In(III)-Pybox Complex Catalyzed Enantioselective Mukaiyama Aldol

Reactions between Polymeric or Hydrated Glyoxylates and Enolsilanes Derived

from Aryl Ketones

Jun-Feng Zhao, Boon-Hong Tan and Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 E-mail: teckpeng@ntu.edu.sg

Supporting Information

Table of Contents

PageS-1General MethodsS-1Preliminary Studies of Reaction ConditionsS-2General Procedure for the Preparation of Silyl Enol EtherS-5General procedure for Asymmetric Mukaiyama Aldol reactionsS-12Characterization Data for Enantioenriched AlcoholsS-12¹H-NMR, ¹³C-NMR, HPLC and GC ChromatogramsS-22

General Methods

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate.

Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.

Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditons.

High Resolution Mass (HRMS) spectra were obtained using Waters Q-Tof Permies Mass Spectrometer.

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker Avance DPX 300 and Bruker AMX 400 spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.2600, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublet) of doublets of doublet); dddd (doublets of doublets of doublet). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 77.0, triplet). Enantioselectivities were determined by HPLC analysis employing a Daicel Chiracel column at 25 °C and chiral GC. Optical rotation was measured using a JASCO P-1030 Polarimeter equipped with a sodium vapor lamp at 589 nm. Concentration is denoted as *c* and was calculated as grams per deciliters (g / 100mL). Absolute configuration of the products was determined by comparison with known compounds.

Preliminary studies of reaction conditions

Initially, we chose polymeric ethyl gloxylate (50% in toluene) and acetophenone-derived enolsilane as the model substrates to optimize reaction conditions (for details of condition optimization, see Tables 1-5 in the Supporting Information). The solvent, ligand, temperature, additive, catalyst loading and counterion effect were all evaluated. Polar solvents such as CH_3CN and THF proved to be better than non-polar solvents. Pybox (+)-1 is the best choice of ligand and box ligands are ineffective for this transformation. With decreasing temperature, the enantioselectivity was favored to increase. Based on the optimization studies, we found that the combination of 5 mol% of InBr₃, 5 mol% of AgSbF₆ and 6 mol% of pybox (+)-1 with CH₃CN as the solvent in the presence of 4 Å molecular sieves was the best catalytic system.

Table 1. Screening of solvents^a

entry	solvent	temperature (°C)	reaction time (h)	yield (%) ^b	ee (%) ^c
1	DCE	-20	28	60	51
2	MeNO ₂	-20	27	68	74
3	Acetone	-40	35	63	11
4	Toluene	-40	35	22	11
5	MeOH	-40	39	46	15
6	CH ₂ Cl ₂	-40	39	71	53
7	CHCl ₃	-40	35	86	54
8	EtOAc	-40	35	49	69
9	THF	-40	39	34	71
10	ⁱ PrNO ₂	-40	35	42	76
11	MeCN	-40	39	56	80
12	EtCN	-40	39	71	78
13	EtCN	-60	90	42	70
14	EtCN	-78	90	31	66

^a Unless noted otherwise, the reactions were carried out on a 0.50 mmol scale of **3** with 2 equiv of **2** (1 mmol).

^c Ee values were determined by chiral-phase HPLC analysis and the absolute configuration of the major products was R, assigned by comparing HPLC with the literature.

^b Isolated yield.

Table 2. Screening of chiral ligands^a

 ^a Reactions were carried out with 0.75 mmol of ethyl glyoxylate and 0.50 mmol of enolsilane in the presence of 150 mg powdered activated 4Å molecular sieves in 2.0 mL of solvent.
 ^b Isolated yield.

^c ee values were determined by chiral stationary phase HPLC analysis. The absolute configuration of the major products was R, assigned by comparing the optical rotation with the literature.

Å) ⊑t +	\sim	₽ OSi ⁱ Pr₃	InX ₃ (10 mol ybox (+)-1 (12 AgSbF ₆ (Y mo	1%) mol%) 01%)		
0	JEL		Jere J	4ÅMS, MeCN			ö
-	entry	LA	AgSbF ₆	reaction time (h)	yield (%) ^b	ee (%) ^c	_
-	1	In(OTf) ₃		2	97	77	-
	2	Sc(OTf) ₃	_	30	63	47	
	3	Cu(OTf) ₂	_	48	7 conversion	0	
	4	Zn(OTf) ₂		24	75 conversion	1 3	
	5 ^d	CuCl ₂	20%	72	82 conversion	-37	
	6	CuCl ₂	20%	72	20 conversion	1 6	
	7 ^e	PdCl ₂	20%	4	54	-35	
	8 ^{f,g}	FeBr ₃	20%	2	30	49	
	9 ^{d,g}	SnCl ₂	20%	2	96	-16	
	10	InBr ₃	10%	2	98	80	

Table 3. Investigation of different Lewis acid^a

^a Reactions were carried out with 0.75 mmol of ethyl glyoxylate and 0.50 mmol of enolsilane in the presence of 150 mg powdered activated 4Å molecular sieves in 2.0 mL of MeCN. ^b Isolated yield.

^c *ee* values were determined by chiral stationary phase HPLC analysis. ^d BOX used as ligand. ^e R-(+)-SEGPHOS used as ligand. ^f Enol silane hydrolyzed product 45%.

^g Dichloromethane used as solvent.

Table 4. Investigation of additive effect ^a						
OEt +	OSiMe ₃	In(OTf) ₃ (10 mol% Pybox (+)-1 (12 mol additive, 4ÅMS, Me -40 °C	$\sim \frac{1}{CN}$	O OH OEt		
entry	additive	reaction time (h)	yield (%) ^b	ee (%) ^c		
1	-	30	76	80		
2	PhOH	35	47	67		
3	HOCH(CF ₃) ₂	35	59	57		
4	CF ₃ CH ₂ OH	54	20	79		
5	PhCOOH	44	30	13		
6 ^d	Me ₃ SiBr	10	11	79		

^{*a*} Reactions were carried out with 0.75 mmol of ethyl glyoxylate and 0.50 mmol of enolsilane in the

presence of 150 mg powdered activated 4Å molecular sieves in 2.0 mL of solvent.

^b Isolated yield.

^c ee values were determined by chiral stationary phase HPLC analysis. The absolute configuration

of the major products was *R*, assigned by comparing the optical rotation with the literature.

^d TLC showed that within 10 h of reaction, **7** was all consumed in which the majority was hydrolyzed to acetophenone.

OEt +	OSIR ₃	In(OTf) ₃ (10 mol%) <u>Pybox (+)-1 (12 mol%)</u> 4Å MS, MeCN -40 °C		O OH OEt 4b
entry	R ₃	reaction time (h)	yield (%) ^b	ee (%) ^c
1	Me ₃	30	76	80
2	Me ₂ ^t Bu	59	88	83
3	ⁱ Pr ₃	46	76	85

Table 5. Investigation of steric effect of silyl group^{*a*}

^{*a*} Reactions were carried out with 0.75 mmol of ethyl glyoxylate and 0.50 mmol of enolsilane in the presence of 150 mg powdered activated 4Å molecular sieves in 2.0 mL of solvent.

^b Isolated yield.

^c *ee* values were determined by chiral stationary phase HPLC analysis. The absolute configuration of the major products was *R*, assigned by comparing the optical rotation with the literature.

	OEt +	OSi [/] Pr ₃	InX ₃ (Pybox (+)- AgZ ((y mol%) 1 (1 .2 y mol ^e (z mol%)	%)		I OEt
02	\checkmark	3	4Å M	IS, solvent		4b	•
entry	InX ₃ (mol%)	AgZ (mol %)	T (ºC)	solvent	reaction time (h)	yield (%) ^b	ee (%) ^c
1	InCl ₃ , 10	AgSbF ₆ , 20	-40	MeCN	20	70	85
2	InCl ₃ , 10	AgSbF ₆ , 20	-60	EtCN	60	63	87
3	InCl ₃ , 10	AgSbF ₆ , 20	-78	EtCN	60	54	88
4	InCl ₃ , 5	AgSbF ₆ , 10	-78	EtCN	63	37	86
5	InBr ₃ , 10	AgSbF ₆ , 20	-78	EtCN	48	53	89
6	InBr ₃ , 5	AgSbF ₆ , 15	-20	MeCN	19	48	84
7	InBr ₃ , 5	AgSbF ₆ , 10	-20	MeCN	19	71	85
8	InBr ₃ , 5	AgSbF ₆ , 5	-20	MeCN	19	89	87
9	InBr ₃ , 5	AgSbF ₆ , 5	-40	MeCN	36	91	89
10	InBr ₃ , 5	AgSbF ₆ , 5	25	MeCN	2	97	77
11	InBr ₃ , 5	AgPF ₆ , 5	25	MeCN	4	95	77
12	InBr ₃ , 5	AgBF ₄ , 5	25	MeCN	2	96	72
13	InBr ₃ , 5	AgClO ₄ , 5	25	MeCN	4	95	73
14	InBr ₃ , 5	AgOAc, 5	25	MeCN	24	-	nd

Table 6. Investigation of counterion effect of In(III)-pybox complex^{*a*}

^{*a*} Reactions were carried out with 0.75 mmol of ethyl glyoxylate and 0.50 mmol of enolsilane in the presence of 150 mg powdered activated 4Å molecular sieves in 2.0 mL of solvent.

^b Isolated yield.

c ee values were determined by chiral stationary phase HPLC analysis. The absolute configuration of the major products was R, assigned by comparing the optical rotation with the literature.

Table 7. The effect of 4 Å molecular sieves^a

^a Reactions were carried out with 1.0 mmol of ethyl glyoxylate and 0.50 mmol of enolsilane in the presence of 150 mg powdered activated 4Å molecular sieves in 2.0 mL of solvent. ^b Isolated yield.

 c^{c} ee values were determined by chiral stationary phase HPLC analysis. d^{d} 20% of enolsilane was hydrolyzed.

General procedure for the preparation of silyl enol ethers

To in a 50 mL round-bottom flask equipped with a stirring bar and filled with CH_2Cl_2 (20 mL), acetophenone (5.0 mmol) and triethylamine (1.3 mL, 9.0 mmol) were added. The solution was stirred at room temperature for 15 mins before cooling down to 0°C. Triisopropylsilyl trifluoromethanesulfonate (1.7 mL, 6.0 mmol) was added by a syringe slowly over 2 min at 0°C. The resulting mixture was stirred under N₂ atmosphere at 0 °C for 30 min. The reaction was quenched by saturated NaHCO₃ solution (20 mL) and diluted by cooled CH_2Cl_2 (10 mL). The organic layer was washed with cooled saturated NaHCO₃ solution twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on Et_3N -treated silica gel eluting with hexane to afford silyl enol ethers **3b-r** as colourless oils.

triethyl(1-phenylvinyloxy)silane (3b)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 62% yield (0.726g); $R_f = 0.94$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.63–7.59 (m, 2H), 7.35 – 7.27(m, 3H), 4.87 (d, J = 1.7 Hz, 1H), 4.42 (d, J = 1.7 Hz, 1H), 1.01 (t, J = 7.8 Hz, 9H), 0.76 (q, J = 7.8 Hz, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 155.9, 137.7, 128.2, 128.1, 125.2, 90.4, 6.7, 5.0 ppm; FTIR (KBr, neat): v 2955, 2876, 1614, 1458, 1414, 1317, 1117, 1009, 737 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₂₂OSiH⁺: 235.1518, found: 235.1517.

tert-butyldimethyl(1-phenylvinyloxy)silane (3c)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 64% yield (0.752g); $R_f = 0.92$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.60–7.56 (m, 2H), 7.31 – 7.23 (m, 3H), 4.85 (d, J = 1.5 Hz, 1H), 4.39 (d, J = 1.6 Hz, 1H), 0.98 (s, 9H), 0.18 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 156.0, 137.9, 128.2, 128.1, 125.3, 90.9, 25.9, 18.4, -4.6 ppm; FTIR (KBr, neat): v 2957, 2930, 2859, 1614, 1472, 1315, 1256, 1117, 1013, 833, 772, 700 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₂₂OSiH⁺: 235.1518, found: 235.1514.

triisopropyl(1-phenylvinyloxy)silane (3d)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 83% yield (1.146g); $R_f = 0.90$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.69 – 7.59 (m, 2H), 7.37 – 7.21 (m, 3H), 4.85 (d, J = 1.8 Hz, 1H), 4.41 (d, J = 1.7 Hz, 1H), 1.38 – 1.21 (m, 3H), 1.13 (d, J = 7.1 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 156.2, 138.0, 128.11, 128.05, 125.3, 90.0, 18.1, 12.8 ppm; FTIR (KBr, neat): v 2945, 2866, 1612, 1464, 1385, 1317, 1117, 1015, 883, 772, 687 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₂₈OSiH⁺: 277.1988, found: 277.1990.

triisopropyl(1-o-tolylvinyloxy)silane (3e)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 77% yield (1.117g); $R_f = 0.89$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.34 (d, J = 7.4 Hz, 1H), 7.22 – 7.07 (m, 3H), 4.54 (d, J = 0.9 Hz, 1H), 4.35 (d, J = 0.9 Hz, 1H), 2.42 (s, 3H), 1.31 – 1.13 (m, 3H), 1.08 (d, J = 6.9 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.3, 139.5, 135.8, 130.3, 128.6, 127.8, 125.3, 94.3, 20.6, 18.1, 12.7 ppm; FTIR (KBr, neat): v 2945, 2866, 1622, 1464, 1383, 1312, 1132, 1094, 1016, 883, 729, 687 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₈H₃₀OSiH⁺: 291.2144, found: 291.2140.

triisopropyl(1-m-tolylvinyloxy)silane (3f)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 79% yield (1.146g); $R_f = 0.91$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.45 (d, J = 7.5 Hz, 2H), 7.25 – 7.16 (m, 1H), 7.08 (d, J = 7.3 Hz, 1H), 4.83 (d, J = 1.4 Hz, 1H), 4.39 (d, J = 1.5 Hz, 1H), 2.34 (s, 3H), 1.37 – 1.21 (m, 3H), 1.13 (d, J = 7.1 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 156.3, 138.0, 137.5, 128.9, 128.0, 126.1, 122.6, 89.9, 21.6, 18.2, 12.9 ppm; FTIR (KBr, neat): v 2943, 2866, 1601, 1582, 1464, 1383, 1310, 1207, 1016, 883, 789, 685 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₈H₃₀OSiH⁺: 291.2144, found: 291.2140.

triisopropyl(1-p-tolylvinyloxy)silane (3g)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 80% yield (1.161g); $R_f = 0.90$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.54 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 4.80 (d, J = 1.6 Hz, 1H), 4.36 (d, J = 1.6 Hz, 1H), 2.36 (s, 3H), 1.38 – 1.20 (m, 3H), 1.12 (d, J = 7.0 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 156.3, 137.9, 135.3, 128.8, 125.3, 89.2, 21.2,

18.2, 12.9 ppm; FTIR (KBr, neat): *v* 2943, 2866, 1611, 1510, 1464, 1383, 1315, 1113, 1016, 883, 762, 681 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₈H₃₀OSiH⁺: 291.2144, found: 291.2146.

(1-(2,4-dimethylphenyl)vinyloxy)triisopropylsilane (3h)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 75% yield (1.145g); $R_f = 0.92$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.24 (d, J = 7.6 Hz, 1H), 6.96 (s, 1H), 6.93 (d, J = 7.6 Hz, 1H), 4.51 (d, J = 0.7 Hz, 1H), 4.32 (d, J = 0.7 Hz, 1H), 2.39 (s, 3H), 2.30 (s, 3H), 1.23 – 1.16 (m, 3H), 1.08 (d, J = 6.8 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 158.2, 137.4, 136.7, 135.6, 131.1, 128.6, 125.9, 94.0, 21.1, 20.5, 18.1, 12.7 ppm; FTIR (KBr, neat): v 2943, 2866, 1614, 1464, 1383, 1308, 1090, 1016, 883, 824, 683 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₉H₃₂OSiH⁺: 305.2301, found: 305.2298.

(1-(2-fluorophenyl)vinyloxy)triisopropylsilane (3i)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 82% yield (1.206g); $R_f = 0.93$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.69 – 7.63 (m, 1H), 7.27 – 6.99 (m, 3H), 4.99 – 4.94 (m, 1H), 4.70 – 4.67 (m, 1H), 1.34 – 1.21 (m, 3H), 1.12 (d, *J* = 7.0 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 160.01 (d, *J* = 250.9 Hz), 150.72 (d, *J* = 4.0 Hz), 129.2 (d, *J* = 8.7 Hz), 128.8 (d, *J* = 2.7 Hz), 126.0 (d, *J* = 11.1 Hz), 123.7 (d, *J* = 3.7 Hz), 116.0 (d, *J* = 23.6 Hz), 96.0 (d, *J* = 11.4 Hz), 18.1, 12.8 ppm; FTIR (KBr, neat): *v* 2945, 2868, 1612, 1489, 1385, 1312, 1090, 1018, 883, 760, 685 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₂₇FOSiH⁺: 295.1893, found: 295.1884.

(1-(3-fluorophenyl)vinyloxy)triisopropylsilane (3j)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 72% yield (1.059g); $R_f = 0.90$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.44 – 7.22 (m, 3H), 7.01 – 6.92 (m, 1H), 4.86 (d, J = 2.0 Hz, 1H), 4.45 (d, J = 2.0 Hz, 1H), 1.36 – 1.22 (m, 3H), 1.13 (d, J = 7.0 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.9 (d, J = 244.4 Hz), 155.0 (d, J = 2.6 Hz), 140.4 (d, J = 7.5 Hz), 129.4 (d, J = 8.2 Hz), 120.9 (d, J = 2.8 Hz), 114.8 (d, J = 21.4 Hz), 112.3 (d, J = 23.0 Hz), 90.8, 18.1, 12.8 ppm;

FTIR (KBr, neat): v 2945, 2868, 1614, 1582, 1464, 1385, 1315, 1308, 1207, 1016, 883, 787, 685 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₂₇FOSiH⁺: 295.1893, found: 295.1910.

(1-(4-fluorophenyl)vinyloxy)triisopropylsilane (3k)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 74% yield (1.089g); $R_f = 0.92$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.68 – 7.49 (m, 2H), 7.04 – 6.93 (m, 2H), 4.77 (d, J = 1.9 Hz, 1H), 4.39 (d, J = 1.9 Hz, 1H), 1.36 – 1.21 (m, 3H), 1.12 (d, J = 7.1 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 162.8 (d, J = 247.1 Hz), 155.4, 134.1 (d, J = 3.2 Hz), 127.1 (d, J = 8.1 Hz), 114.9 (d, J = 21.5 Hz), 89.6 (d, J = 1.4 Hz), 18.1, 12.8 ppm; FTIR (KBr, neat): v 2945, 2868, 1607, 1508, 1464, 1385, 1314, 1115, 1015, 841, 762, 681 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₂₇FOSiH⁺: 295.1893, found: 295.1937.

(1-(4-chlorophenyl)vinyloxy)triisopropylsilane (3l)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 71% yield (1.101g); $R_f = 0.92$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.56 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 4.82 (d, J = 2.0 Hz, 1H), 4.42 (d, J = 2.0 Hz, 1H), 1.37 – 1.20 (m, 3H), 1.12 (d, J = 7.0 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 155.2, 136.5, 133.9, 128.2, 126.6, 90.4, 18.1, 12.8 ppm; FTIR (KBr, neat): v 2945, 2866, 1612, 1489, 1396, 1314, 1117, 1013, 835, 741, 683 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₂₇ClOSiH⁺: 311.1598, found: 311.1608.

(1-(4-bromophenyl)vinyloxy)triisopropylsilane (3m)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 78% yield (1.369g); $R_f = 0.88$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.52 – 7.48 (m, 2H), 7.45 – 7.42 (m, 2H), 4.83 (d, J = 2.0 Hz, 1H), 4.42 (d, J = 2.0 Hz, 1H), 1.37 – 1.21 (m, 3H), 1.12 (d, J = 7.1 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 155.2, 136.9, 131.2, 126.9, 122.2, 90.4, 18.1, 12.8 ppm; FTIR (KBr, neat): v 2945, 2866, 1611, 1485, 1391, 1314, 1115, 1009, 831, 735, 657 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₂₇BrOSiH⁺: 355.1093, found: 355.1111.

triisopropyl(1-(2-methoxyphenyl)vinyloxy)silane (3n)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 71% yield (1.087g); $R_f = 0.89$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.62 – 7.59 (m, 1H), 7.26 – 7.20 (m, 1H), 6.95 – 6.86 (m, 2H), 5.01 (s, 1H), 4.65 (s, 1H), 3.84 (s, 3H), 1.31 – 1.17 (m, 3H), 1.10 (d, J = 6.9 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 157.0, 153.2, 129.0, 128.9, 127.3, 120.1, 111.1, 95.5, 55.3, 18.1, 12.8 ppm; FTIR (KBr, neat): v 2943, 2866, 1612, 1489, 1464, 1383, 1277, 1018, 883, 752, 685 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₈H₃₀O₂SiH⁺: 307.2093, found: 307.2097.

triisopropyl(1-(3-methoxyphenyl)vinyloxy)silane (30)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 70% yield (1.072g); $R_f = 0.91$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.25 – 7.16 (m, 3H), 6.85 – 6.82 (m, 1H), 4.85 (d, J = 1.2 Hz, 1H), 4.42 (d, J = 1.2 Hz, 1H), 3.80 (s, 3H), 1.37 – 1.23 (m, 3H), 1.13 (d, J = 7.0 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 159.5, 155.9, 139.5, 129.0, 117.9, 113.9, 110.8, 90.2, 55.1, 18.1, 12.8 ppm; FTIR (KBr, neat): v 2945, 2866, 1578, 1464, 1383, 1310, 1238, 1016, 883, 685 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₈H₃₀O₂SiH⁺: 307.2093, found: 307.2095.

triisopropyl(1-(4-methoxyphenyl)vinyloxy)silane (3p)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 74% yield (1.133g); $R_f = 0.89$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.54 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 4.80 (d, J = 1.6 Hz, 1H), 4.36 (d, J = 1.6 Hz, 1H), 2.34 (s, 3H), 1.45 – 1.19 (m, 3H), 1.12 (d, J = 7.2 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 156.3, 137.9, 135.2, 128.8, 125.3, 89.2, 21.2, 18.2, 12.9 ppm; FTIR (KBr, neat): v 2943, 2866, 1611, 1510, 1464, 1383, 1315, 1113, 1016, 883, 824, 762, 681 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₈H₃₀O₂SiH⁺: 307.2093, found: 307.2094.

triisopropyl (1- (naphthalen-2-yl) vinyloxy) silane - (4q)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 81% yield (1.321g); $R_f = 0.93$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 8.14 (s, 1H), 7.85 – 7.71 (m, 4H), 7.49 – 7.37 (m, 2H), 5.00 (d, J = 1.5 Hz, 1H), 4.52 (d, J = 1.5 Hz, 1H), 1.42 – 1.26 (m, 3H), 1.16 (d, J = 7.2 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 156.2, 135.3, 133.34, 133.30, 128.6, 127.7, 127.6, 126.14, 126.11, 124.5, 123.6, 90.9, 18.2, 12.9 ppm; FTIR (KBr, neat): v 3059, 2943, 2866, 1611, 1464, 1385, 1364, 1310, 1094, 1015, 881, 748, 677 cm⁻¹; HRMS (ESI, m/z) calcd for C₂₁H₃₀OSiH⁺: 327.2144, found:327.2143.

$(1-(2,5-dimethylfuran-3-yl)vinyloxy) triisopropylsilane\ (3r)$

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 63% yield (0.927g); $R_f = 0.9$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 5.97 (s, 1H), 4.32 (d, J = 1.3 Hz, 1H), 4.27 (d, J = 1.3 Hz, 1H), 2.38 (s, 3H), 2.21 (s, 3H), 1.33 – 1.19 (m, 3H), 1.12 (d, J = 6.8 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 152.2, 148.9, 147.2, 119.7, 105.9, 90.0, 18.0, 13.6, 13.3, 12.9 ppm; FTIR (KBr, neat): v 2943, 2866, 1651, 1570, 1464, 1412, 1383, 1290, 1215, 1080, 1013, 883, 799, 681 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₃₀O₂SiH⁺: 295.2093, found: 295.2104.

(1-(2,5-dimethylthiophen-3-yl)vinyloxy)triisopropylsilane (3s)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 73% yield (1.132g); $R_f = 0.89$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 6.70 (s, 1H), 4.43 (d, J = 1.1 Hz, 1H), 4.33 (d, J = 1.0 Hz, 1H), 2.45 (s, 3H), 2.37 (s, 3H), 1.30 – 1.16 (m, 3H), 1.10 (d, J = 6.8 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 153.4, 135.9, 134.3, 133.5, 126.1, 92.6, 18.1, 15.0, 14.9, 12.8 ppm; FTIR (KBr, neat): v 2943, 2866, 1614, 1464, 1385, 1337, 1269, 1015, 883, 752, 682 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₃₀OSSiH⁺: 311.1865, found: 311.1873.

(1H-inden-3-yloxy)triisopropylsilane (5)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 85% yield (1.229g); $R_f = 0.90$ (ethyl acetate/hexane = 1/4); ¹H NMR (300 MHz, CDCl₃): δ 7.43 (d, J = 7.5 Hz, 1H), 7.36 (d, J = 7.3 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.21 – 7.16 (m, 1H), 5.40 (t, J = 2.4 Hz, 1H), 3.26 (d, J = 2.1 Hz,

2H), 1.36 – 1.27 (m, 3H), 1.14 (d, *J* = 7.2 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl3): δ 154.00, 142.8, 142.1, 126.1, 125.1, 123.8, 118.3, 105.2, 33.9, 18.1, 12.7 ppm; FTIR (KBr, neat): *v* 3072, 2943, 2866, 1603, 1576, 1464, 1362, 1308, 1248, 1180, 1126, 881, 850, 752 cm⁻¹; HRMS (ESI, m/z)

$General\ procedure\ for\ In (III) - py box\ complex\ catalyzed\ asymmetric\ Mukaiyama\ Aldol$

reactions of glyoxylates and enolsilanes derived from aryl ketones:

In a 5 mL round-bottom flask containing CH₃CN (1.5 ml) with a stirring bar, InBr₃ (8.9 mg, 0.025 mmol), pybox-1 (11.8 mg, 0.03 mmol) and 4Å molecular sieves (150.0 mg) were added and stirred at room temperature for 30 minutes. To the above mixture, silver hexafluoroantimonate (AgSbF₆) (8.6 mg, 0.025 mmol) was added in one portion and stirred for another 30 minutes. To the pre-prepared catalyst in CH₃CN, the glyoxylate ester (1.0 mmol, 2 eq.) was added using a syringe sequentially under N₂ atmosphere. The resulting mixture was cooled to -20°C before enolsilane (0.5 mmol, 1 eq.) was added using syringe under N₂ atmosphere. It was stirred until the enolsilanes had undergone complete reaction using TLC to monitor its progress. The reaction was quenched by saturated NaHCO₃ solution (5 mL). The solution was extracted by ethyl acetate twice. The combined organic layer was washed with brine and dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was loaded directly onto a silica gel column and purified by flash column chromatography to obtain the enantio-enriched β -hydroxy ketones.

Characterization data for enantioenriched β -hydroxy ketones

(R)-methyl 2-hydroxy-4-oxo-4-phenylbutanoate (4a)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 62% yield (0.064g, 43% *ee*): $R_f = 0.24$ (ethyl acetate : hexane = 1/4), $[\alpha]D^{21} = -3.8$ (c = 1.72, CHCl₃, for 43% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.97 – 7.94 (m, 2H), 7.63 – 7.58 (m, 1H), 7.51 – 7.46 (m, 2H), 4.70 – 4.67 (m, 1H), 3.82 (s, 3H), 3.57 (dd, J = 17.6, 3.9 Hz, 1H), 3.47 (dd, J = 17.6, 5.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 197.6, 174.2, 136.3, 133.7, 128.7, 128.2, 67.2, 52.7, 42.2 ppm; FTIR (KBr, neat): *v* 3503, 2956, 1744, 1685, 1598, 1581, 1450, 1369, 1220, 1108, 1041 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₁H₁₂O₄H⁺: 209.0814, found: 209.0811; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 13.2 min (minor), t₂ = 15.6 min (major).

(R)-ethyl 2-hydroxy-4-oxo-4-phenylbutanoate (4b)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 88% yield (0.098g, 89% *ee*): $R_f = 0.26$ (ethyl acetate : hexane = 1/4), $[\alpha]D^{22} = -4.7$ (c = 1.86, CHCl₃, for 89% *ee*); ¹H NMR (300 MHz, CDCl3): δ 7.97 – 7.94 (m, 2H), 7.61 – 7.56 (m, 1H), 7.50 – 7.44 (m, 2H), 4.69 – 4.65 (m, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.55 (dd, J = 17.5, 4.0 Hz, 1H), 3.46 (dd, J = 17.5, 5.9 Hz, 1H), 3.43 (bs, 1H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl3): δ 197.5, 173.8, 136.4, 133.6, 128.7, 128.2, 67.2, 61.9, 42.2, 14.1 ppm; FTIR (KBr, neat): v 3485, 2982, 2934, 1736, 1686, 1597, 1580, 1449, 1368, 1273, 1215, 1101 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₂H₁₄O₄H⁺: 223.0970, found: 223.0969; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 12.2 min (minor), t₂ = 14.7 min (major).

(R)-n-butyl 2-hydroxy-4-oxo-4-phenylbutanoate (4c)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 92% yield (0.115g, 73% *ee*): $R_f = 0.28$ (ethyl acetate : hexane = 1/4), $[\alpha]D^{21} = 3.78$ (c = 1.72, CHCl₃, for 73% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.94 – 7.97 (m, 2H), 7.57 – 7.62 (m, 1H), 7.45 – 7.50 (m, 2H), 4.64 – 4.69 (m, 1H), 4.21 (t, J = 6.7 Hz, 2H), 3.54 (dd, J = 17.5, 4.0 Hz, 1H), 3.45 (dd, J = 17.5, 5.9 Hz, 1H), 3.31 (d, J = 5.8 Hz, 1H), 1.59 – 1.68 (m, 2H), 1.29 – 1.41 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 197.5, 173.9, 136.4, 133.6, 128.7, 128.2, 67.2, 65.7, 42.2, 30.5, 19.0, 13.6 ppm; FTIR (KBr, neat): v 3481, 2961, 2874, 1740, 1686, 1597, 1580, 1449, 1368, 1275, 1105 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₈O₄H⁺: 251.1283, found: 251.1284; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 9.8 min (minor), t₂ = 11.4 min (major).

(R)-isopropyl 2-hydroxy-4-oxo-4-phenylbutanoate (4d)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 91% yield (0.107g, 96% *ee*): $R_f = 0.27$ (ethyl acetate : hexane = 1/4), $[\alpha]D^{22} = +2.6$ (c = 1.59, CHCl₃, for 96% *ee*); ¹H NMR (300 MHz, CDCl3): δ 7.97 – 7.94 (m, 2H), 7.62 – 7.57 (m, 1H), 7.50 – 7.45 (m, 2H), 5.20 – 5.08 (m, 1H), 4.62 (dd, J = 9.5, 5.2 Hz, 1H), 3.53 (dd, J = 17.5, 4.1 Hz, 1H), 3.44 (dd, J = 17.4, 5.8 Hz, 1H), 3.36 (d, J = 5.5 Hz, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl3): δ 197.5, 173.4, 136.5, 133.6, 128.7, 128.2, 69.7, 67.3, 42.2, 21.72, 21.66 ppm; FTIR (KBr, neat): v 3520, 3019, 2984, 1728, 1682, 1597, 1580, 1449, 1375, 1215, 1105 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₃H₁₆O₄H⁺:

237.1127, found: 237.1136; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): $t_1 = 9.4$ min (minor), $t_2 = 12.0$ min (major).

(R)-isopropyl 2-hydroxy-4-oxo-4-o-tolylbutanoate (4e)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 81% yield (0.101g, 94% *ee*): $R_f = 0.26$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +2.7$ (c = 1.69, CHCl₃, for 94% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.67 (d, J = 7.9 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.30 – 7.25 (m, 2H), 5.21 – 5.08 (m, 1H), 4.60 – 4.55 (m, 1H), 3.45 (dd, J = 17.5, 4.3 Hz, 1H), 3.37 (dd, J = 17.6, 5.8 Hz, 1H), 3.31 (d, J = 5.6 Hz, 1H), 2.51 (s, 3H), 1.29 (d, J = 6.3 Hz, 3H), 1.26 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 201.0, 173.5, 138.7, 137.0, 132.1, 131.8, 128.8, 125.8, 69.7, 67.5, 44.8, 21.74, 21.70, 21.4 ppm; FTIR (KBr, neat): *v* 3489, 2980, 2930, 1732, 1686, 1600, 1570, 1456, 1375, 1265, 1215, 1107 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₈O₄H⁺: 251.1283, found: 251.1290; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 8.7 min (minor), t₂ = 10.7 min (major).

(R)-isopropyl 2-hydroxy-4-oxo-4-m-tolylbutanoate (4f)

This compound was prepared by the General Procedure described above and was obtained as white solid in 88% yield (0.110g, 97% *ee*): $R_f = 0.26$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +3.3$ (c = 1.87, CHCl₃, for 97% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.74 (d, J = 7.9 Hz, 2H), 7.42 – 7.31 (m, 2H), 5.21 – 5.01 (m, 1H), 4.62 (d, J = 4.2 Hz, 1H), 3.57 – 3.34 (m, 3H), 2.40 (s, 3H), 1.27 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 7.76 – 7.73 (m, 2H), 7.40 – 7.32 (m, 2H), 5.19 - 5.06 (m, 1H), 4.62 (d, J = 4.2 Hz, 1H), 3.54 – 3.39 (m, 3H), 2.40 (s, 3H), 1.27 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H) ppm; FTIR (KBr, neat): v 3499, 3019, 2982, 1732, 1684, 1605, 1585, 1215, 1105, 756 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₈O₄H⁺: 251.1283, found: 251.1284; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 9.5 min (minor), t₂ = 12.0 min (major).

(R)-isopropyl 2-hydroxy-4-oxo-4-p-tolylbutanoate (4g)

This compound was prepared by the General Procedure described above and was obtained as white solid in 94% yield (0.118g, 97% *ee*): $R_f = 0.29$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +2.0$ (c = 1.92, CHCl₃, for 97%

ee); ¹H NMR (300 MHz, CDCl₃): ¹H NMR (300 MHz, CDCl₃): δ 7.85 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 5.21 – 5.07 (m, 1H), 4.61 (dd, J = 10.0, 5.1 Hz, 1H), 3.49 (dd, J = 17.5, 4.2 Hz, 1H), 3.41 (dd, J = 17.9, 6.0 Hz, 1H), 3.37 – 3.34 (m, 1H), 2.42 (s, 3H), 1.28 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.2$, 173.5, 144.6, 134.2, 129.4, 128.4, 69.7, 67.5, 42.1, 21.80, 21.76, 21.75 ppm; FTIR (KBr, neat): *v* 3676, 3019, 2934, 1728, 1684, 1607, 1215, 1105 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₈O₄H⁺: 251.1283, found: 251.1287; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 9.3 min (minor), t₂ = 11.9 min (major).

(R)-isopropyl 4-(2,4-dimethylphenyl)-2-hydroxy-4-oxobutanoate (4h)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 80% yield (0.106g, 95% *ee*): $R_f = 0.27$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +1.3$ (c = 2.10, CHCl₃, for 95% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.61 (d, J = 8.6 Hz, 1H), 7.08 (d, J = 8.6 Hz, 2H), 7.06 (s, 1H), 5.20 – 5.08 (m, 1H), 4.59 – 4.54 (m, 1H), 3.43 (dd, J = 17.5, 4.2 Hz, 1H), 3.36 (dd, J = 17.1, 5.5 Hz, 1H), 3.34 (d, J = 5.8 Hz, 1H), 2.50 (s, 3H), 2.36 (s, 3H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 200.2, 173.6, 142.6, 139.2, 134.0, 133.0, 129.4, 126.4, 69.6, 67.5, 44.5, 21.72, 21.68, 21.63, 21.4 ppm; FTIR (KBr, neat): *v* 3676, 2980, 2926, 1732, 1682, 1611, 1566, 1267, 1213, 1107 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₅H₂₀O₄H⁺: 265.1440, found: 265.1440; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 8.0 min (minor), t₂ = 10.1 min (major).

(R)-isopropyl 4-(2-fluorophenyl)-2-hydroxy-4-oxobutanoate (4i)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 60% yield (0.076g, 93% *ee*): $R_f = 0.26$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +5.1$ (c = 1.51, CHCl₃, for 93% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.86 (m, 1H), 7.59 – 7.51 (m, 1H), 7.28 –7.12 (m, 2H), 5.20 – 5.08 (m, 1H), 4.58 (dd, J = 9.7, 5.4 Hz, 1H), 3.59 – 3.41 (m, 2H), 3.31 (d, J = 5.6 Hz, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO): δ 195.3 (d, J = 3.9 Hz), 173.4, 162.1 (d, J = 255.0 Hz), 135.1 (d, J = 9.1 Hz), 130.6 (d, J = 2.4 Hz), 125.1 (d, J = 12.6 Hz), 124.6 (d, J = 3.4 Hz), 116.7 (d, J = 23.7 Hz), 69.7, 67.1 (d, J = 2.7 Hz), 47.1 (d, J = 8.1 Hz), 21.7, 21.6 ppm; FTIR (KBr, neat): v 3676, 3082, 3021, 1730, 1686, 1609, 1481, 1452, 1215, 1103cm⁻¹; HRMS (ESI, m/z) calcd for C_{13H15}FO₄H⁺: 255.1033, found:

255.1033; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 92.5:7.5, 0.75 mL/min): $t_1 = 23.2 \text{ min (minor)}, t_2 = 26.9 \text{ min (major)}.$

(R)-isopropyl 4-(3-fluorophenyl)-2-hydroxy-4-oxobutanoate (4j)

This compound was prepared by the General Procedure described above and was obtained as white solid in 85% yield (0.108g, 93% *ee*): $R_f = 0.23$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +6.1$ (c = 1.62, CHCl₃, for 93% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.75 – 7.72 (m, 1H), 7.66 – 7.61 (m, 1H), 7.50 – 7.42 (m, 1H), 7.32 – 7.26 (m, 1H), 5.20 – 5.07 (m, 1H), 4.63 (dd, J = 9.5, 5.1 Hz, 1H), 3.50 (dd, J = 17.4, 4.1 Hz, 1H), 3.41 (dd, J = 17.3, 5.8 Hz, 1H), 3.38 (bs, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 196.1, 173.3, 162.8 (d, J = 248.3 Hz), 138.6 (d, J = 6.5 Hz), 130.4 (d, J = 7.6 Hz), 124.0 (d, J = 3.0 Hz), 120.6 (d, J = 21.5 Hz), 114.9 (d, J = 22.4 Hz), 69.8, 67.1, 42.3, 21.68, 21.64 ppm; FTIR (KBr, neat): ν 3377, 3019, 2984, 1730, 1692, 1589, 1445, 1215, 1105 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₃H₁₅FO₄H⁺: 255.1033, found: 255.1039; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 8.6 min (minor), t₂ = 10.4 min (major).

(*R*)-isopropyl 4-(4-fluorophenyl)-2-hydroxy-4-oxobutanoate (4k)

This compound was prepared by the General Procedure described above and was obtained as white solid in 71% yield (0.090g, 96% *ee*): $R_f = 0.31$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +3.9$ (c = 1.88, CHCl₃, for 96% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 8.01 – 7.95 (m, 2H), 7.17 – 7.11 (m, 2H), 5.20 – 5.07 (m, 1H), 4.64 – 4.59 (m, 1H), 3.49 (dd, J = 17.3, 4.0 Hz, 1H), 3.40 (dd, J = 17.3, 5.8 Hz, 1H), 3.32 (d, J = 5.6 Hz, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 195.8, 173.3, 166.0 (d, J = 255.4 Hz), 133.1 (d, J = 3.0 Hz), 130.9 (d, J = 9.4 Hz), 116.0 (d, J = 2.9 Hz), 115.7 (d, J = 2.9 Hz), 69.7 (d, J = 5.2 Hz), 67.2, 42.1, 21.7 (d, J = 2.8 Hz), 21.6 (d, J = 2.8 Hz) ppm; FTIR (KBr, neat): v 3198, 2984, 2938, 1802, 1732, 1686, 1599, 1468, 1375, 1231, 1103, 1049 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₃H₁₅FO₄H⁺: 255.1033, found: 255.1037; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 10.7 min (minor), t₂ = 12.2 min (major).

(R)-isopropyl 4-(4-chlorophenyl)-2-hydroxy-4-oxobutanoate (4l)

This compound was prepared by the General Procedure described above and was obtained as white solid in 82% yield (0.111g, 97% *ee*): $R_f = 0.23$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +5.3$ (c = 2.07, CHCl₃, for 97% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 5.19 – 5.07 (m, 1H), 4.64 – 4.59 (m, 1H), 3.48 (dd, J = 17.3, 4.1 Hz, 1H), 3.40 (dd, J = 17.2, 5.9 Hz, 1H), 3.39 (bs, 1H)., 1.28 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 196.2, 173.3, 140.1, 134.9, 129.6, 129.0, 69.8, 67.2, 42.1, 21.71, 21.67 ppm; FTIR (KBr, neat): v 3441, 3401, 3019, 2984, 1732, 1682, 1589, 1400, 1215, 816, 756 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₃H₁₅ClO₄H⁺: 271.0737, found: 271.0735; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 9.9 min (minor), t₂ = 11.0 min (major).

(R)-isopropyl 4-(4-bromophenyl)-2-hydroxy-4-oxobutanoate (4m)

This compound was prepared by the General Procedure described above and was obtained as white solid in 85% yield (0.134g, 98% *ee*): $R_f = 0.26$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +3.1$ (c = 1.67, CHCl₃, for 98% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.84 – 7.79 (m, 2H), 7.64 – 7.59 (m, 2H), 5.17 – 5.09 (m, 1H), 4.63 – 4.60 (m, 1H), 3.48 (dd, J = 17.3, 4.1 Hz, 1H), 3.39 (dd, J = 17.4, 5.8 Hz, 1H), 3.36 (bs, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 196.4, 173.3, 135.3, 132.0, 129.7, 128.8, 69.8, 67.2, 42.1, 21.70, 21.66 ppm; FTIR (KBr, neat): v 3516, 3019, 2982, 1730, 1682, 1585, 1466, 1398, 1215, 1105, 752 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₃H₁₅BrO₄H⁺: 315.0232, found: 315.0250; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 10.2 min (minor), t₂ = 11.3 min (major).

(R)-isopropyl 2-hydroxy-4-(2-methoxyphenyl)-4-oxobutanoate (4n)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 83% yield (0.111g, 92% *ee*): $R_f = 0.14$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{22} = -1.0$ (c = 1.57, CHCl₃, for 92% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.79 – 7.75 (m, 1H), 7.52 – 7.46 (m, 1H), 7.03 – 6.96 (m, 2H), 5.19 – 5.06 (m, 1H), 4.58 – 4.52 (m, 1H), 3.92 (s, 3H), 3.57 (dd, J = 18.0, 4.0 Hz, 1H), 3.46 (dd, J = 18.0, 6.0 Hz, 1H), 3.33 (d, J = 5.3 Hz, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 198.9, 173.7, 159.0, 134.3, 130.6, 127.1, 120.7, 111.6, 69.4, 67.6, 55.5, 47.7, 21.73, 21.65 ppm; FTIR (KBr, neat): *v* 3522, 2980, 2940, 1732, 1668, 1597, 1485, 1246, 1105, 1022 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₈O₅H⁺: 267.1232, found: 267.1239; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 15.8 min (minor), t₂ = 22.1 min (major).

(R)-isopropyl 2-hydroxy-4-(3-methoxyphenyl)-4-oxobutanoate (40)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 85% yield (0.113g, 95% *ee*): $R_f = 0.14$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{22} = +2.9$ (c = 1.54, CHCl₃, for 95% *ee*); ¹H NMR (300 MHz, CDCl3): δ 7.54 – 7.47 (m, 2H), 7.41 – 7.35 (m, 1H), 7.15 – 7.11 (m, 1H), 5.20 – 5.07 (m, 1H), 5.20 – 5.07 (m, 1H), 4.62 (dd, J = 9.5, 5.1 Hz, 1H), 3.85 (s, 3H), 3.51 (dd, *J* = 17.4, 4.0 Hz, 1H), 3.42 (dd, *J* = 17.4, 5.8 Hz, 1H), 3.37 (d, *J* = 4.4 Hz, 1H), 1.28 (d, *J* = 6.3 Hz, 3H), 1.24 (d, *J* = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 197.3, 173.4, 159.9, 137.9, 129.7, 120.8, 120.1, 112.3, 69.7, 67.3, 55.4, 42.3, 21.71, 21.66 ppm; FTIR (KBr, neat): *v* 3493, 2982, 2939, 1744, 1688, 1597, 1467, 1260, 1105, 1042 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₈O₅H⁺: 267.1232, found: 267.1235; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 12.1 min (minor), t₂ = 15.5 min (major).

(R)-isopropyl 2-hydroxy-4-(4-methoxyphenyl)-4-oxobutanoate (4p)

This compound was prepared by the General Procedure described above and was obtained as white solid in 88% yield (0.117g, 98% *ee*): $R_f = 0.19$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{21} = +0.7$ (c = 1.51, for 98% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.85 (d, J = 7.9 Hz, 2H), 7.26 (d, J = 7.7 Hz, 2H), 5.18 – 5.06 (m, 1H), 4.62 (dd, J = 9.5, 5.1 Hz, 1H), 3.52 – 3.37 (m, 3H), 2.40 (s, 3H), 1.27 (d, J = 6.3 Hz, 3H), 1.23 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 197.1, 173.4, 144.4, 134.1, 129.3, 128.5, 128.3, 69.5, 67.3, 42.1, 21.7, 21.6 ppm; FTIR (KBr, neat): *v* 3566, 3019, 2984, 1730, 1680, 1607, 1215, 1105, 754 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₈O₅H⁺: 267.1232, found: 267.1227; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 9.7 min (minor), t₂ = 12.4 min (major).

(R)-isopropyl 2-hydroxy-4-(naphthalen-2-yl)-4-oxobutanoate (4q)

This compound was prepared by the General Procedure described above and was obtained as colourless oil in 89% yield (0.127g, 98% *ee*): $R_f = 0.21$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{22} = -0.6$ (c = 1.60, CHCl₃, for 98% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 8.46 (s, 1H), 8.02 – 7.94 (m, 2H), 7.89 – 7.85 (m, 2H), 7.63 – 7.52 (m,

2H), 5.21 - 5.10 (m, 1H), 4.72 - 4.67(m, 1H), 3.65 (dd, J = 17.4, 4.3 Hz, 1H), 3.58 (dd, J = 17.4, 5.9 Hz, 1H), 3.48 (d, J = 5.2 Hz, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.2 Hz, 3H) ppm; 13 C NMR (75 MHz, CDCl₃): δ 197.4, 173.5, 135.8, 133.9, 132.4, 130.1, 129.6, 128.7, 128.6, 127.8, 126.9, 123.6, 69.7, 67.4, 42.3, 21.74, 21.69 ppm; FTIR (KBr, neat): v 3503, 3059, 2982, 2936, 1734, 1680, 1628, 1470, 1375, 1215, 1105 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₇H₁₈O₄H⁺: 287.1283, found: 287.1290; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0mL/min): t₁ = 11.2 min (minor), t₂ = 15.6 min (major).

(R)-isopropyl 4-(2,5-dimethylfuran-3-yl)-2-hydroxy-4-oxobutanoate (4r)

This compound was prepared by the General Procedure described above and was obtained as yellow solid in 76% yield (0.097g, 90% *ee*): $R_f = 0.22$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{22} = +1.2$ (c = 1.89, CHCl₃, for 90% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 6.19 (d, J = 0.7 Hz, 1H), 5.19 – 5.06 (m, 1H), 4.56 – 4.50 (m, 1H), 3.37 (d, J = 5.8 Hz, 1H), 3.20 (dd, J = 17.3, 4.2 Hz, 1H), 3.12 (dd, J = 17.4, 6.0 Hz, 1H), 2.54 (s, 3H), 2.26 (s, 3H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 193.5, 173.4, 157.7, 150.2, 121.4, 105.4, 69.5, 67.3, 44.4, 21.71, 21.66, 14.4, 13.2 ppm; FTIR (KBr, neat): *v* 3508, 2982, 2924, 1732, 1674, 1572, 1402, 1375, 1233, 1107 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₃H₁₈O₅H⁺: 255.1232, found: 255.1240; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 7.9 min (minor), t₂ = 9.4 min (major).

(R)-isopropyl 4-(2,5-dimethylthiophen-3-yl)-2-hydroxy-4-oxobutanoate (4s)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 92% yield (0.124g, 96% *ee*): $R_f = 0.24$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{22} = -0.8$ (c = 1.62, CHCl₃, for 96% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 6.98 (d, J = 1.0 Hz, 1H), 5.19 – 5.07 (m, 1H), 4.57 – 4.52 (m, 1H), 3.37 (d, J = 5.8 Hz, 1H), 3.31 (dd, J = 17.5, 4.3 Hz, 1H), 3.24 (dd, J = 17.5, 5.7 Hz, 1H), 2.66 (s, 3H), 2.41 (s, 3H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 193.2, 173.5, 148.5, 135.4, 135.0, 125.8, 69.5, 67.4, 44.9, 21.72, 21.66, 16.09, 15.0 ppm; FTIR (KBr, neat): v 3505, 2980, 2922, 1732, 1670, 1549, 1481, 1373, 1265, 1225, 1107 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₃H₁₈O₄SH⁺: 271.1004, found: 271.1005; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 85:15, 1.0 mL/min): t₁ = 9.9 min (minor), t₂ = 12.5 min (major).

(2R)-isopropyl 2-hydroxy-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)acetate (6)

This compound was prepared by the General Procedure described above and was obtained as yellow oil in 94% yield (0.117g, 97:3 dr, 98% *ee* (major), 92% *ee* (minor)): $R_f = 0.24$ (ethyl acetate : hexane = 1/4), $[\alpha]_D^{22} = +65.8$ (c = 1.51, CHCl₃, for 98% *ee*); ¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, J = 7.7 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 5.22 – 5.10 (m, 1H), 4.91 (dd, J = 4.4, 2.1 Hz, 1H), 3.18 – 3.08 (m, 3H), 2.98 (d, J = 4.4 Hz, 1H), 1.30 (d, J = 3.6 Hz, 3H), 1.28 (d, J = 3.6 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 205.1, 173.6, 154.0, 136.7, 135.0, 127.5, 126.5, 124.1, 70.1, 69.6, 50.0, 26.5, 21.74, 21.68 ppm; FTIR (KBr, neat): *v* 3503, 2982, 2936, 1712, 1609, 1466, 1281, 1105 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₄H₁₆O₄H⁺: 249.1127, found: 249.1123; The enantiometric excess was determined by HPLC analysis employing Daicel Chiracel AS-H column (hexane/*i*-PrOH = 97:3, 1.25 mL/min): (major diastereomer) t₁ = 32.3 min (minor), t₂ = 49.5 min (major); (minor diastereomer) t₃ = 27.9 min (minor), t₄ = 40.4 min (major).

(3S)-3-hydroxy-3,3a,4,8b-tetrahydro-2H-indeno[1,2-b]furan-2-one (7)

To a solution of (2*R*)-isopropyl 2-hydroxy-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)acetate (0.124 g, 0.5mmol) in MeOH (2 ml) was added NaBH₄ (0.038 g, 1.0 mmol) at -20 °C. The reaction mixture was stirred for 30 minutes, and the reaction was quenched by addition of acetone. The mixture was kept stirring for 10 minutes, and then saturated NH₄Cl aqueous solution was added. The mixture was extracted with CH₂Cl₂ three times, and the extract was dried over anhydrous MgSO₄. The solvents were evaporated to give a crude alcohol. To a solution of the crude product in CH₂Cl₂ (2 mL) was added TsOH•H₂O, and the reaction mixture was stirred for 16 h at room temperature. The reaction was quenched by addition of a saturated NaHCO₃ aqueous solution, and was extracted with CH₂Cl₂ three times. The extract was dried over anhydrous MgSO4. The solvents were evaporated to give a residue, followed by purification on silica gel chromatography to afford yellow oil in 67% yield (0.064g); R_f = 0.26 (ethyl acetate/hexane = 1/4); [α]D²¹ = 81.32 (c = 1.30, CHCl₃, for 98% *ee*) ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 7.5 Hz, 1H), 7.36 – 7.26 (m, 3H), 5.94 (d, *J* = 7.2 Hz, 1H), 4.12 (dd, *J* = 7.2, 3.4 Hz, 1H), 3.92 (d, *J* = 3.6 Hz, 1H), 3.31 – 3.23 (m, 2H), 3.16 – 3.10 (m, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 178.2, 141.7, 138.5, 130.0, 127.7, 125.81, 125.79, 85.2, 73.6, 46.1, 34.9 ppm; FTIR (KBr, neat): ν

3429, 2928, 2857, 1769, 1609, 1462, 1317, 1182, 1119, 995, 743 cm⁻¹; HRMS (ESI, m/z) calcd for C₁₁H₁₀O₃H⁺: 191.0708, found: 191.0712.

¹H-NMR, ¹³C-NMR, HPLC and GC Chromatograms (*R*)-methyl 2-hydroxy-4-oxo-4-phenylbutanoate

Peak#	Ret. Time	Area	Area %
1	13.183	2257801	28.287
2	15.596	5724093	71.713
Total		7981895	100.000

(R)-ethyl 2-hydroxy-4-oxo-4-phenylbutanoate

Signal 1: MWD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Түре	Width [min]	Area [mAU*s]	Height [mAU]	Area ∻
1 2	12.247 14.748	 BB BB	0.3419 0.4658	958.43781 1.65121e4	42.06037 529.54504	 5.4860 94.5140
Total	ls :			1.74706e4	571.60541	

(*R*)-*n*-butyl 2-hydroxy-4-oxo-4-phenylbutanoate

2DA CH1 234111 41111							
Peak#	Ret. Time	Area	Area %				
1	9.818	710667	13.601				
2	11.438	4514339	86.399				
Total		5225006	100.000				

(R)-isopropyl 2-hydroxy-4-oxo-4-phenylbutanoate

min

(R)-isopropyl 2-hydroxy-4-oxo-4-o-tolylbutanoate

(R)-isopropyl 2-hydroxy-4-oxo-4-m-tolylbutanoate

(R)-isopropyl 2-hydroxy-4-oxo-4-p-tolylbutanoate

(R)-isopropyl 4-(2,4-dimethylphenyl)-2-hydroxy-4-oxobutanoate

(R)-isopropyl 4-(2-fluorophenyl)-2-hydroxy-4-oxobutanoate

(R)-isopropyl 4-(3-fluorophenyl)-2-hydroxy-4-oxobutanoate

(R)-isopropyl 4-(4-fluorophenyl)-2-hydroxy-4-oxobutanoate

(R)-isopropyl 4-(4-chlorophenyl)-2-hydroxy-4-oxobutanoate

(R)-isopropyl 4-(4-bromophenyl)-2-hydroxy-4-oxobutanoate

(R)-isopropyl 2-hydroxy-4-(2-methoxyphenyl)-4-oxobutanoate

(R)-isopropyl 2-hydroxy-4-(3-methoxyphenyl)-4-oxobutanoate

(R)-isopropyl 2-hydroxy-4-(4-methoxyphenyl)-4-oxobutanoate

(R)-isopropyl 2-hydroxy-4-(naphthalen-2-yl)-4-oxobutanoate

(R)-isopropyl 4-(2,5-dimethylfuran-3-yl)-2-hydroxy-4-oxobutanoate

(R)-isopropyl 4-(2,5-dimethylthiophen-3-yl)-2-hydroxy-4-oxobutanoate

(2R)-isopropyl 2-hydroxy-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)acetate

