.42 ± 0.22	0.989
Bi ³⁺	$6.19 \times 10^{-5} \pm 1.0 \times 10^{-6}$	6.23 ± 0.71	0.998

Table S3. Fitting results for binding curves of Hpn-FRET to Ni^{2+} , Zn^{2+} and Bi^{3+} with the Hill 1 equation.

Figure S1. SDS-protein gel of the purified Hpn-FRET. Lane 1 is Hpn-FRET after Ni-NTA column, lane 2 is after gel filtration, lane 3 is the supernatant, lane 4 is the lysate, lane 5 is the insoluble fraction of the cells, lanes 6-9 are different fractions from Ni-NTA column and lanes 10-13 are different fractions from the gel filtration column.

Figure S2. CD spectra for Hpn-FRET in the absence and presence of metals. a) 2 μ M Hpn-FRET was used in the absence of metal or with 6 equiv of Ni²⁺, Zn²⁺, Co²⁺ or 100 μ M Bi³⁺. b) Difference spectra were generated by subtracting the spectrum of apo-Hpn-FRET from the spectra of Hpn-FRET treated with metals.

Figure S3. Fluorescence spectra of 250 nM Hpn-FRET without metal (orange), with the addition of $1.5 \ \mu M \ Ni^{2+}$ (pink), $1.5 \ \mu M \ Zn^{2+}$ (green), and $1.5 \ \mu M \ Co^{2+}$ (blue).

Figure S4. Competition of a) Zn^{2+} and b) Co^{2+} with other metal ions for binding to Hpn-FRET. 250 nM Hpn-FRET with 6 equiv of the respective metal ion is shown in black and the addition of 6 equiv Zn^{2+} or Co^{2+} to the sample is shown in white. All measurements were done in triplicates.

Figure S5. Fluorescence spectra of *E. coli* in the absence of additional metal (black), in the presence of 400 μ M bismuth subsalycilate (red) and 400 μ M Pepto Bismol (blue).

Figure S6. Gel filtration profile of purified Hpn-FRET (MW= 64.0 kDa) in the absence (red) and presence of 10 μ M Ni²⁺ (black) on a Superdex 200 column with total column volume of 120 ml. Molecular weight standards (green) (600 kDa, 158 kDa, 44 kDa, 17 kDa and 1.35 kDa) and control protein AKAR1 (pink) (MW= 85.1 kDa) are shown as well. AKAR1 is a protein kinase A activity reporter, which has a sensory domain between YFP and CFP. As both AKAR1 and Hpn-FRET have different domains linked with flexible sequences and are not globular proteins they have large hydrodynamic volumes and elute early on the size exclusion column compared to the molecular weight standards which are globular proteins.

Figure S7. FRET response of 250 nM Hpn-FRET (black) and 250 nM Hpn-FRET without His6-tag (white) in the absence of metal and with the addition of 1.5 μ M Ni²⁺, 1.5 μ M Zn²⁺ and 1.5 μ M Co²⁺.