Electronic Supplementary Information

Amino Olefin Nickel (I) and Nickel (0) Complexes as Dehydrogenation Catalysts

for Amine Boranes

Matthias Vogt, Bas de Bruin, Heinz Berke, Mónica Trincado, * Hansjörg

Grützmacher*

 [*] Dr. M. Trincado, Dipl.-Chem. M. Vogt, Prof. Dr. H. Grützmacher Department of Chemistry and Applied Biosciences ETH-Hönggerberg 8093 Zürich (Switzerland) Fax: (+41) 44-633-1032
 E-mail: gruetzmacher@inorg.chem.ethz.ch Homepage: http://www.gruetzmacher.ethz.ch

Dr. Bas de Bruin Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences

Prof. Dr. Heinz Berke Universität Zürich, Anorganisch-chemisches Institut Winterthurerstrasse 190 CH-8057 Zürich (Switzerland)

[**] This work was supported by the joint research initiative "Unconventional Approaches to the Activation of Dihydrogen (FOR 1175)" of the Swiss National Science Foundation (SNF) and the Deutsche Forschungsgesellschaft (DFG) and the ETH Zürich.

Table of Contents

A.	General techniques	3
B.	Syntheses and physical data of complexes 1, 2, 3.	3
C.	Experimental protocol for the formation of hydride complexes 8 and 9.	5
D.	General procedure for the dehydrogenative coupling of Me ₂ HNBH ₃ catalyzed by 2 or 3.	9
E.	Volumetric measurement of hydrogen.	9
F.	Details of the structure determinations of 2 and 3.	10
G.	DFT geometry optimizations, EPR property calculations,	
	experimental EPR measurements and spectral simimulations.	13
Н.	References.	17
I.	Analytical Data, SQUID, NMR spectra and	
	Cyclic Voltammogram	20

A. General techniques:

Solvents were freshly distilled under argon from sodium/benzophenone (thf), from sodium/diglyme/benzphenone (*n*-hexane), or from calcium hydride (CH₂Cl₂). Unless otherwise stated all manipulations were performed under inert argon atmosphere. Airsensitive compounds were stored and weighed in a glovebox (Braun MB 150 B-G system), and reactions on small scales were performed directly in the glovebox. Solution NMR spectra were recorded on Bruker Avance 700, 300, 250 spectrometers. The chemical shifts (δ) are measured according to IUPAC^[1] and expressed in ppm relative to TMS, Et₂O-BF₃ and H₃PO₄ for ¹H, ¹¹B, ¹³C, and ³¹P respectively. Coupling constants J are given in Hertz [Hz] as absolute values. The multiplicity of the signals is indicated as s, d, t, or m for singlets, doublets, triplets, or multiplets, respectively. The abbreviation br. is given for broadened signals. Quaternary carbon atoms are indicated as C_{quart} , aromatic units as CH_{ar} and CH_{ar} when not noted otherwise. The olefinic protons and ¹³C atoms of the C=C_{trop} unit in the central sevenmembered ring are indicated as CH_{olefin} and CH_{olefin}, respectively. IR spectra were measured on a Perkin-Elmer 2000 FT-IR spectrometer with a KBr beamsplitter. UV/vis spectra were recorded on a UV/vis/NIR lambda 19 spectrometer in 5 mm quartz cuvettes (200-1000 nm). Mass spectra were recorded on BRUKER Daltronics maXis (ESI, UHR-TOF), BRUKER Daltronics Ulta Flex II (MALDI, TOF) and VARIAN IonSpec (MALDI-FT-ICR) of the ETH Zurich LOC MS Service facility. Magnetic measurements were performed on a SQUID (Superconducting Quantum Interference Device) Magnetometer MPMS 5S of 'Quantum Design Inc.' in a temperature range of 2-300 K at a field of 1000 Oe. The effective magnetic moment μ_{eff} was calculated in the temperature range of 18-260 K for 2. EPR measurements were performed on a BRUKER EMX 080 equipped with a microwave-bridge ER 041 XG and a dielectric mixing resonator ER 4117 D-MVT.

B. Syntheses and Physical data

[(Ni(OOCCF₃)₂)] 1: [Ni(CO₃)] (2.00 g, 17 mmol, 1 eq.), was put in a 250 mL Schlenk flask equipped with a reflux condenser and suspended in trifluoroacetic anhydride (11.7 mL, 84 mmol, 5 eq). To the vigorously stirred greenish mixture trifluoroacetic acid (1.6 mL, 20 mmol, 1.2 eq) was added and heated at reflux at 80 °C under evolution of CO₂ gas for 1 h. Subsequently, 20 mL of trifluoroacetic acid and 10 mL trifluoroacetic anhydride were added and the reaction mixture was refluxed for 18 h under evolution of CO₂ gas affording a homogenous green solution. After cooling to room temperature, the condenser was exchanged for a distillation bridge and the excess of the anhydride and trifluoro acetic acid was removed by distillation. The obtained green solid was dried at 100°C in high vacuum for 72 h. A significant color change of the solid to pale green was observed. Complete removal of the trifluoro acetic acid was confirmed by pH indication of an aqueous solution of a small sample of the pale green product. Quantitative yield. UV/VIS (THF): $\lambda_{max} = 410$ nm (shoulder), 600-700 nm (br shoulder). IR: \vec{v} (cm⁻¹) = 1682 s, 1463 w, 1188 s, 1140 s, 1028 m, 919 w, 876 m, 850 m, 794 s, 726 s. MP > 230 °C.

[Ni(trop₂NH)(OOCCF₃)] 2 : A 20 mL Schlenk tube was charged with (trop₂NH) (200 mg, 0.50 mmol, 1 equiv). The solid was suspended in 3 mL THF and [Ni(OOCCF₃)₂] 1 (142 mg, 0.50 mmol, 1 equiv) was subsequently added. An excess of zinc powder (327 mg, 5.00 mmol, 10 equiv) was added to the pale greenish solution. The mixture was allowed to stir over night before the zinc powder was

filtered off the dark green solution. Subsequently, 2 mL ⁱPr₂O was added to the filtrate and the mixture was layered with 3 mL of *n*-hexane. Large deep green needles formed within 24 h at room temperature (also suitable for single crystal X-ray diffraction analysis). The supernatant solution was decanted, the obtained crystals were washed with three portions of 1 mL cold ⁱPr₂O, and finally dried in a stream of argon. Yield 202 mg, 71%. UV/VIS (THF) λ_{max} : 252 nm, br 533-329 nm peak at 350 nm. IR: $\bar{\Psi}$ (cm⁻¹) = 3245 w, 3050-2846 w, 1635 s, 1487 m, 1205 m, 1182 s, 1135 s, 987 m, 843 m, 761 w, 739 m, 725 m, 659 w. MS (ESI TOF m/z) [Ni(trop₂NH)]⁺ 455.1158 found, 455.1178 calc (error -4.4 ppm). MP > 220 °C. μ_{eff} = 1.81 μ_{B} . MP > 220 °C.

[Ni(trop₂NH)(PPh₃)] 3 : A 10 mL Schlenk tube was charged with trop₂NH (200 mg, 0.50 mmol, 1 equiv). The solid was dissolved in 3 mL DME. Subsequently [Ni(OOCCF₃)₂] (142 mg, 0.50 mmol, 1 equiv) and PPh₃ (131 mg, 0.50 mmol, 1 equiv) were added. To the pale greenish solution, an excess of zinc powder (327 mg, 5.00 mmol, 10 eq) was added and the mixture was allowed to stir for 48 h. From the dark red solution the excess zinc powder was filtered off through a plug of Celite and the filtrate was diluted with 2 mL of ¹Pr₂O and layered with 3 mL nhexane. After approximately 3 h hours, large deep red crystals (also suitable for single crystal x-ray analysis) start to precipitate. The mother liquor was decanted, the obtained crystals were washed with ¹Pr₂O (3x 2.5 mL) and subsequently dried in a stream of argon. The mother liquor was layered with *n*-hexane and a second fraction of the red crystalline product was obtained following the procedure described above. Overall yield 80 % 257 mg. The *n*-hexane layered solution can also be seeded with previous obtained crystals of 3, in this way the crystallization process can be accelerated. ¹H NMR (300 MHz, [D₈]-THF) d ppm 1.09 (br, s, 1 H, NH) 4.35 (s, 2 H, CH_{benzyl}) 4.39 (dd, ${}^{3}J_{\text{HH}} = 9.80$ Hz, ${}^{3}J_{\text{PH}} = 14.30$ Hz, 2 H, CH_{olefin}) 5.12 (dd, ${}^{3}J_{\text{HH}} = 9.87$ Hz, ${}^{3}J_{\text{PH}} = 3.18$ Hz, 2 H, , CH_{olefin}) 6.13 (d, ${}^{3}J_{\text{HH}} = 7.58$ Hz, 2 H, CH_{ar}) 6.52 (dd, ${}^{3}J_{\text{HH}} = 5.14$, ${}^{3}J_{\text{HH}} = 3.67$ Hz, 2 H, CH_{ar}) 6.68 (m, 6 H, CH_{ar}) 6.88 (m, 6 H, CH_{ar}) 7.20 (m, 15 H, CH_{ar}). ${}^{13}C{}^{1}H$ -NMR (75 MHz, [D₈]-THF) d ppm 67.9 (d, ${}^{2}J_{\text{PC}} = 7.9$ Hz, 2 C, CH_{olefin}) 69.5 (s, 2 C, CH_{olefin}) 70.4 (s, 2 C, CH_{benzyl}) 122.9 (d, ${}^{4}J_{PC} = 1.5$ Hz, 2 C, CHar) 123.9 (s, 2 C, CHar) 126.6 (s, 2 C, CHar) 126.8 (s, 2 C, CHar) 127.1 (s, 2 C, CH_{ar}) 127.6 (s, 2 C, CH_{ar}) 127.8 (m, 9 C, CH_{ar-Ph3}) 128.7 (d, ${}^{4}J_{PC}$ = 2.7 Hz, 2 C, CH_{ar}) 129.0 (d, ${}^{5}J_{PC} = 1.5$ Hz, 2 C, CH_{ar}) 132.4 (d, ${}^{2}J_{PC} = 11.6$ Hz, 6 C, CH_{ar-PPh3}) 133.8 (d, ${}^{5}J_{PC} = 1.5 \text{ Hz}, 2 \text{ C}, CH_{ar}$ 135.0 (d, ${}^{1}J_{PC} = 29.5 \text{ Hz}, 3 \text{ C}, C_{quart-PPh3}$) 138.0 (d, ${}^{3}J_{PC} = 2.7 \text{ Hz}, 2 \text{ C}, C_{quart}$) 138.9 (s, 2 C, C_{quart}) 139.7 (d, ${}^{3}J_{PC} = 1.8 \text{ Hz}, 2 \text{ C}, C_{quart}$). ${}^{31}P{}^{1}H{}$ -NMR (101.3 MHz; $[D_8]$ -THF): δ (ppm) = 39.8 s, 1P, PPh₃. UV/VIS (THF): $\lambda_{max} = 252 \text{ nm}, 329 \text{ nm}$ (shoulder). IR: \overline{v} (cm⁻¹) = 3050–3002 w, 2852 w, 1684 s, 1597 m, 1470 s, 1430 s, 1408 w, 1307 w, 1208 s, 1154 s, 1088 s, 1056 w, 1027 w, 998 m, 973 w, 941 w, 924 w, 900 w, 850 m, 798 m, 759 w, 741 s, 733 s, 640 s, 650 w, 638 w. MS (MALDI FT-ICR 3-HPA, m/z) [Nitrop₂NH⁺] 455.1192 (found), 455.1179 (calc) (error +2.86 ppm). M.P. 210-213 °C decomp.

C. Experimental protocols for the formation of hydride complexes 8 and 9.

- a) To a solution of dimethylamine borane **4** (1.2 mg, 0.020 mmol, 1 equiv) and *t*BuOK (2.2 mg, 0.020 mmol, 1 equiv) in $[D_8]$ -THF (0.5 mL) in a *J.Young* NMR tube was added a solution of $[Ni(trop_2NH)(OOCCF_3)]$ **2** (11.0 mg, 0.020 mmol, 1 equiv) in $[D_8]$ -THF (0.2 mL). The reaction resulted in the formation of the hydride bridged complex **8** and a small concentration of the mononuclear nickel hydride **9** (Figure 1).
- b) To the reaction mixture from a) was added an additional equivalent of tBuOK (2.2 mg, 0.020 mmol) in [D₈]-THF (0.1 mL). Initial formation of complex **9** is observed.
- c) To a solution of dimethylamine borane (3.5 mg, 0.060 mmol, 3 equiv) and tBuOK (6.7 mg, 0.060 mmol, 3 equiv) in [D₈]-THF (0.5 mL) in a J.Young NMR tube was added a solution of [Ni(trop₂NH)(OOCCF₃)] 2 (11.0 mg, 0.020 mmol, 1 equiv) in [D₈]-THF (0.2 mL).
- d) The highest relative presence of complex **9** was observed in the analysis of the reaction mixture from d) after 30 min (Figure 1).

Figure 1. Sections (hydride area) of the *in situ* recorded ¹H NMR (700.13 MHz, 298 K) spectra of complexes 8 (s -8.12 ppm) and 9 (s -4.59 ppm) from the reactions in [D8]-THF: a) 4 (1 eq), tBuOK (1 eq) and 2 (1 eq); b) 4 (1 eq), tBuOK (2 eq) and 2 (1 eq). c) 4 (3 eq), tBuOK (3 eq) and 2 (1 eq) after 5 min. d) Evolution of c) after 30 min.

- e) To a solution of dimethylamine borane **4** (1.2 mg, 0.020 mmol, 1 equiv) and K[Me₂NBH₃] (5.8 mg, 0.060 mmol, 3 equiv)^[3] in [D₈]-THF (0.5 mL) in a *J.Young* NMR tube was added a solution of [Ni(trop₂NH)(OOCCF₃)] **2** (11 mg, 0.020 mmol, 1 equiv) in [D₈]-THF (0.2 mL). The reaction resulted in the exclusive formation of the hydride bridged complex **8**.
- f) To the reaction mixture e) was added *t*BuOH (4.4 mg, 0.060 mmol, 3 equiv), evolution of H_2 and initial formation of complex 9 is observed. Complexes 8 and 9 are relatively stable in solution for at least 24 h without apparent decomposition. The hydride-bridging coordination mode and the *trans* disposition of both trop ligands in 8 have been unambiguously demonstrated by 1D and 2D-NMR experiments (see Figure 2).

[K][(Ni(trop₂NH))₂H] 8:

The proton resonance of the NH moiety was identified by two-dimensional NMR experiments: (HH-COSY gave cross-peaks for the NH ¹H NMR resonance with both ¹H NMR resonances of the CH_{benzylic} protons (${}^{3}J_{\text{HH}}$), see Figure 2 below; CH-HMQC gave cross peaks of the NH proton resonance with the ¹³C NMR resonances of the benzylic carbon atoms C_{benzylic} (71.5 ppm and 71.6 ppm; ${}^{2}J_{\text{HC}}$); Accordingly, the CH-HMBC NMR spectrum shows cross peaks to the ¹³C NMR resonances of the quaternary carbon atoms C_{quart} of the benz-anelated rings of the trop backbone (133.4 ppm and 134.0 ppm ppm; ${}^{3}J_{\text{HC}}$).

¹H NMR (700.13 MHz, [D₈]-THF) δ ppm -8.12 (s, 1 H, Ni*H*_{hydride}) 1.89 (br, s, 2 H, N*H*) 2.72 (d, ³*J*_{HH} = 14 Hz, 2 H, C*H*_{olefin}) 4.19 (s, 2 H, C*H*_{benzyl}) 4.33 (s, 2 H, C*H*_{benzyl}) 4.34 (d, ³*J*_{HH} = 7 Hz, 2 H, C*H*_{olefin}) 4.39 (d, ³*J*_{HH} = 14 Hz, 2 H, C*H*_{olefin}) 4.59 (d, ³*J*_{HH} = 7 Hz, 2 H, C*H*_{olefin}) 6.06 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.32 (t ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.41-6.52 (m, 8 H, C*H*_{ar}) 6.62 (m, 2 H, C*H*_{ar}) 6.71 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.77 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.92 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 7.00 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.77 (d ³*J*_{HH} = 7 Hz, 2 C, C*H*_{olefin}) 6.92 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 7.00 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.72 (c, ³*J*_{HH} = 7 Hz, 2 C, C*H*_{olefin}) 6.92 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 7.00 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.72 (c, ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.92 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 7.00 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.92 (c, ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 7.00 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.92 (c, ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 7.00 (d ³*J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 1.1³C {¹H} NMR (176.1 MHz, [D₈]-THF) δ ppm 55.8 (s, 2 C, C*H*_{olefin}) 55.9 (s, 2 C, C*H*_{olefin}) 59.4 (s, 2 C, C*H*_{ar}) 119.6 (s, 2 C, C*H*_{ar}) 120.5 (s, 2 C, C*H*_{ar}) 121.0 (s, 2 C, C*H*_{benzyl}) 119.2 (s, 2 C, C*H*_{ar}) 119.6 (s, 2 C, C*H*_{ar}) 120.5 (s, 2 C, C*H*_{ar}) 121.0 (s, 2 C, C*H*_{ar}) 125.7 (s, 2 C, C*H*_{ar}) 126.2 (s, 2 C, C*H*_{ar}) 127.6 (s, 2 C, C*H*_{ar}) 128.0 (s, 2 C, C*H*_{ar}) 128.8 (s, 2 C, C*H*_{ar}) 129.2 (s, 2 C, C*H*_{ar}) 129.6 (s, 2 C, C*H*_{ar}) 130.2 (s, 2 C, C*H*_{ar}) 133.4 (s, 2 C, C*q*_{uart}) 134.0 (s, 2 C, C*q*_{uart}) 137.4 (s, 2 C, C*q*_{uart}) 138.3 (s, 2 C, C*q*_{uart}) 141.2 (s, 2 C, C*q*_{uart}) 142.7 (s, 2 C, C*q*_{uart}) 145.1 (s, 2 C, C*q*_{uart}) 146.8 (s, 2 C, C*q*_{uart}).

Figure 2. HH-COSY spectrum of **[K]**[(**Ni**(trop₂**NH**))₂**H**] **8**, 700.13 MHz, [D₈]-THF. Crosspeaks of the bridging hydride resonance (-8.12 ppm, s) and the olefinic resonances centered at 2.72 ppm (d, ${}^{3}J_{\text{HH}} = 14$ Hz), 4.34 ppm (d, ${}^{3}J_{\text{HH}} = 7$ Hz), 4.39 ppm (d, ${}^{3}J_{\text{HH}} = 14$ Hz) and 4.59 ppm (d, ${}^{3}J_{\text{HH}} = 7$ Hz) respectively, are shown magnified in separate parts of the spectra (red and green box). Cross-peaks (${}^{3}J_{\text{HH}}$) for the NH resonance (s, 1.89 ppm) and both resonances of the CH_{benzylic} protons (s 4.18 and s 4.33 ppm) are marked in blue.

[K][Ni(trop₂NH)H] 9:

¹H NMR (700.13 MHz, [D₈]-THF) δ ppm -4.59 (s, 1 H, Ni*H*_{hydride}) 1.41 (s, br, 1 H, N*H*) 4.00 (d, ³*J*_{HH} = 9 Hz, ³*J*_{HH} = 7 Hz 2 H, C*H*_{olefin}) 4.20 (s, 2 H, C*H*_{benzyl}) 4.28 (dd, ³*J*_{HH} = 9 Hz, ³*J*_{HH} = 3 Hz, 2 H, C*H*_{olefin}) 6.43 (m, 2 H, C*H*_{ar}) 6.49 (m, 4 H, C*H*_{ar}) 6.56 (m, 2 H, C*H*_{ar}) 6.70 (dt, *J*_{HH} = 8 Hz, *J*_{HH} = 1 Hz 2 H, C*H*_{ar}) 6.83 (br d, *J*_{HH} = 7 Hz, 2 H, C*H*_{ar}) 6.86 (dt, *J*_{HH} = 8 Hz, *J*_{HH} = 1 Hz 2 H, C*H*_{ar}) 7.21 (br d, *J*_{HH} = 7 Hz, 2 H, C*H*_{ar}). ¹³C{¹H}-NMR (176.1 MHz, [D₈]-THF) δ ppm 52.7 (s, 2 C, CH_{olefin}) 55.3 (s, 2 C, CH_{olefin}) 70.9 (s, 2 C, CH_{benzyl}) 119.0 (s, 2 C, CH_{ar}) 120.7 (s, 2 C, CH_{ar}) 126.0 (s, 2 C, CH_{ar}) 126.4 (s, 2 C, CH_{ar}) 126.7 (s, 2 C, C_{quart}) 139.6 (s, 2 C, C_{quart}) 142.0 (s, 2 C, C_{quart}) 147.8 (s, 2 C, C_{quart}).

D. Dehydrogenation of Me₂HN-BH₃ 4 catalyzed by [Ni(trop₂NH)(OOCCF₃)] 2. In a typical experiment, to a solution of dimethylamine borane **4** (59.0 mg, 1 mmol) in THF (1 mL) was added *t*BuOK (3.4 mg, 0.03 mmol) or K[Me₂NBH₃] (2.9 mg, 0.03 mmol). [Ni(trop₂NH)(OOCCF₃)] **2** (5.7 mg, 0.01 mmol) was immediately added, vigorous evolution of hydrogen gas and formation of a brownish solution was observed. The reaction mixture was analyzed by ¹H and ¹¹B NMR spectroscopy, confirming that the product obtained is the cyclic dimer (NMe₂BH₂)₂ **6**.Addition of diethyl ether to the mixture precipitated the nickel salts and allowed their facile filtration from the solution. Subsequently, the solvent was removed in *vacuo* and the obtained colorless solid was sublimed on a steam bath using a cooling finger under argon atmosphere. The spectroscopic data was compared with previously reported.^[4]

¹H NMR (300 MHz, C₆D₆): δ = 3.0–1.9 (q, br, ¹J_{BH} = 114 Hz, BH₂), 2.44 (s, CH₃); ¹³C {¹H} NMR (75 MHz, C₆D₆): δ = 52.3 ppm; ¹¹B NMR (96.3 MHz, C₆D₆): δ = 5.10 (t, ¹J_{BH} = 112 Hz, BH₂).

ATR IR (v in cm⁻¹) 3018 m, 2960 s, 2860 m, 2810 m, 2440 s, 2370 s, 2230 m, 1470 m, 1240 s, 1193 s, 1150 s, 1048 m, 965 s, 812 m.

The same protocol was followed with complex $[Ni(trop_2NH)PPh_3]$ **3** (7.2 mg, 0.01 mmol). During the monitoring of the reaction with the complex **3**, formation of the linear dimer NMe₂HBH₂NMe₂BH₃ **7** was observed. This compound was isolated by addition of diethyl ether, filtration and subsequent evaporation of the solvent under *vacuo*. Recrystallization of the residue from diethyl ether/*n*-hexane ether afforded the product as a colorless solid. The obtained spectroscopic data is in good agreement with with data previously reported.^[5]

 $M.P.>230\ ^{\circ}C$

¹H NMR (300 MHz, C₆D₆): δ = 5.05 (s, br, 1H, N*H*), 2.03 (t, br, ¹*J*_{BH} = 110 Hz, 2H, B*H*₂), 1.85 (q, br, ¹*J*_{BH} = 96 Hz, 3H, B*H*₃), 2.45 (s, 6H, C*H*₃), 1.92 (s, 3H, C*H*₃) 1.89 (s, 3H, C*H*₃) ppm; ¹³C {¹H} NMR (75 MHz, C₆D₆): δ = 52.6, 42.8 ppm; ¹¹B NMR (96.3 MHz, C₆D₆): δ = 2.27 (t, ¹*J*_{BH} = 109 Hz, *B*H₂), -12.69 (q, ¹*J*_{BH} = 94 Hz, *B*H₃) ppm.

ATR IR (v in cm⁻¹) 3020 m, 2447 s, 2390 s, 2340 s, 2345 s, 2313 s, 2287 s, 2295 s, 2165 m, 2109 m, 2058 m, 1420 m, 1115 m, 850 m.

E. Volumetric measurement of hydrogen

In a typical experiment, dimethylamine borane **4** (59 mg, 1 mmol) and *t*BuOK (3.4 mg, 0.03 mmol) were dissolved in THF (0.5 mL) in a 25 mL 2-neck round bottom flask under inert atmosphere. The flask was closed with a tight-fitting rubber septum. A solution of catalysts **2** (5.6 mg, 0.01 mmol) in THF (0.5 mL) was added via syringe to the stirred amine borane solution. For the reaction of **2** (1.9 mg, 0.003 mmol), *t*BuOK (1.1 mg, 0.01 mmol) was employed; for the reaction with **B** (1.5 mg, 0.002 mmol) and 0.006 mmol of *t*BuOK.

Timing and measurement were started when the catalyst was injected into the amine borane solution. The hydrogen gas was collected in a water-filled, pressure equalized gas-burette connected to the 2^{nd} neck of the flask via a rubber tube. The volume of hydrogen gas collected was recorded periodically until the reaction was complete.

F. Details of the structure determinations of 2 and 3.

Crystals of 2 and 3 were obtained as described in Part B.

The crystals were measured on a 'BRUKER APEX' platform diffractometer with CCD area detector; $Mo_{K\alpha}$ radiation (0.71073 Å). The refinement against full matrix (versus F^2) was done with SHELXTL (ver. 6.12) and SHELXL-97. Empirical absorption correction was done with SADABS (ver. 2.03). All non-hydrogen atoms were refined anisotropically. The contribution of the hydrogen atoms, in their calculated positions, was included in the refinement using a riding model. For details see the crystallographic table for each compound below.

Supplementary crystallographic data for the reported structures is available using the CCDC identification codes given in the tables below. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax:

5		5/1 (/			
Identification code	CCDC 767256				
Empirical formula	$C_{32}H_{23}F_3N_1Ni_1O_2(C_4H_8O_1)$				
Formula weight	641.33				
Temperature	200(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P 21/n				
Unit cell dimensions	a = 13.992(3) Å	a= 90 °.			
	b = 11.424(2) Å	b= 101.06(3) °.			
	c = 18.291(4) Å	g = 90 °.			
Volume	2869.5(10) Å ³				
Ζ	4				
Density (calculated)	1.485 Mg/m ³				
Absorption coefficient	0.735 mm ⁻¹				
F(000)	1332				
Crystal size	0.20 x 0.15 x 0.11 mm ³				
Theta range for data collection	2.03 ° to 28.30 °.				
Index ranges	-18<=h<=18, -15<=k<=1	5, -24<=l<=24			
Reflections collected	29172				
Independent reflections	7123 [R(int) = 0.0388]				
Completeness to theta = 28.30°	99.7 %				
Absorption correction	Empirical				
Max. and min. transmission	0.9235 and 0.8669				
Refinement method	Full-matrix least-squares	on F ²			
Data / restraints / parameters	7123 / 0 / 521				
Goodness-of-fit on F ²	1.029				
Final R indices [I>2sigma(I)]	R1 = 0.0405, wR2 = 0.09	57			
R indices (all data)	R1 = 0.0495, wR2 = 0.10	10			
Largest diff. peak and hole	0.692 and -0.237 e.Å ⁻³				

Table 1. Crystal data and structure refinement for [Ni(trop₂NH)(OOCCF₃)]x(THF) 2.

Table 2 . Crystal data and structure remien	$\frac{1}{100} \frac{1}{100} \frac{1}$
Identification code	CCDC 767257
Empirical formula	$C_{48}H_{38}N_1Ni_1P_1$
Formula weight	718.47
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	a = 11.4130(11) Å a= 98.677(2) °.
	b = 12.0679(11) Å b= 95.682(2) °.
	$c = 14.4208(13) \text{ Å} g = 114.432(2)^{\circ}.$
Volume	1758.7(3) Å ³
Z	2
Density (calculated)	1.357 Mg/m ³
Absorption coefficient	0.634 mm ⁻¹
F(000)	752
Crystal size	0.25 x 0.20 x 0.16 mm ³
Theta range for data collection	1.45 ° to 28.33 °.
Index ranges	-15<=h<=15, -16<=k<=16, -19<=l<=19
Reflections collected	18304
Independent reflections	8645 [R(int) = 0.0340]
Completeness to theta = $28.33 \circ$	98.7 %
Absorption correction	Empirical
Max. and min. transmission	0.9054 and 0.8576
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8645 / 0 / 463
Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0434, WR2 = 0.1099
R indices (all data)	R1 = 0.0530, wR2 = 0.1157
Largest diff. peak and hole	1.198 and -0.397 e. Å ⁻³

Table 2. Crystal data and structure refinement for [Ni(trop₂NH)(PPh₃)]**3**.

G. DFT geometry optimizations, EPR property calculations, experimental EPR measurements and spectral simulations.

DFT:

DFT geometry optimizations were carried out with the Turbomole program^[6a] coupled to the PQS Baker optimizer.^[7] Geometries were optimized at the BP86^[6] level using the Turbomole SV(P) basisset^[6c,d] on all atoms.

EPR parameters^[9] were calculated with the Orca^[10] program system using the hybrid PBE0^[11] functional and the TZVP basis set^[6d], as well as with the ADF^[12] program system using the BP86^[8] functional with the ZORA/TZP basis sets supplied with the program (all electron, core double zeta, valence triple zeta polarized basis set on all atoms), each using the coordinates from the structures optimized in Turbomole as input.

Experimental EPR measurements and spectral simulations:

Inspection of the EPR spectrum of **2** in a frozen 2-Me-THF solution clearly reveals besides the major species **2a** (~90% of the total spectral intensity), the presence of a second minor species **2b** (~5%), and a detailed line shape analysis suggests the presence of even a third minor species, **2c** (~5%) (Figure 3). The major species **2a** must correspond to [Ni(trop₂NH)(κ^2 -OOCCF₃)], as the DFT calculated parameters of the optimized geometry of **2** correspond well to the experimental parameters of **1**.

The minor species **2b** and **2c** are perhaps 5-coordinate solvent adducts and/or species with a κ^1 -OOCCF₃ coordination mode instead of the κ^2 -OOCCF₃ coordination mode. The isotropic g-value (2.190) measured at 298 K (featureless, relatively broad isotropic signal) corresponds roughly with the weighted averaged anisotropic g-values of the species **2a**, **2b** and **2c**, suggesting that the rapidly frozen solution spectrum reflects approximately the kinetically trapped equilibrium distribution of these same species in solution. Although interesting, we did not investigate this aspect any further.

Figure 3.

Top: Experimental and simulated isotropic X-band EPR spectrum of $[Ni(trop_2NH)(OOCCF_3)]$ **2** in 2-Me THF at 298 K. Experimental conditions: microwave frequency 9.500431 GHz, microwave power 0.401 mW, modulation amplitude 1.00 Gauss. *Bottom:* Individual components 2a (90%), 2b (4%) and 2c (6%) contributing to the EPR spectrum shown in the main text. The simulations were obtained using the parameters in Table 3.

	[Ni(trop ₂ NH)(OOCCF ₃)]	[Ni(trop ₂ NH)(OOCCF ₃)] 2
	2 (a) (c)	(b)
g_x	2.303	2.225 (2.196)
g_{v}	2.223	2.169 (2.128)
g_z	2.012	2.028 (1.998)
giso	2.190	2.141 (2.107)
A_x^N	n.r.	19 (20)
A_{v}^{N}	n.r.	19 (20)
A_z^N	35	30 (37)
A_{iso}^{N}	n.r. (<30)	22 (26)
$\eta^{N(d)}$	-	10%
A_x^P	-	-
A_{v}^{P}	-	-
A_z^P	-	-
A_{iso}^{P}	-	-
$\eta^{P(d)}$	-	-
$\eta^{Ni(d)}$	-	82%

Table 3. Experimental^(a) and *DFT calculated*^(b) EPR parameters.

(a) Spectral simulation; Hyperfine couplings in MHz; n.r. = not resolved. Anisotropic spectra measured in frozen 2-Methyl THF at 120K. Isotropic spectra (g_{iso}, A_{iso}) measured at 298 K in 2-Methyl THF.

(b) Orca, PBE0/TZVP (ADF, BP86/TZP).

(c) Data for the major species. Line shape analysis suggests the presence of two additional minor species (~10% of the total intensity), each revealing rhombic g-tensors (2.278, 2.258, 2.130; ~ 4% and 2.324, 2.262, 2.200; ~6%) without resolved hyperfine couplings.

(d) η = Mulliken spin density population.

The experimental and DFT calculated EPR parameters of $[Ni(trop_2NH)(\kappa^2-OOCCF_3)]$ **2** are comparable. The N-hyperfine couplings for $[Ni(trop_2NH)(\kappa^2-OOCCF_3)]$ **2** are only resolved along g_z .

Figure 4. SOMO (left) and spin density (right) plots of $[Ni(trop_2NH)(\kappa^2-OOCCF_3)]$

Figure 5. DFT optimized structure of $[Ni(trop_2NH)(\kappa^2-OOCCF_3)]$ **2** (above) and list of atom coordinates (below).

ATOM	1 Ni	111	1	7.604	9.924	13.802	1.00 0.00
ATOM	2 O	111	1	8.838	9.028	12.192	1.00 0.00
ATOM	30	111	1	8.588	11.231	12.441	1.00 0.00
ATOM	4 C 1	111	1	9.281	9.816	15.024	1.00 0.00
ATOM	5 C 1	111	1	5.976	9.730	12.525	1.00 0.00
ATOM	6 F 1	11	1	11.010	9.669	10.570	1.00 0.00
ATOM	7 F 1	11	1	9.177	10.134	9.469	1.00 0.00
ATOM	8 F 1	11	1	10.308	11.731	10.444	1.00 0.00
ATOM	9 C 1	111	1	9.058	10.222	11.839	1.00 0.00
ATOM	10 C	111	1	9.910	10.451	10.566	1.00 0.00
ATOM	11 N	111	1	6.715	11.443	14.927	1.00 0.00
ATOM	12 C	111	1	4.842	8.986	14.701	1.00 0.00
ATOM	13 C	111	1	4.510	10.252	15.262	1.00 0.00
ATOM	14 C	111	1	5.219	11.516	14.805	1.00 0.00
ATOM	15 C	111	1	4.147	13.039	13.080	1.00 0.00
ATOM	16 C	111	1	7.026	10.310	17.165	1.00 0.00
ATOM	17 C	111	1	3.491	10.336	16.230	1.00 0.00
ATOM	18 C	111	1	6.365	10.400	18.405	1.00 0.00
ATOM	19 C	111	1	5.270	11.002	12.308	1.00 0.00
ATOM	20 C	111	1	4.175	7.837	15.196	1.00 0.00
ATOM	21 C	111	1	7.234	11.565	16.332	1.00 0.00
ATOM	22 C	111	1	4.856	11.857	13.369	1.00 0.00
ATOM	23 C	111	1	5.809	8.828	13.606	1.00 0.00
ATOM	24 C	111	1	8.702	11.953	16.285	1.00 0.00
ATOM	25 C	111	1	8.317	8.892	15.499	1.00 0.00

ATOM	26 C	2 111	1	9.639	11.114	15.618	1.00	0.00
ATOM	27 C	2 111	1	7.521	9.051	16.724	1.00	0.00
ATOM	28 C	2 111	1	11.399	12.763	16.097	1.00	0.00
ATOM	29 C	2 111	1	9.133	13.162	16.864	1.00	0.00
ATOM	30 C	C 111	1	6.154	9.267	19.204	1.00	0.00
ATOM	31 C	2 111	1	7 265	7 910	17 525	1 00	0.00
ATOM	32 C	2 111	1	10.474	13.569	16.782	1.00	0.00
ATOM	33 (111	1	6 598	8 012	18 751	1.00	0.00
ATOM	34 C	111	1	3 170	7 934	16 165	1.00	0.00
ATOM	35 0	111	1	10 982	11 557	15 519	1.00	0.00
ATOM	36 0	· 111	1	3 854	13 404	11 756	1.00	0.00
ATOM	37 (· 111	1	4 992	11 404	10 978	1.00	0.00
ATOM	38 0	111	1	4 288	12 583	10.701	1.00	0.00
ΔΤΟΜ	39 0	· 111	1	2.200	9 1 9 4	16 679	1.00	0.00
	40 E	I 111	1	4 863	12 351	15 453	1.00	0.00
	40 I.	I 111 I 111	1	6 678	12.331	16.831	1.00	0.00
ATOM ATOM	42 E	I 111 I 111	1	10.058	9 3 9 0	14 365	1.00	0.00
ATOM	42 I	I 111 I 111	1	10.058	6 8 5 1	14.303	1.00	0.00
ATOM		I 111 I 111	1	7.630	6 0 2 0	17 170	1.00	0.00
ATOM	44 I. 15 L	I 111 I 111	1	5 2 2 2	10 761	10 1/0	1.00	0.00
ATOM	45 I. 46 L	I III I 111	1	5.002	10.701	10.149	1.00	0.00
ATOM	40 I. 47 L	I III I 111	1	5.995	0.202	10./44	1.00	0.00
ATOM	4/ E	1 111 I 111	1	5.620	9.295	20.160	1.00	0.00
ATOM	40 E	1 111 I 111	1	5.029 8.207	9.500	20.109	1.00	0.00
	49 E	1 111 T 111	1	6.397	13.804	17.379	1.00	0.00
ATOM	50 E	1 111 T 111	1	0.120	/./80	13.408	1.00	0.00
ATOM	51 E	1 111 T 111	1	11./10	10.925	14.985	1.00	0.00
ATOM	52 E	1 111 T 111	1	0.428	/.109	19.300	1.00	0.00
ATOM	33 E	1 1 111	1	5.255	11.323	16.652	1.00	0.00
ATOM	54 E	1 1 111	1	8.458	/.84/	15.109	1.00	0.00
ATOM	55 E	1 1 111	1	7.094	12.249	14.400	1.00	0.00
ATOM	30 E		1	3.832	13.693	13.911	1.00	0.00
ATOM	3/ E		1	2.658	/.024	10.519	1.00	0.00
ATOM	38 E		1	2.023	9.284	1/.441	1.00	0.00
ATOM	59 E		1	3.303	14.336	11.550	1.00	0.00
ATOM	60 E		1	10./91	14.522	1/.236	1.00	0.00
ATOM	61 H		l	12.452	13.077	16.009	1.00	0.00
ATOM	62 E			4.080	12.864	9.656	1.00	0.00
CONECT		3 4	5 1	1 23 2	>			
CONECT	2	9						
CONECT	3	9						
CONECT	4	25 26	42					
CONECT	5	19 23	47					
CONECT	6	10						
CONECT	7	10						
CONECT	8	10						
CONECT	9	10						
CONECT	11	14 21	55					
CONECT	12	13 20	23					
CONECT	13	14 17						
CONECT	14	22 40						

CONECT	15	22	36	56
CONECT	16	18	21	27
CONECT	17	39	53	
CONECT	18	30	46	
CONECT	19	22	37	
CONECT	20	34	43	
CONECT	21	24	41	
CONECT	23	50		
CONECT	24	26	29	
CONECT	25	27	54	
CONECT	26	35		
CONECT	27	31		
CONECT	28	32	35	61
CONECT	29	32	49	
CONECT	30	33	48	
CONECT	31	33	44	
CONECT	32	60		
CONECT	33	52		
CONECT	34	39	57	
CONECT	35	51		
CONECT	36	38	59	
CONECT	37	38	45	
CONECT	38	62		
CONECT	39	58		
END				

H. References

[1] R. K. Harris, E. D. Becker, S. M. C. de Menezes, R. Goodfellow, P. Granger, *Pure and Applied Chemistry* **2001**, *73*, 1795.

[2] T. Büttner, F. Breher, H. Grützmacher, *Chem. Commun.* 2004, 2820.

[3] K[Me₂NBH₃] **5** was prepared by treatment of Me₂HN-BH₃ **4** with 1.0 equiv of KH in THF at room temperature, according to the method adapted from: R. O. Hutchins, K. Learn, F. El-Telbany, Y. P. Stercho, *J. Org. Chem.* **1984**, 49, 2438.

[4] C. A. Jaska, K. Temple, A. J. Lough, I. Manners Chem. Commun. 2001, 962.

[5] H. Noeth, S. Thomas, *Eur. J. Inorg. Chem.* **1999**, 1373.

[6] a) R. Ahlrichs, M. Bär, H.-P. Baron, R. Bauernschmitt, S. Böcker, M. Ehrig, K. Eichkorn, S. Elliott, F. Furche, F. Haase, M. Häser, C. Hättig, H. Horn, C. Huber, U. Huniar, M. Kattannek, A. Köhn, C. Kölmel, M. Kollwitz, K. May, C. Ochsenfeld, H. Öhm, A. Schäfer, U. Schneider, O. Treutler, K. Tsereteli, B. Unterreiner, M. von

Arnim, F. Weigend, P. Weis, H. Weiss, *Turbomole Version 5*, January 2002.
Theoretical Chemistry Group, University of Karlsruhe; b) O. Treutler, R. Ahlrichs, *J. Chem. Phys.* 1995, *102*, 346; c) Turbomole basisset library, Turbomole Version 5, see a); d) A. Schäfer, H. Horn, R. Ahlrichs, *J. Chem. Phys.* 1992, *97*, 2571; e) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* 1990, *77*, 123; f) A. Schäfer, C. Huber, R. Ahlrichs, *J. Chem. Phys.* 1994, *100*, 5829.

[7] a) PQS version 2.4, **2001**, Parallel Quantum Solutions, Fayetteville, Arkansas, USA (the Baker optimizer is available separately from PQS upon request); b) J. Baker *J. Comput. Chem.* **1986**, *7*, 385.

[8] a) A. D. Becke *Phys. Rev. A* **1988**, *38*, 3098; b) J. P. Perdew *Phys. Rev. B* **1986**, *33*, 8822.

[9] Lead reference for calculation of g-tensor (Zeeman interactions) parameters: E. van Lenthe, A. van der Avoird, P. E. S Wormer, *J. Chem. Phys.* **1997**, *107*, 2488. Lead reference for calculation of A-tensor (Nuclear magnetic dipole hyperfine interactions) parameters: E. van Lenthe, A. van der Avoird, P. E. S. Wormer, *J. Chem. Phys.* **1998**, *108*, 4783.

[10] Neese, F. et al. *ORCA*, version 2.7, Revision 0, January **2010**; University of Bonn, Theoretical Chemistry.

[11] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.

[12] ADF2006 a) E.J. Baerends, D. E. Ellis, P. Ros, *Chem. Phys.* 1973, 2, 41. b) L.
Versluis, T. Ziegler, *J. Chem. Phys.*, 1988, 88, 322. c) G. te Velde, E. J. Baerends, *J. Comput. Phys.*, 1992, 99, 84. d) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, *Theor. Chem. Acc.*, 1998, 99, 391.

I. Analytical Data

Figure 7. ¹³C NMR spectrum [Ni(trop₂NH(PPh₃)] **3** (75 MHz, [D₈]-THF).

Figure 8. ³¹P NMR spectrum [Ni(trop₂NH(PPh₃)] **3** (101.3 MHz, [D₈]-THF).

Figure 9. ¹H NMR spectrum [Ni(trop₂NH(PPh₃)] **3** (300 MHz, [D₈]-THF).

Figure 10. ¹H NMR spectrum of $[K][(Ni(trop_2NH))_2(H)]$ **8** (700.13 MHz, $[D_8]$ -THF)) in the reaction mixture according to experiment a) in Figure 1.

Figure 11. ¹³C NMR spectrum of $[K][(Ni(trop_2NH))_2(H)]$ 8 (176.1 MHz, $[D_8]$ -THF) in the reaction mixture according to experiment a) in Figure 1. Numbering: a) C_{olefin} , b) C_{bzl} , c) C_{Haromat} , d) C_{quart} , e) C_{quart} (^tBuO), f) see Figure 12.

Figure 12. Section of the ¹H ¹³C HMQC NMR spectrum (700.13 MHz, 298 K, [D8]-THF) of the reaction mixture according to experiment a) in Figure 1. The ¹H resonances 2.61-2.75 ppm show significant cross-peaks to the correlated ¹³C NMR resonances at 38.3-40.3 ppm .The long-range correlation spectrum ¹H ¹³C HMBC NMR spectrum (700.13 MHz, 298 K, [D8]-THF) shows no correlation to quarternary or *C*H aromatic ¹³C resonances. In conclusion, both ¹H ¹³C NMR correlation experiments give rise to exclude the ¹³C signals between 38.8-40.3 ppm and ¹H resonances in range of 2.61-2.75 ppm from corresponding to partially hydrogenated trop-units.

Figure 13. ¹H NMR spectrum of [K][Ni(trop₂NH)(H)] **9** (700.13 MHz, $[D_8]$ -THF)) in the reaction mixture according to experiment c) in Figure 1.

Figure 14. ¹³C NMR spectrum of $[K][Ni(trop_2NH)(H)]$ **9** (176.1 MHz, $[D_8]$ -THF)) in the reaction mixture according to experiment c) in Figure 1.

Figure 15: ¹¹B{¹H}NMR spectrum (96.3 MHz, [D₈]-THF) of the *in situ* performed stoichiometric reaction (ii) of '**Scheme 3.** Different reaction pathways of $[Ni^{I}(trop_{2}NH)(OOCCF_{3})]$ **2** to Ni^{0} complexes **3**, **8**, and **9** in the presence of amine borane **4** and amido borane **5**.

Traces of compound 7 are observed at 1.8 ppm (BH_2) and the corresponding resonance of BH_3 is overlapped by the signal of Me₂HN-BH₃. Traces of BH(NMe₂)₂ at 28.4 and Me₂N=BH₂ at 37.4 ppm are also observed

Figure 16: ¹¹B NMR spectrum (96.3 MHz, $[D_8]$ -THF) of the *in situ* performed stoichiometric reaction (ii) of **Scheme 3**. Different reaction pathways of $[Ni^{I}(trop_2NH)(OOCCF_3)]$ **2** to Ni⁰ complexes **3**, **8**, and **9** in the presence of amine borane **4** and amido borane **5**'.

Traces of BH(NMe₂)₂ at 28.4 ppm (${}^{1}J_{BH} = 137$ Hz) are observed.

Figure 17. ¹¹B{¹H}NMR spectrum (96.3 MHz, $[D_8]$ -THF) of the *in situ* performed stoichiometric reaction (iii) of '**Scheme 3.** Different reaction pathways of $[Ni^{I}(trop_2NH)(OOCCF_3)]$ **2** to Ni⁰ complexes **3**, **8**, and **9** in the presence of amine borane **4** and amido borane **5**'.

Traces of compound 7 are observed at 1.8 ppm (BH_2) and the corresponding resonance of BH_3 is overlapped by the signal of Me₂HN-BH₃. Traces of BH(NMe₂)₂ at 28.4 and Me₂N=BH₂ at 37.4 ppm are also observed.

Figure 17. Cyclic voltamogramm of $[Ni(trop_2NH(OOCCF_3)]$ **2**, at 253 K, in THF, 1 M TBAPF₆ (TBA = tetra butyl ammonium) as supporting electrolyte, scan rate 100 mV/s, referenced to Fc/Fc⁺. On-set potential -1.99 V; peak potential -2.42 V.

Figure 18. Cyclic voltammogram of [Ni(trop₂NH(PPh₃)] **3**, at 298 K, in THF, 1 M TBAPF₆ as supporting electrolyte, scan rate 100 mV/s, referenced to Fc/Fc⁺ $E_{1/2} = -1.28$ V.