Ru-catalyzed Activation of sp³ C–O Bonds: *O*- to *N*-Alkyl Migratory Rearrangement in Pyridines and Related Heterocycles

Charles S. Yeung, Tom H. H. Hsieh, and Vy M. Dong*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada

vdong@chem.utoronto.ca

Table of Contents:

1. General considerations	S 1
2. Experimental procedures	S5
3. Analytical data	S7
4. References	S61
5. NMR spectra for new compounds	S63

1. General considerations

Commercial reagents were purchased from Sigma-Aldrich, Strem, Alfa Aesar, or Oakwood and used without further purification. All solvents were purchased from Caledon, ACP, or Fisher. Toluene was passed through two columns of activated alumina and degassed by three freeze-pump-thaw cycles prior to storage in the glovebox. Dioxane was distilled from CaH₂. Syntheses of starting materials were conducted under N₂ or Ar unless otherwise stated. All catalytic reactions were conducted in a nitrogen-filled glovebox (Grade 5.0). Reactions were monitored by thin-layer chromatography (TLC) on EMD Silica Gel 60 F_{254} plates under UV light (254 μ m) or gas chromatography (GC) on an Agilent 6890N Network

GC instrument equipped with a flame-ionization detector (FID) and HP-5 column (30 m length, 0.32 mm inner diameter, 0.25 μ m film thickness). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

¹H, ²D, ¹³C{¹H}, and ¹⁹F NMR spectra were recorded on a Varian Mercury 300, Varian Mercury 400, VRX-S (Unity) 400, or Bruker AV-III 400 spectrometer at ambient temperature. All NMR spectra are referenced to TMS or the residual solvent signal. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration. Data for ¹³C{¹H} NMR are reported as follows: chemical shift (δ ppm). Data for ¹⁹F NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration.

Mass spectra (MS) were recorded on a Sciex Qstar Mass Spectrometer. High resolution mass spectra (HRMS) were recorded on a micromass 70S-250 spectrometer (EI) or an ABI/Sciex Qstar Mass Spectrometer (ESI). Infrared (IR) spectra were obtained on a Perkin-Elmer Spectrum 1000 FT-IR Systems. Melting point ranges were determined on a Gallenkamp melting point apparatus (uncorrected). Column chromatography was carried out on Silicycle Silica-P Flash Silica Gel (40-63 μ m). Preparative layer chromatography was performed on EMD Silica Gel 60 F₂₅₄ plates (254 μ m).

All starting materials were synthesized from 2-chloropyridine, 2-chloropyrimidine, or 3,6-dichloropyridazine and the corresponding alcohols according to literature procedures.^{1,2} Starting materials **1a**,^{1,3} **1b**,¹ **e**-**f**,¹ **1g**-**h**,⁴ **1i**,^{4,5} **1j**,⁶ **1l**,^{1,3} **1m**,^{1,6} **1o**,¹ **1r**,⁷ **1w**,⁸ **1t**,¹ **1z**,⁶ **1aa**,¹ **1gg**,¹ **1mm**,⁹ **3d**,¹⁰ **3g**,¹⁰ **5b**,¹ **5c**,¹ and **5d**¹ are known compounds and were identified by NMR comparison to reported data. 3-(Benzyloxy)-2-chloropyridine is commercially available. Products **2a-b**,¹ **2e-f**,¹ **2l**,¹ **2m**,^{1,11} **2r**,¹ **2t**,¹ **2v**,¹² **2z**,¹ **4a**,¹³ **6a**,¹⁴ **6d**,¹ and **6f**¹⁵ are known compounds.

1g

CI

Me

1w

1f

Me

С

1u

Me

1q

OBn

1v

N

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

1gg

OBn

CI

CI

|| N

CI

Ν

1mm

CI

3f

CI

ОМе

Ň N

OTBS

2. Experimental procedures

General procedure A: Catalytic O- to N-alkyl migration of 2-(benzyloxy)pyridine (1a)

In a one-dram vial equipped with a Teflon-coated cap was combined [Ru(*p*-cymene)Cl₂]₂ (6.1 mg, 0.01 mmol, 5 mol%) and PPh₃ (10.5 mg, 0.04 mmol, 20 mol%). The vial was brought into the glovebox and the catalyst was subsequently dissolved in toluene (2 mL). The suspension was allowed to stir until complete dissolution of the [Ru(*p*-cymene)Cl₂]₂ (~15 min.). In a separate one-dram vial equipped with a Teflon-coated cap was charged with 2-benzyloxypyridine (**1a**) (37.0 mg, 0.2 mmol) and also brought into the glovebox. The catalyst solution was transferred to the vial containing the substrate by pipette and K₂CO₃ was added (30.4 mg, 0.22 mmol, 1.1 eq.). The resulting mixture was brought outside of the glovebox and stirred on a heating block at 80 °C for 24 h. After cooling to ambient temperature, ¹H-NMR analysis was conducted following concentration of an aliquot of the reaction mixture in vacuo. The target product **2a** was afforded quantitatively. The resulting mixture was passed through a pad of Celite, concentrated *in vacuo*, and purified by preparatory TLC (eluent: CH₂Cl₂/MeOH = 98:2, v/v) to afford 1-benzylpyridin-2(1H)-one (**2a**) as a thick yellow oil (33.7 mg, 91%).

Stoichiometric studies: O- to N-alkyl migration of 3-(benzyloxy)-6-chloropyridazine (3a)

In a one-dram vial equipped with a Teflon-coated cap was combined [Ru(p-cymene)Cl₂]₂ (12.3 mg, 0.02 mmol, 0.5 eq.) and PPh₃ (21.0 mg, 0.08 mmol, 2 eq.). The vial was brought into the glovebox and the catalyst was subsequently dissolved in benzene- d_6 (3 mL). The suspension was allowed to stir for ~15 min. In a separate one-dram vial equipped with a Teflon-coated cap was charged with 3-(benzyloxy)-6-chloropyridazine (3a) (8.7 mg, 0.04 mmol) and also brought into the glovebox. The catalyst solution was transferred to the vial containing the substrate by pipette and K₂CO₃ was added (12.8 mg, 0.09 mmol, 2.3 eq.). The resulting mixture was stirred on a heating block in the glovebox at 65 °C for 24 h and then at 75 °C for an additional 24 h. The reaction was periodically $^{1}\mathrm{H}$ NMR monitored by and spectroscopy complete conversion to 2-benzyl-6-chloropyridazin-3(2H)-one (4a) was observed. Diagnostic characterization data for Ru(**3a**): ¹H NMR (400 MHz, benzene- d_6) δ 4.86 (d, J = 6.2 Hz, 1H), 4.76 (d, J = 6.2 Hz, 1H). Diagnostic characterization data for Ru(4a): ¹H NMR (400 MHz, benzene- d_6) δ 4.81 (d, J = 6.0 Hz, 1H), 4.70 (d, J = 5.5 Hz, 1H). Identification of Ru(**3a**) was confirmed by stirring substrate **3a** with $[Ru(p-cymene)Cl_2]_2$ (0.5 eq.) and PPh₃ (2 eq.) in benzene-d₆ for 5 min at ambient temperature.

3. Analytical data

Starting materials

2-(Benzyloxy)pyridine (1a): Prepared by a known procedure.² To a 100 mL round-bottom flask equipped with a Dean-Stark apparatus was charged finely ground KOH (3.42 g, 61 mmol) and toluene (37 mL). To this suspension was added 2-chloropyridine (2.88 mL, 30.5 mmol), benzyl alcohol (1.91 mL, 18.5 mmol), and subsequently 18-crown-6 (24.4 mg, 0.9 mmol). The resulting mixture was heated to reflux over 2 h. The solution was diluted with 25 mL EtOAc, washed with 10 mL H₂O, then 10 mL brine. The organic fraction was dried over Na₂SO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (94%). Colorless oil. All spectral data are in agreement with reported literature data.^{1, 3 1}H NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 1.4Hz, *J* = 5.1Hz, 1H), 7.57 (ddd, *J* = 2.0Hz, *J* = 7.1Hz, *J* = 8.5Hz, 1H), 7.46 (d, *J* = 7.3Hz, 1H), 7.37 (t, *J* = 7.3Hz, 1H), 7.31 (t, *J* = 7.2Hz, 1H), 6.87 (ddd, *J* = 0.8Hz, *J* = 5.1Hz, *J* = 7.0Hz, 1H), 6.80 (d, *J* = 8.4Hz, 1H), 5.38 (s, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 163.8, 147.0, 138.7, 137.5, 128.6, 128.1, 127.9, 117.0, 111.5, 67.6.

2-((4-Methylbenzyl)oxy)pyridine (1b): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (673 mg, 6.0 mmol) and dioxane. To this supension was added 4-methylbenzyl alcohol (514 mg, 4.2 mmol) and 2-chloropyridine (380 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in*

vacuo and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (60%). Pale yellow oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, *J* = 4.9Hz, 1H), 7.57 (dd, *J* = 8.3 and 7.1Hz, 1H), 7.36 (d, *J* = 7.9Hz, 2H), 7.19 (d, *J* = 7.9Hz, 2H), 6.88 (dd, *J* = 7.1 and 5.1Hz, 1H), 6.79 (d, *J* = 8.4Hz, 1H), 5.34 (s, 2H), 2.36 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.7, 146.8, 138.5, 137.5, 134.3, 129.1, 128.1, 116.8, 111.3, 67.4, 21.2. IR (neat) 2921, 1592, 1569, 1473, 1432, 1363, 1284, 1142, 987, 778 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found: 199.0994.

2-((4-(*tert*-Butyl)benzyl)oxy)pyridine (1c): Prepared from in two steps 4-*tert*-butylbenzaldehyde.^{1, 16} To a 100 mL round-bottom flask was charged 4-tert-butylbenzaldehyde (2.51 mL, 15 mmol) and MeOH (30 mL). The solution was cooled to 0 °C in an ice bath. Subsequently, NaBH₄ (624.2 mg, 16.5 mmol) was added portionwise. The reaction vessel was allowed to warm to room temperature over 3 h, upon which volatiles were removed in vacuo. The residue was redissolved in 50 mL EtOAc and 50 mL HCl and the layers were separated. The aqueous phase was extracted with 2 x 25 mL EtOAc. The combined organic extracts were washed with 25 mL sat'd NaHCO₃, dried over MgSO₄, filtered, and concentrated in vacuo to give the crude (4-(tert-butyl)phenyl)methanol (2.4742 g, 14.2 mmol, 95%). All spectral data are in agreement with reported literature data.^{17, 18} ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.3Hz, 2H), 7.31 (d, J = 8.3Hz, 2H), 4.67 (s, 2H), 1.33 (s, 9H). The crude material was added to a suspension of potassium *tert*-butoxide (1.7527 g, 15.6 mmol) and dioxane (40 mL) in a 100 mL round-bottom flask. Subsequently, 2-chloropyridine (1.41 mL, 14.9 mmol) was added and the reaction mixture was heated to reflux over 16 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (84%). White solid; m.p. 48-49 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 2.0Hz, J = 5.0Hz, 1H), 7.54 (ddd, J = 2.0Hz, J = 7.2Hz, J = 8.9Hz, 1H), 7.40 (s, 4H), 6.85 (ddd, J = 0.6Hz, J = 5.1Hz, J = 6.8Hz, 1H), 6.79 (d, J = 8.4Hz, 1H), 5.35 (s, 2H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 150.9, 146.9, 138.7, 134.4, 128.1, 125.5, 116.9, 111.5, 67.6, 34.7, 31.5. IR (neat) 3058, 2957, 2907, 2966, 1604, 1590, 1567, 1472, 1429, 1365, 1313, 1271, 1254, 983, 815, 778 cm⁻¹. MS (EI) *m/z* 226 (M–Me), 241 (M); HRMS (EI) *m/z* calc'd for C₁₆H₁₉NO [M]⁺: 241.1467; found: 241.1471.

2-([1,1'-Biphenyl]-4-ylmethoxy)pyridine (1d): Prepared in two steps from 4-biphenylcarboxaldehyde.^{1, 16} To a 100 mL round-bottom flask was charged 4-biphenylcarboxaldehyde (2.7333 mL, 15 mmol) and MeOH (30 mL). The solution was cooled to 0 °C in an ice bath. Subsequently, NaBH₄ (624.2 mg, 16.5 mmol) was added portionwise. The reaction vessel was allowed to warm to room temperature over 3 h, upon which volatiles were removed in vacuo. The residue was redissolved in 50 mL EtOAc and 50 mL HCl and the layers were separated. The aqueous phase was extracted with 2 x 25 mL EtOAc. The combined organic extracts were washed with 25 mL sat'd NaHCO₃, dried over MgSO₄, filtered, and concentrated *in vacuo* to give the crude [1,1'-biphenyl]-4-ylmethanol (2.6350 g, 14.3 mmol, 95%). All spectral data are in agreement with reported literature data.¹⁹ ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, J = 7.1Hz, 4H), 7.45 (d, J = 7.4Hz, 4H), 7.36 (d, J = 6.5Hz, 1H), 4.75 (s, 2H). A portion of the crude material (2.0902 g, 11.3 mmol) was added to a suspension of potassium *tert*-butoxide (1.3948 g, 12.4 mmol) and dioxane (25 mL) in a 100 mL round-bottom flask. Subsequently, 2-chloropyridine (1.07 mL, 11.3 mmol) was added and the reaction mixture was heated to reflux over 18 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo and the resulting residue was purified by column chromatography (eluent:

hexane/EtOAc = 98:2, v/v) to afford the title compound (98%). White solid; m.p. 50-51 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 1.9Hz, J = 5.0Hz, 1H), 7.63-7.50 (m, 7H), 7.42 (t, J = 7.6Hz, 2H), 7.33 (t, J = 7.3Hz, 1H), 6.89-6.84 (m, 1H), 6.81 (d, J = 8.3Hz, 1H), 5.42 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 147.0, 141.0, 140.9, 138.7, 136.5, 128.9, 128.6, 127.4, 127.4, 127.2, 117.1, 111.5, 67.4. IR (neat) 3056, 3026, 2934, 1593, 1568, 1471, 1432, 1304, 1271, 1252, 1007, 823, 780, 759, 736, 697 cm⁻¹. MS (EI) *m/z* 261 (M); HRMS (EI) *m/z* calc'd for C₁₈H₁₅NO [M]⁺: 261.1154; found: 261.1157.

2-(3-Chlorobenzyloxy)pyridine (1e): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 12.0 mmol) and dioxane (24 mL). To this supension was added 3-chlorobenzyl alcohol (1.28 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 18 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (92%). Pale yellow oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 1.5Hz, *J* = 5.0Hz, 1H), 7.59 (m, 1H), 7.46 (s, 1H), 7.34-7.31 (m, 1H), 7.29-7.27 (m, 2H), 6.89 (ddd, *J* = 0.7Hz, *J* = 5.1Hz, *J* = 7.0Hz, 1H), 6.82 (d, *J* = 8.4Hz, 1H), 5.36 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.4, 147.0, 139.7, 138.9, 134.5, 129.8, 128.0, 125.9, 117.3, 111.4, 66.7.

2-((4-Chlorobenzyl)oxy)pyridine (1f): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (673 mg, 6.0 mmol) and dioxane. To this

supension was added 4-chlorobenzyl alcohol (603 mg, 4.2 mmol) and 2-chloropyridine (380 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (61%). Pale yellow oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, *J* = 5.1Hz, 1H), 7.59 (dd, *J* = 8.4 and 7.1Hz, 1H), 7.40 (d, *J* = 8.6Hz, 2H), 7.34 (d, *J* = 8.6Hz, 2H), 6.89 (dd, *J* = 7.1 and 5.1Hz, 1H), 6.80 (d, *J* = 8.4Hz, 1H), 5.35 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.3, 146.8, 138.7, 135.9, 133.5, 129.2, 128.6, 117.0, 111.2, 66.6. IR (neat) 3002, 1598, 1570, 1473, 1432, 1311, 1270, 1142, 1087, 988, 809, 778 cm⁻¹. MS (EI) *m*/*z* 219 (M); HRMS (ESI) *m*/*z* calc'd for C₁₂H₁₁CINO [M+H, ³⁵CI]⁺: 220.0523; found: 220.0525.

2-((4-Fluorobenzyl)oxy)pyridine (1g): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 12.0 mmol) and dioxane (24 mL). To this supension was added 4-fluorobenzyl alcohol (1.18 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 24 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 98:2, v/v) to afford the title compound (91%). Clear oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 1.8Hz, *J* = 4.5Hz, 1H), 7.64-7.59 (m, 1H), 7.47 (dd, *J* = 5.5Hz, *J* = 8.7Hz, 2H), 7.09 (t, *J* = 8.7Hz, 2H), 6.92 (dd, *J* = 5.1Hz, *J* = 7.0Hz, 1H), 6.83 (d, *J* = 8.3Hz, 1H), 5.38 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.73 (d, *J* = 18.9Hz), 161.38, 146.98, 138.79, 133.37 (d, *J* = 3.4Hz), 129.95 (d, *J* = 8.1Hz), 117.14, 115.44 (d, *J* = 21.5Hz), 111.44, 66.90. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.65. IR (neat)

3056, 1592, 1570, 1511, 1474, 1433, 1285, 1271, 1223, 1157, 1143, 989, 822, 779 cm⁻¹. MS (ESI) *m/z* 204 (M+H); HRMS (ESI) *m/z* calc'd for C₁₂H₁₁NOF [M+H]⁺: 204.0819; found: 204.0822.

2-((2-Bromobenzyl)oxy)pyridine (1h): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.7841 g, 15.9 mmol), 2-bromobenzyl alcohol (2.9652 g, 15.9 mmol) and dioxane (24 mL). To this supension was added 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 15 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (99%). Pale yellow oil. All spectral data are in agreement with reported literature data.⁴ ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 1.5Hz, *J* = 4.8Hz, 1H), 7.59 (t, *J* = 8.4Hz, 2H), 7.53 (d, *J* = 7.6Hz, 1H), 7.31 (t, *J* = 7.4Hz, 1H), 7.17 (t, *J* = 7.5Hz, 1H), 6.92-6.87 (m, 1H), 6.84 (d, *J* = 8.3Hz, 1H), 5.46 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 147.1, 138.8, 136.9, 132.8, 129.5, 129.3, 127.5, 123.1, 117.3, 111.3, 67.2.

2-((4-Bromobenzyl)oxy)pyridine (1i): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.7841 g, 15.9 mmol), 4-bromobenzyl alcohol (2.9652 g, 15.9 mmol) and dioxane (24 mL). To this supension was added 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 17 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried

over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (91%). White solid. All spectral data are in agreement with reported literature data.^{4, 5 1}H NMR (400 MHz, CDCl₃) δ 8.15 (dd, J = 1.8Hz, J = 5.0Hz, 1H), δ 7.59-7.53 (m, 1H), 7.48 (d, J = 8.3Hz, 2H), 7.32 (d, J = 8.3Hz, 2H), 6.89-6.83 (m, 1H), 6.79 (d, J = 8.3Hz, 1H), 5.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 146.9, 138.8, 136.6, 131.6, 129.7, 121.8, 117.2, 111.4, 66.7.

2-(4-(Trifluoromethyl)benzyloxy)pyridine (1j): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 12.0 mmol) and dioxane (24 mL). To this supension was added 4-trifluoromethylbenzyl alcohol (1.49 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 21 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 98:2, v/v) to afford the title compound (76%). White solid. All spectral data are in agreement with reported literature data.⁶ ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, *J* = 1.6Hz, *J* = 5.3Hz, 1H), 7.64-7.56 (m, 5H), 6.91 (ddd, *J* = 0.9Hz, *J* = 5.1Hz, *J* = 7.1Hz, 2H), 6.84 (d, *J* = 8.4Hz, 2H), 5.45 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.4, 147.0, 141.8, 138.9, 130.1 (q, *J* = 32.3Hz), 127.9, 125.5 (q, *J* = 3.8Hz), 124.3 (dd, *J* = 272.0Hz, *J* = 543.9Hz), 117.4, 111.4, 66.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.6.

Methyl 4-((pyridin-2-yloxy)methyl)benzoate (1k): Prepared in two steps from 4-formylbenzoate.^{1, 16} To a 100 mL round-bottom flask was charged 4-formylbenzoate (2.4624 g, 15 mmol) and MeOH (30 mL). The solution was cooled to 0 °C in an ice bath. Subsequently, NaBH₄ (624.2 mg, 16.5 mmol) was added portionwise. The reaction vessel was allowed to warm to room temperature over 1 h, upon which volatiles were removed in vacuo. The residue was redissolved in 50 mL EtOAc and 50 mL HCl and the layers were separated. The aqueous phase was extracted with 2 x 25 mL EtOAc. The combined organic extracts were washed with 25 mL sat'd NaHCO₃, dried over MgSO₄, filtered, and concentrated in vacuo to give the crude methyl 4-(hydroxymethyl)benzoate (2.4742 g, 14.9 mmol, 99%). All spectral data are in agreement with reported literature data.^{17, 20} ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 8.03 \text{ (d, } J = 8.2\text{Hz}, 2\text{H}), 7.43 \text{ (d, } J = 8.1\text{Hz}, 2\text{H}), 4.77 \text{ (s, } 2\text{H}), 3.92 \text{ (s, } 3.92$ 3H). The crude material was added to a suspension of potassium *tert*-butoxide (1.8391 g, 16.4 mmol) and dioxane (40 mL) in a 100 mL round-bottom flask. Subsequently, 2-chloropyridine (1.41 mL, 14.9 mmol) was added and the reaction mixture was heated to reflux over 19 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo and the resulting residue was purified by column chromatography to afford the title compound (25%). White solid; m.p. 43-44 °C. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.16 (dd, J = 1.5\text{Hz}, J = 5.0\text{Hz}, 1\text{H}), 8.04 (d, J = 8.3\text{Hz}, 2\text{H}), 7.59 (ddd, J = 1.5\text{Hz}, 1.5\text{Hz}, 1.5\text{Hz}), 7.59 (ddd, J = 1.5\text{Hz}, 1.5\text{Hz}), 7.59 (ddd, J = 1.5\text{Hz}), 7.59 (ddd, J$ J = 2.0Hz, J = 7.2Hz, J = 9.0Hz, 1H), 7.52 (d, J = 8.2Hz, 2H), 6.89 (dd, J = 5.1Hz, 7.0Hz, 1H), 6.83 (d, J = 8.4Hz, 1H), 5.44 (s, 2H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 163.4, 147.0, 142.9, 138.9, 129.6, 127.4, 117.3, 111.4, 66.8, 52.2. IR (neat) 2951, 2916, 1711, 1596, 1568, 1474, 1432, 1411, 1277, 1115, 1046, 839, 785, 755 cm⁻¹. MS (ESI) m/z 244 (M+H); HRMS (ESI) m/z calc'd for C₁₄H₁₄NO₃ [M+H]⁺: 244.0968; found: 244.0968.

0 .OMe

2-(3-Methoxybenzyloxy)pyridine (11): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 12.0 mmol) and dioxane (24 mL). To this supension was added 3-methoxybenzyl alcohol (1.35 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 14.5 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (96%). Colorless oil. All spectral data are in agreement with reported literature data.^{1 1}H NMR (400 MHz, CDCl₃) δ 8.17 (dd, *J* = 1.3Hz, *J* = 5.0Hz, 1H), 7.57 (ddd, *J* = 2.0Hz, *J* = 7.1Hz, *J* = 8.5Hz, 1H), 7.28 (t, *J* = 7.9Hz, 1H), 7.04 (d, *J* = 9.8Hz, 2H), 6.89-6.84 (m, 2H), 6.81 (d, *J* = 8.3Hz, 1H), 5.36 (s, 2H), 3.81 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 163.7, 159.9, 147.0, 139.1, 138.7, 129.6, 120.2, 117.1, 113.5, 111.4, 67.5, 55.3.

2-(4-Methoxybenzyloxy)pyridine (1m): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 12.0 mmol) and dioxane (24 mL). To this supension was added 4-methoxybenzyl alcohol (1.36 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 14 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (91%). White solid. All spectral data are in agreement with reported literature data.^{1, 6 1}H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.54 (t, *J* = 7.7Hz, 1H), 7.40 (dd, *J* = 2.4Hz, *J* = 8.5Hz, 2H), 6.90 (d, *J* = 6.9Hz, 2H), 6.85 (dd, *J* = 5.6Hz, *J* = 6.6Hz, 1H), 6.77 (d, *J* = 8.4Hz, 1H), 5.31 (d, *J* = 5.5Hz, 2H), 3.79 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.8, 159.5, 146.9, 138.7, 129.9, 129.6, 116.9, 114.0, 111.4, 67.4, 55.4.

2-((3-(Benzyloxy)benzyl)oxy)pyridine (1n): Prepared in two steps from 3-benzyloxybenzaldehyde.^{1, 16} To a 100 mL round-bottom flask was charged 3-benzyloxybenzaldehyde (2.1225 g, 10 mmol) and MeOH (25 mL). The solution was cooled to 0 °C in an ice bath. Subsequently, NaBH₄ (416.1 mg, 11 mmol) was added portionwise. The reaction vessel was allowed to warm to room temperature over 12 h, upon which volatiles were removed in vacuo. The residue was redissolved in 50 mL EtOAc and 50 mL HCl and the layers were separated. The aqueous phase was extracted with 2 x 25 mL EtOAc. The combined organic extracts were washed with 25 mL sat'd NaHCO₃, dried over MgSO₄, filtered, and concentrated *in vacuo* to give the crude (3-(benzyloxy)phenyl)methanol (2.1059 g, 9.8 mmol, 98%). ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.27 (m, 6H), 7.02 (s, 1H), 6.96 (d, J = 7.6Hz, 1H), 6.91 (dd, J = 2.4Hz, J = 8.2Hz, 1H), 5.08 (s, 2H), 4.68 (s, 2H). The crude material (2.1059 g, 9.8 mmol) was added to a suspension of potassium tert-butoxide (1.2343 g, 11.0 mmol) and dioxane (25 mL) in a 100 mL round-bottom flask. Subsequently, 2-chloropyridine (946.2 μ L, 10 mmol) was added and the reaction mixture was heated to reflux over 22.5 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H_2O . The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 98:2, v/v) to afford the title compound (99%). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (ddd, J = 0.6Hz, J = 1.9Hz, J =5.1Hz, 1H), 7.59 (ddd, J = 2.0Hz, J = 7.1Hz, J = 8.4Hz, 1H), 7.45 (dd, J = 0.9Hz, J = 1.0Hz, J =8.3Hz, 2H), 7.40 (t, J = 7.3Hz, 2H), 7.36-7.27 (m, 2H), 7.13 (s, 1H), 7.07 (d, J = 7.6Hz, 1H), 6.94 (dd, J = 2.2Hz, J = 8.0Hz, 1H), 6.89 (ddd, J = 0.9Hz, J = 5.1Hz, J = 7.1Hz, 1H), 6.83(d, J = 8.4Hz, 1H), 5.38 (s, 2H), 5.09 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 159.1, 147.0, 139.1, 138.7, 137.1, 129.6, 128.7, 128.1, 127.6, 120.5, 117.1, 114.4, 114.3, 111.4, 70.1, 67.4. IR (neat) 3031, 1595, 1569, 1473, 1431, 1311, 1267, 1285, 1156, 989, 779, 736,

696 cm⁻¹. MS (ESI) m/z 292 (M+H); HRMS (ESI) m/z calc'd for C₁₉H₁₈NO₂ [M+H]⁺: 292.1332; found: 292.1342.

2-(Benzyloxy)-3-methylpyridine (10): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (693 mg, 6.2 mmol) and dioxane. To this supension was added benzyl alcohol (435 μ L, 4.2 mmol) and 2-chloro-3-picoline (435 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (86%). Pale yellow oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 5.0Hz, 1H), 7.47 (d, *J* = 7.4Hz, 2H), 7.43-7.35 (m, 3H), 7.31 (t, *J* = 7.3Hz, 1H), 6.81 (dd, *J* = 7.1 and 5.0Hz, 1H), 5.42 (s, 2H), 2.25 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 161.9, 143.9, 138.5, 137.8, 128.3, 127.5, 127.4, 120.9, 116.8, 67.2, 15.9. IR (neat) 3029, 1593, 1421, 1446, 1360, 1304, 1253, 1186, 1114, 991, 784, 732, 696 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found: 199.0995.

2-((4-Chlorobenzyl)oxy)-3-methylpyridine (1p): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (677 mg, 6.0 mmol) and dioxane. To this supension was added 4-chlorobenzyl alcohol (599 mg, 4.2 mmol) and 2-chloro-3-picoline (435 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over

MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (88%). Pale yellow solid; m.p. 35-36 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 5.0Hz, 1H), 7.43-7.38 (m, 3H), 7.34 (d, *J* = 8.5Hz, 2H), 6.81 (dd, *J* = 7.1 and 5.0Hz, 1H), 5.38 (s, 2H), 2.23 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.6, 143.9, 138.6, 136.4, 133.3, 128.8, 128.5 120.8, 116.9, 66.4, 15.8. IR (neat) 3051, 1589, 1428, 1355, 1303, 1253, 1188, 1115, 1092, 996, 880, 802, 776 cm⁻¹. MS (EI) *m/z* 233 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₂CINO [M, ³⁵Cl]⁺: 233.0607; found: 233.0608.

2-((4-Methoxybenzyl)oxy)-3-methylpyridine (1q): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (673 mg, 6.0 mmol) and dioxane. To this supension was added 4-methoxybenzyl alcohol (525 μ L, 4.2 mmol) and 2-chloro-3-picoline (435 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (87%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 5.0Hz, 1H), 7.44-7.36 (m, 3H), 6.91 (d, *J* = 8.7Hz, 2H), 6.79 (dd, *J* = 7.1 and 5.0Hz, 1H), 5.34 (s, 2H), 3.82 (s, 3H), 2.21 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.0, 159.1, 143.9, 138.4, 129.9, 129.2, 120.9, 116.7, 113.7, 67.0, 55.2, 15.9. IR (neat) 2951, 1593, 1513, 1447, 1360, 1302, 1244, 1173, 1114, 1034, 989, 820, 785 cm⁻¹. MS (EI) *m/z* 229 (M); HRMS (ESI) *m/z* calc'd for C₁₄H₁₅NO₂Na [M+Na]⁺: 252.0995; found: 252.1007.

2-(Benzyloxy)-4-methylpyridine (1r): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (494 mg, 4.4 mmol) and dioxane. To this supension was added benzyl alcohol (435 μ L, 4.2 mmol) and 2-chloro-4-methylpyridine (445 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (96%). Pale yellow oil. All spectral data are in agreement with reported literature data.⁷ ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 5.2Hz, 1H), 7.47 (d, *J* = 7.0Hz, 2H), 7.38 (t, *J* = 7.3Hz, 2H), 7.32 (t, *J* = 7.2Hz, 1H), 6.72 (d, *J* = 5.2Hz, 1H), 6.65 (s, 1H), 5.39 (s, 2H), 2.30 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 163.9, 149.9, 146.3, 137.5, 128.4, 127.8, 127.7, 118.5, 111.3, 67.4, 20.9. IR (neat) 3030, 1611, 1561, 1480, 1414, 1356, 1315, 1244, 1157, 1027, 991, 812, 733, 696 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found: 199.1001.

Me N O

2-((4-Chlorobenzyl)oxy)-4-methylpyridine (1s): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (493 mg, 4.4 mmol) and dioxane. To this supension was added 4-chlorobenzyl alcohol (598 mg, 4.2 mmol) and 2-chloro-4-methylpyridine (445 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with

CI

3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (97%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 5.2Hz, 1H), 7.38 (d, *J* = 8.7Hz, 2H), 7.33 (d, *J* = 8.6Hz, 2H), 6.72 (d, *J* = 5.2Hz, 1H), 6.62 (s, 1H), 5.34 (s, 2H), 2.30 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.7, 150.0, 146.3, 136.0, 133.4, 129.2, 128.5, 118.6, 111.3, 66.5, 20.9. IR (neat) 2920, 1612, 1561, 1491, 1445, 1399, 1354, 1316, 1244, 1157, 1087, 1033, 1015, 992, 809 cm⁻¹. MS (EI) *m/z* 233 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₂CINO [M, ³⁵Cl]⁺: 233.0607; found: 233.0610.

2-(Benzyloxy)-5-methylpyridine (1t): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (496 mg, 4.4 mmol) and dioxane. To this supension was added benzyl alcohol (435 μ L, 4.2 mmol) and 2-chloro-5-methylpyridine (435 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (94%). Pale yellow oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.47 (d, *J* = 7.1Hz, 2H), 7.43-7.35 (m, 3H), 7.32 (t, *J* = 7.3Hz, 1H), 6.74 (d, *J* = 8.4Hz, 1H), 5.37 (s, 2H), 2.26 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.9, 146.2, 139.7, 137.5, 128.4, 127.8, 127.7, 125.8, 110.6, 67.4, 17.4. IR (neat) 2926, 1608, 1573, 1485, 1453, 1387, 1358, 1281, 1253, 1127, 1024, 822, 739, 696 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found 199.1000.

2-(Benzyloxy)-6-methylpyridine (1u): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (673 mg, 6.0 mmol) and dioxane. To this supension was added benzyl alcohol (435 μ L, 4.2 mmol) and 2-chloro-6-methylpyridine (435 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (83%). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, *J* = 7.8Hz, 3H), 7.38 (t, *J* = 7.3Hz, 2H), 7.32 (d, *J* = 7.2Hz, 1H), 6.73 (d, *J* = 7.2Hz, 1H), 6.59 (d, *J* = 8.2Hz, 1H), 5.37 (s, 2H), 2.46 (s, 3H). ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 163.1, 156.1, 138.8, 137.6, 128.4, 128.1, 127.7, 115.8, 107.6, 67.3, 24.1. IR (neat) 3032, 1598, 1575, 1447, 1302, 1256, 1231, 1027, 789, 729, 696 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found: 199.0997.

2,3-Bis(benzyloxy)pyridine (1v): Prepared in two steps from 2-chloro-3-pyridinol.^{1,21} To a 125 mL Erlenmeyer flask was charged 2-chloro-3-pyridinol (712.5 mg, 5.5 mmol), potassium carbonate (836.2 mg, 6.1 mmol) and *N*,*N*-dimethylformamide (12 mL). Subsequently, benzyl bromide (654.1 μ L, 5.5 mmol) was added and the reaction mixture was allowed to stir at room temperature for 6.5 h. The suspension was diluted with 100 mL EtOAc and washed with 3 x 25 mL H₂O. The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*, and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 90:10) to give 3-(benzyloxy)-2-chloropyridine (**1kk**) as a clear oil (1.1007).

g, 5.0 mmol, 91%). All spectral data are in agreement with reported literature data.²² ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 1.5Hz, J = 4.6Hz, 1H), 7.44 (d, J = 7.4Hz, 2H), 7.39 (t, J= 7.3Hz, 2H), 7.34 (t, J = 7.0Hz, 1H), 7.22 (dd, J = 1.5Hz, J = 8.1Hz, 1H), 7.15 (dd, J = 7.0Hz, 1H), 7.1 4.6Hz, J = 8.1Hz, 1H), 5.17 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 141.5, 141.0, 135.7, 128.9, 128.4, 127.2, 123.2, 121.1, 70.1. IR (neat) 3056, 3036, 1566, 1445, 1419, 1379, 1293, 1209, 1087, 1062, 1022, 797, 726, 706, 690 cm⁻¹. MS (EI) *m/z* 219 (M); HRMS (EI) C₁₂H₁₀NOCl $[M]^+$: 219.0451; m/zcalc'd for found: 219.0454. 3-(Benzyloxy)-2-chloropyridine (1.081 g, 4.9 mmol) was added to a suspension of potassium tert-butoxide (604.8 mg, 5.4 mmol) and dioxane (25 mL) in a 100 mL round-bottom flask. Subsequently, benzyl alcohol (507.6 µL, 4.9 mmol) was added and the reaction mixture was heated to reflux over 27.5 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography to afford the title compound (96%). Off-white solid; m.p. 47-48 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 1.5Hz, J = 5.0Hz, 1H), 7.50 (d, J= 7.4Hz, 2H), 7.40 (d, J = 7.3Hz, 2H), 7.38-7.32 (m, 4H), 7.29 (t, J = 7.1Hz, 2H), 7.06 (dd, J= 1.5Hz, J = 7.8Hz, 1H), 6.76 (dd, J = 5.0Hz, J = 7.7Hz, 1H), 5.50 (s, 2H), 5.14 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 143.3, 138.0, 137.7, 136.8, 128.7, 128.5, 128.1, 127.9, 127.7, 127.3, 121.3, 117.1, 71.2, 67.6. IR (neat) 3062, 2936, 1592, 1574, 1461, 1449, 1367, 1267, 1253, 1239, 1190, 1122, 975, 786, 743, 692 cm⁻¹. MS (ESI) *m/z* 292 (M+H), 314 (M+Na); HRMS (ESI) m/z calc'd for C₁₉H₁₈NO₂ [M+H]⁺: 292.1332; found: 292.1345.

2-(Benzyloxy)-5-chloropyridine (1w): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged 2,5-dichloropyridine (0.99 g, 6.7 mmol), potassium *tert*-butoxide (827.0 mg, 7.4 mmol) and dioxane (15 mL). To this supension was added benzyl alcohol (694.0 μ L, 6.7 mmol). The resulting mixture was heated to reflux over 13 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer

was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography to afford the title compound (95%).White solid; m.p. 44-45 °C. All spectral data are in agreement with reported literature data.⁸ ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 2.5Hz, 1H), 7.52 (dd, *J* = 2.5Hz, *J* = 8.8Hz, 1H), 7.44 (d, *J* = 7.4Hz, 2H), 7.37 (t, *J* = 7.3Hz, 2H), 7.31 (t, *J* = 7.1Hz, 1H), 6.75 (d, *J* = 8.8Hz, 1H), 5.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 145.2, 138.7, 137.1, 128.6, 128.14, 128.11, 124.4, 112.4, 68.2. IR (neat) 3037, 2941, 1591, 1563, 1473, 1451, 1347, 1278, 1242, 1126, 1000, 825, 740, 703, 688 cm⁻¹. MS (ESI) *m/z* 220 (M+H); HRMS (ESI) *m/z* calc'd for C₁₂H₁₁NOCl [M+H]⁺: 220.0523; found: 220.0521.

2-Chloro-6-((4-methoxybenzyl)oxy)pyridine (1x): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (670 mg, 6.0 mmol) and dioxane. To this supension was added 4-methoxybenzyl alcohol (525 μ L, 4.2 mmol) and 2,6-dichloropyridine (591 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (49%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, *J* = 7.5Hz, *J* = 8.1Hz, 1H), 7.41 (d, *J* = 8.7Hz, 2H), 6.95-6.88 (m, 3H), 6.68 (dd, *J* = 0.6Hz, *J* = 8.2Hz, 1H), 5.30 (s, 2H), 3.82 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.3, 159.5, 148.2, 140.6, 130.1, 128.6, 116.3, 113.9, 109.4, 68.1, 55.2. IR (neat) 2958, 1587, 1559, 1514, 1439, 1366, 1295, 1247, 1159, 1034, 984, 914, 882, 787 cm⁻¹. MS (ESI) *m/z* 272 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₃H₁₂CINO₂Na [M+Na, ³⁵CI]⁺: 272.0448; found 272.0454.

2-(Benzyloxy)-3-bromopyridine (1y): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged 3-bromo-2-chloropyridine (1.8575 g, 9.7 mmol), potassium *tert*-butoxide (1.1916 g, 10.6 mmol) and dioxane (25 mL). To this supension was added benzyl alcohol (1 mL, 9.7 mmol). The resulting mixture was heated to reflux over 17.5 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 3 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 97.5:2.5, v/v) to afford the title compound (75%). Colorless oil. All spectral data are in agreement with reported literature data.^{23 1}H NMR (400 MHz, CDCl₃) δ 8.09 (dd, *J* = 1.7Hz, *J* = 4.9Hz, 1H), 7.82 (dd, *J* = 1.7Hz, *J* = 7.6Hz, 1H), 7.50 (dd, *J* = 0.5Hz, *J* = 7.4Hz, 2H), 7.38 (t, *J* = 7.3Hz, 2H), 7.31 (t, *J* = 7.3Hz, 1H), 6.78 (dd, *J* = 4.9Hz, *J* = 7.6Hz, 1H), 5.47 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.7, 145.6, 141.9, 137.1, 128.6, 127.9, 127.6, 118.1, 107.5, 68.4. MS (ES) *m/z* 263 (M, ⁷⁹Br), 265 (M, ⁸¹Br); HRMS (ESI) *m/z* calc'd for C₁₂H₁₀BrNO [M, ⁷⁹Br]⁺: 262.9946; found 262.9944.

2-(1-Phenylpropoxy)pyridine (1z): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.7841 g, 15.9 mmol) and dioxane (48 mL). To this supension was added 1-phenylethanol (2.18 mL, 15.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 20.5 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column

chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (99%). White solid. All spectral data are in agreement with reported literature data.⁶ ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 4.4Hz, 1H), 7.48-7.44 (m, 2H), 7.40 (d, *J* = 7.6Hz, 2H), 7.29 (t, *J* = 7.5Hz, 2H), 7.22-7.19 (m, 1H), 6.73 (dd, *J* = 4.9Hz, *J* = 10.5Hz, 2H), 6.00 (t, *J* = 6.6Hz, 1H), 2.03 (qd, *J* = 7.3Hz, *J* = 14.6Hz, 1H), 1.94-1.87 (m, 1H), 0.94 (t, *J* = 7.4Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.5, 147.0, 142.1, 138.6, 128.3, 127.3, 126.6, 116.6, 111.5, 30.2, 10.1.

2-(Naphthalen-2-ylmethoxy)pyridine (1aa): Prepared in two steps from 2-naphthaldehyde.^{1, 16} To a 100 mL round-bottom flask was charged 2-naphthaldehyde (935 mg, 6 mmol) and MeOH (15 mL). The solution was cooled to 0 °C in an ice bath. Subsequently, NaBH₄ (249.7 mg, 6.6 mmol) was added portionwise. The reaction vessel was allowed to warm to room temperature over 3 h, upon which volatiles were removed in vacuo. The residue was redissolved in 50 mL EtOAc and 50 mL HCl and the layers were separated. The aqueous phase was extracted with 2×25 mL EtOAc. The combined organic extracts were washed with 25 mL sat'd NaHCO₃, dried over MgSO₄, filtered, and concentrated in vacuo to give the crude naphthalen-2-ylmethanol (920 mg, 5.8 mmol, 97%). All spectral data are in agreement with reported literature data.^{17, 24} ¹H NMR (300 MHz, CDCl₃) δ 7.87-7.82 (m, 4H), 7.50-7.47 (m, 3H), 4.87 (s, 2H). The crude material was added to a suspension of potassium tert-butoxide (715.9 mg, 6.4 mmol) and dioxane (15 mL) in a 50 mL round-bottom flask. Subsequently, 2-chloropyridine (550.2 μ L, 5.8 mmol) was added and the reaction mixture was heated to reflux over 23 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 98:2, v/v) to afford the title compound (89%). White solid. All spectral data are in agreement with reported literature data.¹¹H NMR (400 MHz, CDCl₃) & 8.27-8.26 (m, 1H), 7.98 (s, 1H), 7.90

(d, J = 6.8Hz, 2H), 7.62 (dd, J = 8.4Hz, J = 15.7Hz, 2H), 7.52 (dd, J = 3.0Hz, J = 5.2Hz, 2H), 6.91 (t, J = 6.9Hz, 2H), 5.62 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.7, 146.9, 138.7, 134.9, 133.4, 133.1, 128.2, 128.0, 127.8, 126.8, 126.2, 126.0, 125.9, 117.0, 111.4, 67.7.

2-(Naphthalen-1-ylmethoxy)pyridine (1bb): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (673 mg, 6.0 mmol) and dioxane. To this supension was added 1-naphthalenemethanol (667 mg, 4.2 mmol) and 2-chloropyridine (380 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (74%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, *J* = 5.1Hz, 1H), 8.15-8.07 (m, 1H), 7.94-7.82 (m, 2H), 7.67 (d, *J* = 6.9Hz, 1H), 7.64-7.45 (m, 4H), 6.92 (dd, *J* = 7.0 and 5.2Hz, 1H), 6.82 (d, *J* = 8.3Hz, 1H), 5.83 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.6, 146.8, 138.6, 133.7, 132.8, 131.8, 128.8, 128.6, 126.9, 126.3, 125.8, 125.3, 123.9, 117.0, 111.4, 65.9. IR (neat) 3050, 1593, 1569, 1467, 1430, 1308, 1284, 1142, 1059, 988, 774 cm⁻¹. MS (EI) *m/z* 235 (M); HRMS (ESI) *m/z* calc'd for C₁₆H₁₄NO [M+H]⁺: 236.1069; found: 236.1081.

2-(Furan-2-ylmethoxy)pyridine (1cc): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 10.9 mmol) and dioxane (24 mL). To this supension was added furfuryl alcohol (942 μ L, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 20 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer

was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 92:8, v/v) to afford the title compound (89%). Orange oil. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, *J* = 1.8Hz, *J* = 5.0Hz, 1H), 7.56 (ddd, *J* = 2.0Hz, *J* = 7.1Hz, *J* = 8.5Hz, 1H), 7.44 (dd, *J* = 0.7Hz, *J* = 1.8Hz, 1H), 6.88 (ddd, *J* = 0.8Hz, *J* = 5.1Hz, *J* = 7.1Hz, 1H), 6.78 (d, *J* = 8.4Hz, 1H), 6.45 (d, *J* = 3.1Hz, 1H), 6.37 (dd, *J* = 1.9Hz, *J* = 3.2Hz, 1H), 5.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 150.9, 146.8, 143.1, 138.8, 117.2, 111.5, 110.6, 110.1, 59.7. IR (neat) 2939, 1598, 1570, 1472, 1431, 1310, 1284, 1269, 1248, 1150, 988, 919, 779, 737 cm⁻¹. MS (ESI) *m/z* 176 (M+H); HRMS (ESI) *m/z* calc'd for C₁₀H₁₀NO₂ [M+H]⁺: 176.0706; found: 176.0170.

5-Chloro-2-(furan-2-ylmethoxy)pyridine (1dd): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged 2,5-dichloropyridine (0.99 g, 6.7 mmol), potassium *tert*-butoxide (827.0 mg, 7.4 mmol) and dioxane (15 mL). To this supension was added furfuryl alcohol (582.7 µL, 6.7 mmol). The resulting mixture was heated to reflux over 15 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 98:2, v/v) to afford the title compound (90%). Orange solid; m.p. 33-34 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 2.5Hz, 1H), 7.52 (dd, *J* = 2.5Hz, *J* = 8.8Hz, 1H), 7.44 (s, 1H), 6.73 (d, *J* = 8.8Hz, 1H), 6.44 (d, *J* = 3.1Hz, 1H), 6.37 (s, 1H), 5.30 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 150.5, 145.1, 143.3, 138.8, 124.6, 112.4, 110.6, 110.4, 60.1. IR (neat) 3087, 1591, 1566, 1471, 1344, 1277, 1245, 1224, 1151, 1110, 974, 921, 822, 812, 731 cm⁻¹. MS (EI) *m/z* 209 (M, ³⁵Cl), 211 (M, ³⁷Cl); HRMS (EI) *m/z* calc'd for C₁₀H₈NO₂Cl [M, ³⁵Cl]⁺: 209.0244; found: 209.0240.

2-(Benzofuran-2-ylmethoxy)pyridine (1ee): Prepared in from two steps 2-benzofurancarboxaldehyde.^{1, 16} To a 100 mL round-bottom flask was charged 2-benzofurancarboxaldehyde (1.0 mL, 8.2 mmol) and EtOH (20 mL). The solution was cooled to 0 °C in an ice bath. Subsequently, NaBH₄ (365 mg, 9.6 mmol) was added portionwise. The solution was stirred for 3 min at 0 °C and then guenched with 20 mL water. The aqueous phase was extracted with 3 x 20 mL CH₂Cl₂ and the combined organic extracts were washed with 25 mL brine, dried over MgSO₄, filtered, and concentrated *in vacuo* to give the crude benzofuran-2-ylmethanol (1.2 g, 8.1 mmol, 98%). All spectral data are in agreement with reported literature data.²⁵ MS (EI) m/z 148 (M). To a vial with a Teflon cap was charged potassium *tert*-butoxide (1.03 g, 9.4 mmol) and dioxane. To this supension was added the crude benzofuran-2-ylmethanol (1.2 g, 8.1 mmol) and 2-chloropyridine (595 µL, 6.3 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO4, concentrated in vacuo and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1to 80:20, v/v) to afford the title compound (80%). Pale yellow oil. ¹H NMR (300 MHz, $CDCl_3$) δ 8.19 (d, J = 5.1Hz, 1H), 7.63-7.54 (m, 2H), 7.49 (d, J = 8.0Hz, 1H), 7.29 (t, J =7.3Hz, 1H), 7.22 (t, J = 7.4Hz, 1H), 6.91 (dd, J = 7.1 and 5.1Hz, 1H), 6.85-6.80 (m, 2H), 5.50 (s, 2H). ${}^{13}C{}^{1}H{}$ NMR (75 MHz, CDCl₃) δ 162.9, 155.1, 153.4, 146.7, 138.7, 128.1, 124.4, 122.7, 121.1, 117.2, 111.4, 111.3, 106.3, 60.0. IR (neat) 3057, 1599, 1570, 1471, 1453, 1431, 1308, 1269, 1182, 1142, 1041, 988, 943, 877, 810, 778, 751 cm⁻¹. MS (EI) *m/z* 225 (M); HRMS (EI) m/z calc'd for C₁₄H₁₁NO₂ [M]⁺: 225.0790; found: 225.0796.

2-(Benzo[d][1,3]dioxol-5-ylmethoxy)pyridine (1ff): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 12.0 mmol), piperonyl alcohol (1.6584 g, 10.9 mmol) and dioxane (24 mL). To this supension was added 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 15 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (96%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 1.4Hz, *J* = 5.0Hz, 1H), 7.60 (ddd, *J* = 2.0Hz, *J* = 7.2Hz, *J* = 9.0Hz, 1H), 7.01 (d, *J* = 1.2Hz, 1H), 6.97 (d, *J* = 7.9Hz, 1H), 6.93-6.90 (m, 1H), 6.85-6.81 (m, 2H), 5.99 (s, 2H), 5.31 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.7, 147.9, 147.4, 146.9, 138.7, 131.3, 121.9, 117.0, 111.5, 109.0, 108.3, 101.2, 67.6. IR (neat) 2885, 1597, 1567, 1491, 1474, 1445, 1431, 1247, 1039, 987, 931, 779 cm⁻¹. MS (ESI) *m/z* 230 (M+H), 252 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₃H₁₂NO₃ [M+H]⁺: 230.0811; found: 230.0817.

2-Phenethoxypyridine (1gg): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 10.9 mmol) and dioxane (24 mL). To this supension was added 2-phenylethanol (1.31 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 16 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 98:2, v/v) to afford the title compound (59%). Pale yellow oil. All spectral data are in agreement with reported literature data.^{1 1}H NMR (400 MHz, CDCl₃) δ 8.18 (ddd, J = 0.7Hz, J = 2.0Hz, J = 5.0Hz, 1H), 7.58 (ddd, J = 2.0Hz, J = 7.1Hz, J = 8.4Hz, 1H), 7.36-7.31 (m, 4H), 7.25 (m, 1H), 6.88 (ddd, J = 0.9Hz, J = 5.1Hz, J = 7.1Hz, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.1, 138.6, 129.2, 128.5, 126.5, 116.8, 111.3, 66.5, 35.7.

2-(3-Phenylpropoxy)pyridine (1hh): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 10.9 mmol) and dioxane (24 mL). To this supension was added 3-phenyl-1-propanol (1.47 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 14.5 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 98:2, v/v) to afford the title compound (94%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 1.9Hz, *J* = 5.0Hz, 1H), 7.60 (ddd, *J* = 2.0Hz, *J* = 7.1Hz, *J* = 8.4Hz, 1H), 7.34-7.21 (m, 8H), 6.88 (ddd, *J* = 0.9Hz, *J* = 5.1Hz, *J* = 6.5Hz, *J* = 14.1Hz, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 147.1, 141.9, 138.6, 128.6, 128.5, 126.0, 116.7, 111.2, 65.3, 32.5, 30.9. IR (neat) 3025, 2948, 1595, 1570, 1477, 1467, 1432, 1311, 1286, 1270, 1021, 779, 737, 699 cm⁻¹. MS (ESI) *m/z* 214 (M+H); HRMS (ESI) *m/z* calc'd for C₁₄H₁₆NO [M+H]⁺: 214.1226; found: 214.1231.

2-(2-((*tert***-Butyldimethylsilyl)oxy)ethoxy)pyridine (1ii):** Prepared in two steps from ethylene glycol.^{1, 26} A solution of *tert*-butyldimethylsilyl chloride (1.53 g, 10 mmol) in CH₂Cl₂ (6 mL) was added to a stirring solution of ethylene glycol (5.6 mL, 100 mmol) and pyridine (8.1 mL, 100 mmol) in CH₂Cl₂ (14 mL). The resulting pale yellow solution was stirred at ambient temperature for 16 h and then concentrated *in vacuo*. The residue was extracted with 4 x 20 mL hexanes. The combined organic layers were washed with 20 mL

water, 20 mL brine, dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 90:10 to 70:30, v/v) to afford 2-((*tert*-butyldimethylsilyl)oxy)ethanol (1mm) as a clear oil (1.11 g, 6.3 mmol, 63%). All spectral data are in agreement with reported literature data.⁹ ¹H NMR (400 MHz, $CDCl_3$) δ 3.74-3.69 (m, 2H), 3.67-3.61 (m, 2H), 2.04 (t, J = 6.2Hz, 1H), 0.91 (s, 9H), 0.09 (s, 6H). To a vial with a Teflon cap was charged potassium *tert*-butoxide (125 mg, 1.1 mmol) and dioxane. To this supension was added the 2-((tert-butyldimethylsilyl)oxy)ethanol (188 mg, 1.1 mmol) and 2-chloropyridine (95 μ L, 1.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H₂O. The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (52%). Clear oil. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 1.4Hz, J = 5.0Hz, 1H), 7.54 (tdd, J = 1.7Hz, J = 6.9Hz, 1H), 6.83 (ddd, J = 0.8Hz, J = 5.1Hz, J = 7.0Hz, 1H), 6.74 (d, J = 8.4Hz, 1H), 4.37 (t, J = 5.2Hz, 2H), 3.96 (t, J = 5.2Hz, 2H), 0.89 (s, 9H), 0.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.7, 146.8, 138.4, 116.6, 111.2, 67.0, 61.9, 25.9, 18.4, -5.2. IR (neat) 2929, 2857, 1585, 1489, 1460, 1400, 1308, 1187, 1140, 1085, 1010, 847, 799, 713 cm⁻¹. MS (ESI) *m/z* 254 (M+H); HRMS (ESI) *m/z* calc'd for C₁₃H₂₄NO₂Si [M+H]⁺: 254.1570; found: 254.1562.

2-(2-(Vinyloxy)ethoxy)pyridine (1jj): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (493 mg, 4.4 mmol) and dioxane. To this supension was added ethylene glycol vinyl ether (380 μ L, 4.2 mmol) and 2-chloropyridine (380 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (96%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.13 (dd,

J = 1.4Hz, J = 5.0Hz, 1H), 7.56 (ddd, J = 2.0Hz, J = 7.1Hz, J = 8.6Hz, 1H), 6.86 (ddd, J = 0.8Hz, J = 5.1Hz, J = 7.0Hz, 1H), 6.78 (d, J = 8.4Hz, 1H), 6.53 (dd, J = 6.8Hz, J = 14.4Hz, 1H), 4.56 (t, J = 4.7Hz, 2H), 4.23 (dd, J = 2.2Hz, J = 14.3Hz, 1H), 4.07-4.00 (m, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.3, 151.7, 146.6, 138.6, 116.9, 111.3, 86.8, 66.3, 63.9. IR (neat) 2937, 1596, 1571, 1474, 1432, 1311, 1287, 1198, 1059, 980, 819, 779, 737 cm⁻¹. MS (ESI) *m*/*z* 166 (M+H); HRMS (ESI) *m*/*z* calc'd for C₉H₁₂NO₂ [M+H]⁺: 166.0862; found: 166.0865.

2-(2-(Phenylthio)ethoxy)pyridine (1kk): Prepared by a known procedure.¹ To a 100 mL round-bottom flask was charged potassium *tert*-butoxide (1.3454 g, 10.9 mmol) and dioxane (24 mL). To this supension was added 2-phenylthioethanol (1.47 mL, 10.9 mmol) and 2-chloropyridine (1 mL, 10.9 mmol). The resulting mixture was heated to reflux over 13 h. The solution was diluted with 25 mL EtOAc and washed with 25 mL H₂O. The aqueous layer was extracted with 2 x 25 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 95:5, v/v) to afford the title compound (42%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, *J* = 1.8Hz, *J* = 5.0Hz, 1H), 7.57-7.52 (m, 1H), 7.43 (dd, *J* = 0.9Hz, *J* = 8.3Hz, 2H), 7.28 (t, *J* = 7.7Hz, 2H), 7.18 (t, *J* = 7.4Hz, 1H), 6.85 (dd, *J* = 5.1Hz, *J* = 7.0Hz, 1H), 6.70 (d, *J* = 8.4Hz, 1H), 4.50 (t, *J* = 7.0Hz, 2H), 3.31 (t, *J* = 7.0Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 146.9, 138.8, 136.0, 129.5, 120.1, 126.3, 117.1, 111.3, 64.4, 32.6. IR (neat) 3057, 1593, 1570, 1474, 1431, 1286, 1269, 1004, 778, 737, 691 cm⁻¹. MS (ESI) *m/z* 232 (M+H), 254 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₃H₁₄NOS [M+H]⁺: 232.0790; found: 232.0796.

3-(Benzyloxy)-6-chloropyridazine (3a): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (4.06 g, 36.1 mmol) and dioxane. To this supension was added benzyl alcohol (3.40 mL, 32.8 mmol) and 3,6-dichloropyridazine (5.0 g, 33.5 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (76%). White solid; m.p. 69-70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0Hz, 2H), 7.43-7.34 (m, 4H), 7.00 (d, *J* = 9.1Hz, 1H), 5.54 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.9, 151.1, 135.8, 130.8, 128.5, 128.4, 128.3, 120.1, 69.5. IR (neat) 3046, 1587, 1498, 1420, 1375, 1313, 1142, 1017, 843, 730, 698 cm⁻¹. MS (ESI) *m/z* 221 (M+H); HRMS (ESI) *m/z* calc'd for C₁₁H₉ClN₂O [M+H, ³⁵Cl]⁺: 221.0476; found: 221.0472.

(**3a**-*d*₂): Prepared in two steps from methyl benzoate.²⁷ To a round-bottom flask was charged methyl benzoate (0.25 mL, 2 mmol) and Et₂O (20 mL). The solution was cooled to -5 °C in an ice bath. Subsequently, LiAlD₄ (96 mg, 2.28 mmol) was added. The reaction vessel was stirred for 10 min and allowed to warm to room temperature for 30 min. The suspension was cooled to -5 °C and quenched with 10% sat'd NH₄Cl and the layers were separated. The aqueous phase was extracted with 2 x 20 mL Et₂O. The combined organic extracts were washed with 20 mL 1M HCl, 20 mL 10% NaHCO₃, 20 mL brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give the crude benzyl alcohol- α , α - d_2 as a pale yellow oil (216 mg, 1.98 mmol, 98%). All spectral data are in agreement with reported literature data.^{28 1}H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 5H). MS (EI) *m/z* 110 (M). The crude material was dissolved in dioxane (1 mL) and added to a homogeneous solution of 3,6-dichloropyridazine in dioxane (4 mL) in a scintillation vial. The reaction vessel was immersed in a room temperature water bath. To this solution was added potassium *tert*-butoxide (445 mg, 3.97

mmol) and stirred for 1 h. The solution was diluted with 5 mL EtOAc and washed with 5 mL H₂O. The aqueous layer was extracted with 3 x 5 mL EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 97.5:2.5 to 96:4, v/v) to afford the title compound (79%). White solid; m.p. 64-65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, *J* = 1.5Hz, *J* = 8.1Hz, 2H), 7.42-7.33 (m, 4H), 7.00 (d, *J* = 9.2Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 151.3, 135.8, 131.0, 128.7, 128.6, 121.8, 120.4, 69.13 (td, *J* = 22.6Hz, *J* = 45.7Hz, 1H). ²D NMR (61 MHz, CDCl₃) δ 5.54 (s, 2D). IR (neat) 3056, 1590, 1425, 1314, 1252, 1189, 1148, 1089, 1074, 1051, 1022, 975, 853 cm⁻¹. MS (EI) *m/z* 222 (M); HRMS (EI) *m/z* calc'd for C₁₁N₂OCIH₇D₂ [M]⁺: 222.0529; found: 222.0523.

Subjecting **3a**-*d*₂ to general procedure A at 90 °C for 8 h gave recovered starting material **3a**/**3a**-*d*₁/**3a**-*d*₂ in 57% (**3a**:**3a**-*d*₁:**3a**-*d*₂ = 0.01 : 0.19 : 0.80, based on ¹H NMR integration; 0.01 : 0.15 : 0.84, based on MS (ESI) integration) and isolated product **4a**/**4a**-*d*₁/**4a**-*d*₂ in 35% (**4a**/**4a**-*d*₁/**4a**-*d*₂ = 0.05 : 0.73 : 0.22, based on ¹H NMR integration; 0.04 : 0.69 : 0.27, based on MS (ESI) integration). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0Hz, 2H), 7.43-7.34 (m, 4H), 7.00 (d, *J* = 9.1Hz, 1H), 5.54 (s, 0.03H, **3a**), 5.52 (m, 0.19H, **3a**-*d*₁). MS (ESI) *m/z* 221 (M+H, **3a**), 222 (M+H, **3a**-*d*₁), 223 (M+H, **3a**-*d*₂).

3-Chloro-6-((**4-chlorobenzyl**)**oxy**)**pyridazine** (**3b**): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (693 mg, 6.2 mmol) and dioxane. To this supension was added 4-chlorobenzyl alcohol (598 mg, 4.2 mmol) and 3,6-dichloropyridazine (598 mg, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (25%). White solid; m.p. 118-119 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.38 (td, *J* = 8.5Hz, *J* = 10.3Hz, 5H), 6.99

(d, J = 9.2Hz, 1H), 5.50 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.8, 151.3, 134.3, 134.2, 130.9, 129.8, 128.7, 120.1, 68.7. IR (neat) 3048, 2933, 1585, 1489, 1400, 1308, 1187, 1140, 1085, 1010, 847, 799, 731 cm⁻¹. MS (ESI) *m/z* 255 (M+H); HRMS (ESI) *m/z* calc'd for C₁₁H₉Cl₂N₂O [M+H, ³⁵Cl]⁺: 255.0086; found: 255.0079.

3-Chloro-6-((4-methoxybenzyl)oxy)pyridazine (3c): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (690 mg, 6.2 mmol) and dioxane. To this supension was added 4-methoxybenzyl alcohol (525 μ L, 4.2 mmol) and 3,6-dichloropyridazine (598 mg, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (33%). White solid; m.p. 100-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.6Hz, 2H), 7.36 (d, *J* = 9.1Hz, 1H), 6.96 (d, *J* = 9.1Hz, 1H), 6.92 (d, *J* = 8.6Hz, 2H), 5.47 (s, 2H), 3.82 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.0, 159.8, 151.0, 130.8, 130.4, 127.9, 120.2, 113.9, 69.4, 55.3. IR (neat) 3016, 1617, 1586, 1516, 1435, 1372, 1299, 1245, 1173, 1147, 1028, 1002, 851, 814, 695 cm⁻¹. MS (ESI) *m/z* 273 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₂H₁₁ClN₂O₂Na [M+Na, ³⁵Cl]⁺: 273.0401; found: 273.0397.

3-(4-((*tert***-Butyldimethylsilyl)oxy)butoxy)-6-chloropyridazine (3d):** Prepared in two steps from butane-1,4-diol.^{1, 26} A solution of *tert*-butyldimethylsilyl chloride (1.53 g, 10 mmol) in CH₂Cl₂ (6 mL) was added to a stirring solution of butane-1,4-diol (4.4 mL, 50 mmol) and pyridine (8.1 mL, 100 mmol) in CH₂Cl₂ (12 mL). The resulting pale yellow solution was

stirred at ambient temperature for 24 h and then concentrated *in vacuo*. The solution was quenched with 20 mL water. The aqueous layer was extracted with 4 x 20 mL hexanes. The combined organic layers were washed with 2 x 25 mL water, dried over MgSO₄, filtered, and concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 90:10 to 70:30. v/v) afford to 4-((tert-butyldimethylsilyl)oxy)butan-1-ol (3h) as a clear oil (1.47 g, 7.2 mmol, 71%). All spectral data are in agreement with reported literature data.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 3.71-3.60 (m, 4H), 2.44 (br s, 1H), 1.71-1.59 (m, 4H), 0.90 (s, 9H), 0.07 (s, 6H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 63.3, 62.8, 30.3, 29.9, 25.9, 18.3, -5.4. To a vial with a Teflon cap was charged potassium *tert*-butoxide (135 mg, 1.2 mmol) and dioxane. To this supension was added the 4-((tert-butyldimethylsilyl)oxy)butan-1-ol (202 mg, 1.0 mmol) and 3,6-dichloropyridazine (225 mg, 1.5 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with 6 mL H_2O . The aqueous layer was extracted with 3 x 6 mL EtOAc. The combined organic layers were washed with 10 mL brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (85%). Clear oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 9.2Hz, 1H), 6.93 (d, J = 9.2Hz, 1H), 4.50 (t, J = 6.6Hz, 2H), 3.67 (t, J = 6.3Hz, 2H), 1.93-1.83 (m, 2H), 1.73-1.63 (m, 2H), 0.89 (s, 9H), 0.05 (s, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 164.4, 150.8, 130.7, 120.1, 67.9, 62.6, 29.2, 25.9, 25.4, 18.3, -5.3. IR (neat) 3056, 2955, 2857, 1587, 1436, 1382, 1310, 1251, 1191, 1087, 1050, 1005, 972, 830, 772, 700 cm⁻¹. MS (ESI) *m/z* 339 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₄H₂₅ClN₂O₂SiNa [M+Na, ³⁵Cl]⁺: 339.1266; found: 339.1270.

3,6-bis(Benzyloxy)pyridazine (3e): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (564 mg, 5.0 mmol) and dioxane. To this supension was added benzyl alcohol (435 μ L, 4.2 mmol) and 3,6-dichloropyridazine (301 mg, 2.0
mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (69%). White solid; m.p. 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.5Hz, 4H), 7.43-7.31 (m, 6H), 7.00 (s, 2H), 5.49 (s, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.7, 136.6, 128.5, 128.3, 128.1, 121.6, 68.9. IR (neat) 3038, 1470, 1439, 1359, 1266, 1094, 1011, 903, 852, 729, 691 cm⁻¹. MS (ESI) *m/z* 293 (M+H); HRMS (ESI) *m/z* calc'd for C₁₈H₁₇N₂O₂ [M+H]⁺: 293.1284; found: 293.1289.

3,6-Bis((**4-chlorobenzyl**)**oxy**)**pyridazine** (**3f**): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (300 mg, 2.7 mmol) and dioxane. To this supension was added 4-chlorobenzyl alcohol (350 mg, 2.5 mmol) and 3-chloro-6-(4-chlorobenzyloxy)pyridazine (**3b**) (500 mg, 2.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (53%). White solid; m.p. 156-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.5Hz, 4H), 7.35 (d, *J* = 8.5Hz, 4H), 6.99 (s, 2H), 5.44 (s, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.5, 135.0, 133.9, 129.6, 128.7, 121.7, 68.0. IR (neat) 3034, 2922, 1489, 1437, 1359, 1267, 1087, 1011, 861, 802, 666 cm⁻¹. MS (ESI) *m/z* 361 (M+H); HRMS (ESI) *m/z* calc'd for C₁₈H₁₅Cl₂N₂O₂ [M+H, ³⁵Cl]⁺: 361.0505; found: 361.0507.

3,6-Bis(3-phenylpropoxy)pyridazine (3g): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (1.01 g, 9.0 mmol) and dioxane. To this supension was added 3-phenylpropanol (1.14 mL, 8.4 mmol) and 3,6-dichloropyridazine (598 mg, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (84%). White solid; m.p. 88-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 4H), 7.20 (dd, *J* = 7.1Hz, *J* = 14.6Hz, 6H), 6.91 (s, 2H), 4.44 (t, *J* = 6.5Hz, 4H), 2.83-2.76 (m, 4H), 2.14 (tt, *J* = 6.5Hz, *J* = 13.1Hz, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.7, 141.5, 128.4, 128.3, 125.9, 121.4, 66.4, 32.2, 30.5. IR (neat) 3028, 2950, 1605, 1496, 1437, 1379, 1264, 1082, 1026, 999, 908, 851, 759, 726, 694 cm⁻¹. MS (ESI) *m/z* 349 (M+H); HRMS (ESI) *m/z* calc'd for C₂₂H₂₅N₂O₂ [M+H]⁺: 349.1910; found: 349.1903.

1-(Benzyloxy)isoquinoline (5a): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (123 mg, 1.1 mmol) and dioxane. To this supension was added benzyl alcohol (109 μ L, 1.1 mmol) and 1-chloroisoquinoline (164 mg, 1.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title

compound (92%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.33 (d, J = 8.3Hz, 1H), 8.03 (d, J = 5.9Hz, 1H), 7.75 (d, J = 8.1Hz, 1H), 7.71-7.61 (m, 1H), 7.60-7.50 (m, 3H), 7.47-7.31 (m, 3H), 7.25 (d, J = 5.6Hz, 1H), 5.61 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 160.3, 139.6, 137.9, 137.4, 130.4, 128.4, 127.8, 127.7, 126.6, 126.0, 124.2, 119.8, 115.1, 67.8. IR (neat) 3056, 1627, 1569, 1498, 1454, 1400, 1325, 1205, 1158, 1091, 967, 812, 741, 696, 673 cm⁻¹. MS (ESI) *m/z* 236 (M+H); HRMS (ESI) *m/z* calc'd for C₁₆H₁₄NO [M+H]⁺: 236.1069; found: 236.1081.

2-Benzyloxyquinoline (5b). Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (134 mg, 1.2 mmol) and dioxane. To this supension was added benzyl alcohol (113 μ L, 1.1 mmol) and 2-chloroquinoline (165 mg, 1.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (95%). Pale yellow oil. All spectral data are in agreement with reported literature data.^{1 1}H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 8.8Hz, 1H), 7.91 (d, J=8.4Hz, 1H), 7.74 (dd, J=1.1Hz, J=8.0Hz, 1H), 7.66 (ddd, J=1.5Hz, J=7.0Hz, J=8.4Hz, 1H), 7.57 (d, J=8.3Hz, 2H), 7.47-7.32 (m, 4H), 6.99 (d, J=8.8Hz, 1H), 5.59 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 161.8, 146.5, 138.8, 137.3, 129.5, 128.4, 128.3, 127.8, 127.4, 127.3, 125.2, 124.0, 113.2, 67.6. IR (neat) 3030, 1604, 1573, 1506, 1475, 1427, 1393, 1309, 1257, 1111, 999, 821, 755, 695 cm⁻¹. MS (ESI) *m/z* 236 (M+H); HRMS (ESI) *m/z* calc'd for C₁₆H₁₄NO [M+H]⁺: 236.1069; found: 236.1077.

2-(Benzyloxy)pyrimidine (5c): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (678 mg, 6.0 mmol) and dioxane. To this supension was added benzyl alcohol (435 μ L, 4.2 mmol) and 2-chloropyrimidine (453 mg, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (34%). Pale yellow oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 4.8Hz, 2H), 7.49 (d, *J* = 6.9Hz, 2H), 7.40-7.28 (m, 3H), 6.94 (t, *J* = 4.8Hz, 1H), 6.45 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 165.0, 159.2, 136.4, 128.3, 127.9, 126.9, 115.1, 68.9. IR (neat) 3034, 1576, 1562, 1418, 1365, 1317, 1005, 808, 736, 697 cm⁻¹. LRMS (EI) *m/z* 186 (M); HRMS (EI) *m/z* calc'd for C₁₁H₁₀N₂O [M]⁺: 186.0793; found: 186.0796.

2-(Benzyloxy)pyrazine (5d): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (250 mg, 2.2 mmol) and dioxane. To this supension was added benzyl alcohol (217 μ L, 2.1 mmol) and 2-chloropyrazine (178 μ L, 2.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (93%). Pale yellow oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 1.3Hz, 1H), 8.14 (d, *J* = 2.8Hz, 1H), 8.10 (dd, *J* = 1.4Hz, *J* = 2.8Hz, 1H), 7.46 (d, *J* = 7.2Hz, 2H), 7.43-7.31 (m, 3H), 5.40 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.0, 140.4, 136.7, 136.3, 136.1, 128.5, 128.1, 128.0, 67.8. IR (neat) 3062, 1580, 1531, 1468, 1412, 1361, 1284, 1192, 1152, 1060, 1005, 837, 735,

697 cm⁻¹. MS (EI) *m/z* 186 (M); HRMS (EI) *m/z* calc'd for C₁₁H₁₀N₂O: 186.0793 (M); found: 186.0789.

2-((Furan-2-ylmethyl)thio)pyridine (5e): Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (680 mg, 6.1 mmol) and dioxane. To this supension was added furfuryl mercaptan (425 μ L, 4.2 mmol) and 2-chloropyridine (380 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (53%). Dark red oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.9Hz, 1H), 7.48 (dt, *J* = 7.6 and 1.9Hz, 1H), 7.33 (d, *J* = 1.9Hz, 1H), 7.18 (d, *J* = 7.9Hz, 1H), 7.00 (dd, *J* = 7.4 and 4.9Hz, 1H), 6.28 (d, *J* = 3.1Hz, 1H), 6.24 (d, *J* = 3.1Hz, 1H), 4.48 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.9, 151.4, 149.4, 141.9, 136.0, 122.3, 119.7, 110.5, 107.6, 26.6. IR (neat) 2963, 1577, 1556, 1453, 1414, 1149, 1122, 1009, 934, 757, 733 cm⁻¹. MS (ESI) *m/z* 192 (M+H); HRMS (ESI) *m/z* calc'd for C₁₀H₁₀NOS [M+H]⁺: 192.0477; found: 192.0480.

2-(Benzyloxy)-1-methyl-1H-benzo[d]imidazole (**5f**). Prepared in two steps from 2-chloroimidazole.^{1, 21} To a flask was charged 2-chloroimidazole (503 mg, 3.3 mmol), potassium carbonate (620 mg, 4.5 mmol) and *N*,*N*-dimethylformamide (12 mL). Subsequently, methyl iodide (225 μ L, 3.6 mmol) was added and the reaction mixture was allowed to stir at room temperature for 5 h. The suspension was diluted with 40 mL H₂O and extracted with 4 x 40 mL EtOAc. The combined organic layers was washed with 5 x 40 mL H₂O and 40 mL brine. The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo* to afford 2-chloro-1-methyl-1H-benzoimidazole (503 mg, 3.0 mmol, 92%). ¹H NMR

(400 MHz, CDCl₃) δ 7.73-7.66 (m, 1H), 7.34-7.27 (m, 3H), 3.79 (s, 3H). MS (EI) *m/z* 166 (M). To a vial with a Teflon cap was charged potassium *tert*-butoxide (145 mg, 1.3 mmol) and dioxane. To this supension was added benzyl alcohol (114 µL, 1.1 mmol) and 2-chloro-1-methyl-1H-benzoimidazole (166 mg, 1.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (53%). Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (dd, *J* = 3.5Hz, *J* = 5.2Hz, 1H), 7.52 (dd, *J* = 1.4Hz, *J* = 7.7Hz, 2H), 7.46-7.34 (m, 3H), 7.24-7.12 (m, 3H), 5.60 (s, 2H), 3.57 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.4, 140.0, 135.7, 134.3, 128.6, 128.5, 128.1, 121.5, 120.9, 117.6, 107.9, 71.6. IR (neat) 3010, 2940, 1622, 1531, 1452, 1360, 1284, 1208, 1123, 996, 739, 699 cm⁻¹. MS (ESI) *m/z* 239 (M+H); HRMS (ESI) *m/z* calc'd for C₁₅H₁₅N₂O [M+H]⁺: 239.1178; found: 239.1177.

2-(Benzyloxy)benzo[d]oxazole (5g). Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (268 mg, 2.4 mmol) and dioxane. To this supension was added benzyl alcohol (226 µL, 2.2 mmol) and 2-chlorobenzoxazole (228 µL, 2.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (71%). White solid; m.p. 47-48 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 7.9Hz, 3H), 7.46-7.32 (m, 4H), 7.26 (t, *J* = 7.6Hz, 1H), 7.19 (t, *J* = 7.7Hz, 1H), 5.58 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.4, 148.5, 141.0, 134.4, 128.9, 128.7, 128.4, 124.2, 122.8, 117.9, 109.7, 73.5. IR (neat) 3055, 2933, 1778, 1630, 1571, 1498, 1448, 1389, 1351, 1322, 1247, 1168, 1110, 1009, 976, 728 cm⁻¹. MS (ESI) *m/z* 226 (M+H); HRMS (ESI) *m/z* calc'd for C₁₄H₁₂NO₂ [M+H]⁺: 226.0862; found: 226.0863.

2-Benzyloxythiazole (5h). Prepared by a known procedure.¹ To a vial with a Teflon cap was charged potassium *tert*-butoxide (496 mg, 4.4 mmol) and dioxane. To this supension was added benzyl alcohol (435 μ L, 4.2 mmol) and 2-bromothiazole (355 μ L, 4.0 mmol). The resulting mixture was heated to reflux overnight. The solution was quenched with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated *in vacuo* and the resulting residue was purified by column chromatography (eluent: hexane/EtOAc = 99:1 to 80:20, v/v) to afford the title compound (81%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.44 (m, 2H), 7.43-7.32 (m, 3H), 7.16 (d, *J* = 3.8Hz, 1H), 6.69 (d, *J* = 3.8Hz, 1H), 5.46 (s, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 174.8, 136.8, 135.5, 128.6, 128.5, 128.2, 111.3, 73.0. IR (neat) 3033, 1519, 1475, 1370, 1307, 1215, 1161, 1060, 952, 863, 696 cm⁻¹. MS (ESI) *m/z* 192 (M+H); HRMS (ESI) *m/z* calc'd for C₁₀H₁₀NOS [M+H]⁺: 192.0477; found: 192.0483.

Migratory rearrangement products

1-Benzylpyridin-2(1H)-one (2a): Prepared from **1a** according to general procedure A (91%). All spectral data are in agreement with reported literature data.¹ Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.17 (m, 7H), 6.52 (d, *J* = 8.9Hz, 1H), 6.05 (dt, *J* = 1.3Hz, *J* = 6.7Hz, 1H), 5.06 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 139.5, 137.3, 136.4, 128.9, 128.2, 128.0, 121.3, 106.3, 51.9.

1-(4-Methylbenzyl)pyridin-2(1H)-one (2b): Prepared from 1b according to general procedure A at 80 °C (76%). Light brown solid; m.p. 63-65 °C. All spectral data are in

agreement with reported literature data.^{1 1}H NMR (300 MHz, CDCl₃) δ 7.37-7.10 (m, 6H), 6.60 (d, *J* = 9.1Hz, 1H), 6.12 (t, *J* = 6.7Hz, 1H), 5.10 (s, 2H), 2.33 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6, 139.2, 137.7, 137.0, 133.3, 129.4, 128.1, 121.0, 106.0, 51.5, 21.0. IR (neat) 3026, 1655, 1586, 1537, 1346, 1141, 1021, 766 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found: 199.1000.

1-(4-(*tert***-Butyl)benzyl)pyridin-2(1H)-one (2c):** Prepared from **1c** according to general procedure A at 90 °C (99%). White solid, m.p. 123-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.1Hz, 2H), 7.32-7.21 (m, 4H), 6.59 (d, J = 9.0Hz, 1H), 6.12 (t, J = 6.5Hz, 1H), 5.10 (s, 2H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 151.0, 139.4, 137.4, 133.4, 128.0, 125.8, 121.2, 106.1, 51.6, 34.6, 31.4. IR (neat) 2961, 1654, 1582, 1537, 1267, 1140, 1023, 839, 767 cm⁻¹. MS (EI) *m/z* 241 (M); HRMS (EI) *m/z* calc'd for C₁₆H₁₉NO [M]⁺: 241.1467; found: 241.1462.

1-([1,1'-Biphenyl]-4-ylmethyl)pyridin-2(1H)-one (2d): Prepared from 1d according to general procedure A at 90 °C (99%). White solid; 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.9Hz, 4H), 7.41 (t, *J* = 7.5Hz, 2H), 7.38-7.26 (m, 5H), 6.61 (d, *J* = 9.0Hz, 1H), 6.13 (t, *J* = 6.6Hz, 1H), 5.16 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 141.0, 140.6, 139.5, 137.3, 135.5, 128.8, 128.6, 127.6, 127.5, 127.1, 121.3, 106.2, 51.7. IR (neat) 2926, 1645, 1586, 1535, 1154, 761, 751, 693 cm⁻¹. MS (EI) *m/z* 261 (M), HRMS (EI) *m/z* calc'd for C₁₈H₁₅NO [M]⁺: 261.1154; found: 261.1161.

1-(3-Chlorobenzyl)pyridin-2(1H)-one (2e): Prepared from **1e** according to general procedure A (95%). All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.23 (m, 1H), 7.20-7.18 (m, 4H), 7.11-7.09 (m, 1H), 6.53 (d, *J* = 8.8Hz, 1H), 6.09 (dt, *J* = 1.4Hz, *J* = 6.7Hz, 1H), 5.02 (s, 2H). ¹³C{¹H} NMR 162.6, 139.7, 138.5, 137.3, 134.8, 130.2, 128.3, 128.1, 126.2, 121.4, 106.5, 51.5.

1-(4-chlorobenzyl)pyridin-2(1H)-one (2f): Prepared from **1f** according to general procedure A at 80 °C (89%). White solid; m.p. 68-70 °C. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.22 (m, 6H), 6.61 (d, J = 6.7Hz, 1H), 6.16 (t, J = 6.7Hz, 1H), 6.10 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.4, 139.5, 137.0, 134.9, 133.8, 129.4, 128.9, 121.3, 106.3, 51.3. IR (neat) 2921, 1646, 1582, 1534, 1490, 1435, 1343, 1244, 1152, 1088, 1016, 860, 802, 763, 734 cm⁻¹. MS (EI) *m/z* 219 (M); HRMS (EI) *m/z* calc'd for C₁₂H₁₀CINO [M]⁺: 219.0451; found: 219.0449.

1-(4-Fluorobenzyl)pyridin-2(1H)-one (2g): Prepared from **1g** according to general procedure A at 90 °C (88%). White solid; m.p. 80-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.24 (m, 4H), 7.02 (t, J = 8.6Hz, 2H). 6.60 (d, J = 9.1Hz, 1H), 6.15 (dt, J = 1.1Hz, J = 6.7Hz, 1H), 5.10 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 162.7, 161.3, 139.6, 137.2, 132.3 (J = 3.0Hz), 115.8 (J = 21.7Hz), 106.4, 51.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.15. IR (neat) 2958, 1653, 1581, 1506, 1435, 1352, 1221, 1151, 1087, 831, 758, 721 cm⁻¹. MS

(ESI) m/z 204 (M+H), 226 (M+Na); HRMS (ESI) m/z calc'd for C₁₂H₁₁FNO [M+H]⁺: 204.0819; found: 204.0825.

1-(2-Bromobenzyl)pyridin-2(1H)-one (2h): Prepared from **1h** according to general procedure A at 120 °C (66%). Off-white solid; m.p. 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 1.1Hz, J = 8.4Hz, 1H), 7.38-7.32 (m, 1H), 7.29 (dd, J = 2.1Hz, J = 6.9Hz, 1H), 7.24 (dd, J = 1.6Hz, J = 7.4Hz, 1H), 7.19-7.14 (m, 2H), 6.63 (d, J = 8.9Hz, 1H), 6.17 (dt, J = 1.4Hz, J = 6.7Hz, 1H), 5.25 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 139.7, 137.5, 135.5, 133.1, 129.9, 129.6, 128.1, 123.6, 121.3, 106.4, 51.9. Peaks from a minor rotamer are also observed. IR (neat) 3068, 2923, 1655, 1582, 1533, 1463, 1438, 1415, 1390, 1347, 1146, 1022, 753 cm⁻¹. MS (EI) *m/z* 263 (M, ⁷⁹Br), 265 (M, ⁸¹Br); HRMS (EI) *m/z* calc'd for C₁₂H₁₀NOBr [M]⁺: 262.9946; found: 262.9951.

1-(4-Bromobenzyl)pyridin-2(1H)-one (2i): Prepared from **1i** according to general procedure A at 100 °C (83%). White solid; m.p. 86-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.4Hz, 1H), 7.32 (ddd, J = 2.1Hz, J = 6.6Hz, J = 9.0Hz, 1H), 7.25 (dd, J = 1.8Hz, J = 6.8Hz, 1H), 7.18 (d, J = 8.4Hz, 2H), 6.60 (d, J = 9.1Hz, 1H), 6.15 (dt, J = 1.3Hz, J = 6.7Hz, 1H), 5.08 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 140.0, 137.2, 135.5, 132.0, 129.9, 122.1, 121.4, 106.5, 51.6. IR (neat) 2923, 1656, 1587, 1487, 1344, 1140, 1010, 845, 770, 760 cm⁻¹. MS (EI) *m/z* 263 (M, ⁷⁹Br), 265 (M, ⁸¹Br); HRMS (EI) *m/z* calc'd for C₁₂H₁₀NOBr [M]⁺: 262.9946; found: 262.9944.

1-(4-(Trifluoromethyl)benzyl)pyridin-2(1H)-one (2j): Prepared from **1j** according to general procedure A at 100 °C (96%). White solid; 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.1Hz, 2H), 7.40 (d, J = 8.1Hz, 2H), 7.34 (ddd, J = 2.0Hz, J = 6.6Hz, J = 8.9Hz, 1H), 7.29 (dd, J = 1.6Hz, J = 6.7Hz, 1H), 6.62 (d, J = 9.1Hz, 1H), 6.18 (dt, J = 1.3Hz, J = 6.7Hz, 1H), 5.19 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 140.5 (d, J = 1.3Hz), 139.8, 137.3, 130.3 (q, J = 32.4Hz), 128.2, 125.9 (q, J = 3.7Hz), 124.1 (q, J = 272.2Hz), 121.5, 106.6, 51.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.7. IR (neat) 2926, 1660, 1587, 1539, 1416, 1322, 1099, 1012, 817, 766, 730 cm⁻¹. MS (ESI) *m/z* 254 (M+H), 276 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₃H₁₁NOF₃ [M+H]⁺: 254.0787; found: 254.0775.

Methyl 4-((2-oxopyridin-1(2H)-yl)methyl)benzoate (2k): Prepared from 1k according to general procedure A at 90 °C (99%). Off-white solid; m.p. 127-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.2Hz, 2H), 7.34 (d, J = 8.2Hz, 3H), 7.29 (d, J = 8.4Hz, 1H), 6.62 (d, J = 9.2Hz, 1H), 6.17 (t, J = 6.6Hz, 1H), 5.19 (s, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 162.6, 141.5, 139.7, 137.3, 130.2, 129.8, 127.8, 121.4, 106.5, 52.2, 51.8. IR (neat) 2956, 1715, 1651, 1580, 1532, 1438, 1278, 1115, 1022, 843, 765, 746, 730 cm⁻¹. MS (ESI) *m*/*z* 244 (M+H), 266 (M+Na); HRMS (ESI) *m*/*z* calc'd for C₁₄H₁₄NO₃ [M+H]⁺: 244.0968; found: 244.0974.

1-(3-Methoxybenzyl)pyridin-2(1H)-one (2l): Prepared from 1l according to general

procedure A at 90 °C (78%).¹ All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.15 (m, 3H), 6.79-6.74 (m, 3H), 6.52 (d, J = 9.1Hz, 1H), 6.05 (dt, J = 1.4Hz, J = 6.7Hz, 1H), 5.03 (s, 2H), 3.69 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.7, 160.1, 139.5, 138.0, 137.3, 130.0, 121.3, 120.4, 113.9, 106.2, 55.3, 51.8.

1-(4-Methoxybenzyl)pyridin-2(1H)-one (2m): Prepared from **1m** according to general procedure A at 90 °C (99%). White solid. All spectral data are in agreement with reported literature data.^{1, 11} ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.24 (m, 4H), 6.86 (d, *J* = 8.7Hz, 2H), 6.58 (d, *J* = 9.1Hz, 1H), 6.11 (dt, *J* = 1.3Hz, *J* = 6.7Hz, 1H), 5.06 (s, 2H), 3.78 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.7, 159.5, 139.3, 137.1, 129.8, 121.2, 114.3, 106.1, 55.3, 51.4.

In a competition experiment, **1m** (0.1 mmol) and **1p** (0.1 mmol) were subjected to general procedure A at 90 °C. No crossover was observed. **2m** was isolated in 99% yield.

1-(3-(Benzyloxy)benzyl)pyridin-2(1H)-one (2n): Prepared from **1n** according to general procedure A at 90 °C (88%). Off-white solid; 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.33 (m, 4H), 7.32-7.27 (m, 1H), 7.25 (d, J = 3.3Hz, 1H), 7.21 (d, J = 5.7Hz, 1H), 6.92-6.85 (m, 3H), 6.59 (d, J = 9.1Hz, 1H), 6.10 (t, J = 6.6Hz, 1H), 5.09 (s, 2H), 5.01 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 159.2, 139.5, 138.0, 137.3, 136.8, 130.0, 128.6, 128.0, 127.6, 121.2, 120.6, 114.7, 114.3, 106.2, 70.0, 51.7. IR (neat) 2922, 1663, 1580, 1531, 1280, 1145, 1021, 849, 783, 761, 727, 700 cm⁻¹. MS (ESI) *m/z* 292 (M+H), 214 (M+Na), 330 (M+K); HRMS (ESI) *m/z* calc'd for C₁₉H₁₈NO₂ [M+H]⁺: 292.1332; found: 292.1339.

1-Benzyl-3-methylpyridin-2(1H)-one (20): Prepared from **10** according to general procedure A at 80 °C (90%). Light brown viscous oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 7.17 (t, *J* = 7.7Hz, 2H), 6.07 (t, *J* = 6.8Hz, 1H), 5.15 (s, 2H), 2.17 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9, 136.6, 136.5, 134.5, 130.1, 128.7, 128.0, 127.8, 105.7, 52.1, 17.3. IR (neat) 2920, 1649, 1594, 1559, 1495, 1454, 1382, 1215, 1082, 865, 760, 703 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO: 199.0997; found: 199.0993.

1-(4-Chlorobenzyl)-3-methylpyridin-2(1H)-one (2p): Prepared from **1p** according to general procedure A at 80 °C (90%). Off-white solid; m.p. 66-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.22 (m, 4H), 7.19 (d, J = 6.7Hz, 1H), 7.16 (d, J = 6.8Hz, 1H), 6.09 (t, J = 6.8Hz, 1H), 5.10 (s, 2H), 2.17 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9, 136.7, 135.1, 134.4, 133.7, 130.3, 129.4, 128.9, 105.9, 51.8, 17.3. IR (neat) 2921, 1651, 1588, 1555, 1486, 1418, 1374, 1227, 1090, 1009, 799, 760 cm⁻¹. MS (EI) *m/z* 233 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₂CINO [M]⁺: 233.0607; found: 233.0605.

In a competition experiment, **1m** (0.1 mmol) and **1p** (0.1 mmol) were subjected to general procedure A at 90 °C. No crossover was observed. **2p** was isolated in 95% yield.

1-(4-Methoxybenzyl)-3-methylpyridin-2(1H)-one (2q): Prepared from 1q according to general procedure A at 80 °C (85%). Light brown viscous oil. ¹H NMR (300 MHz, CDCl₃) δ

7.27 (d, J = 8.6Hz, 2H), 7.16 (d, J = 6.7Hz, 2H), 6.86 (d, J = 8.6Hz, 2H), 6.06 (t, J = 6.7Hz, 1H), 5.08 (s, 2H), 3.78 (s, 3H), 2.17 (s, 3H). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) δ 162.9, 159.2, 136.4, 134.3, 129.9, 129.6, 128.6, 114.1, 105.7, 55.2, 51.6, 17.3. IR (neat) 2936, 1648, 1593, 1558, 1512, 1442, 1382, 1300, 1247, 1176, 1032, 818, 757 cm⁻¹. MS (EI) *m/z* 229 (M); HRMS (EI) *m/z* calc'd for C₁₄H₁₅NO₂ [M]⁺: 229.1103; found: 229.1099.

1-Benzyl-4-methylpyridin-2(1H)-one (2r): Prepared from **1r** according to general procedure A at 80 °C (92%). Pale brown oil. All spectral data are in agreement with reported literature data.¹ ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.23 (m, 5H), 7.15 (d, *J* = 7.0Hz, 1H), 6.42 (s, 1H), 5.99 (dd, *J* = 1.8Hz, *J* = 7.0Hz, 1H), 5.11 (s, 2H), 2.17 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.5, 150.9, 136.5, 136.0, 128.7, 127.9, 127.7, 119.4, 108.7, 51.3, 21.1. IR (neat) 3030, 1660, 1582, 1494, 1454, 1327, 1248, 1179, 1074, 855, 729 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found: 199.0994.

1-(4-Chlorobenzyl)-4-methylpyridin-2(1H)-one (2s): Prepared from **1s** according to general procedure A at 80 °C (94%). Off-white solid; m.p. 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.5Hz, 2H), 7.23 (d, *J* = 8.5Hz, 2H), 7.14 (d, *J* = 7.0Hz, 1H), 6.40 (s, 1H), 6.01 (dd, *J* = 1.8Hz, *J* = 7.0Hz, 1H), 5.07 (s, 2H), 2.17 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.4, 151.1, 135.9, 135.1, 133.7, 129.3, 128.9, 119.5, 108.8, 50.8, 21.1. IR (neat) 2923, 1655, 1588, 1534, 1482, 1433, 1360, 1245, 1174, 1144, 1092, 1014, 973, 848, 771 cm⁻¹. MS (EI) *m/z* 233 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₂CINO [M]⁺: 233.0601.

1-Benzyl-5-methylpyridin-2(1H)-one (2t): Prepared from **1t** according to general procedure A at 100 °C (98%). Off-white solid, m.p. 64-65 °C. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 5H), 7.17 (dd, J = 2.5Hz, J = 9.3Hz, 1H), 7.03 (s, 1H), 6.57 (d, J = 9.3Hz, 1H), 5.12 (s, 2H), 2.02 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.8, 141.9, 136.6, 134.5, 128.7, 127.9, 127.8, 120.8, 115.1, 51.6, 17.0. IR (neat) 3036, 1663, 1583, 1537, 1495, 1429, 1345, 1266, 1207, 1144, 1073, 916, 827, 716, 698 cm⁻¹. MS (EI) *m/z* 199 (M); HRMS (EI) *m/z* calc'd for C₁₃H₁₃NO [M]⁺: 199.0997; found: 199.1001.

1-Benzyl-3-(benzyloxy)pyridin-2(1H)-one (2v): Prepared from **1v** according to general procedure A at 90 °C (99%). Off-white solid. All spectral data are in agreement with reported literature data.¹² ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2Hz, 2H), 7.37-7.24 (m, 8H), 6.88 (d, *J* = 6.6Hz, 1H), 6.61 (d, *J* = 7.1Hz, 1H), 5.97 (t, *J* = 7.1Hz, 1H), 5.15 (s, 2H), 5.10 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 149.0, 136.5, 136.3, 128.8, 128.7, 128.5, 128.3, 127.9, 127.4, 115.5, 104.9, 52.0. IR (neat) 3064, 2922, 1648, 1595, 1452, 1253, 1057, 764, 723, 691 cm⁻¹. MS (ESI) *m/z* 292 (M+H), 214 (M+Na), 330 (M+K); HRMS (ESI) *m/z* calc'd for C₁₉H₁₈NO₂ [M+H]⁺: 292.1332; found: 292.1332.

1-Benzyl-5-chloropyridin-2(1H)-one (2w): Prepared from **1w** according to general procedure A at 110 °C (87%). Off-white solid; m.p. 80-82 °C. ¹H NMR (400 MHz, CDCl₃) δ

7.39-7.22 (m, 7H), 6.58 (d, J = 9.6Hz, 1H), 5.09 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 140.5, 135.8, 134.7, 129.1, 128.44, 128.37, 122.1, 112.5, 52.2. IR (neat) 3050, 1655, 1582, 1529, 1435, 1154, 828, 746, 701, 669 cm⁻¹. MS (EI) *m/z* 219 (M, ³⁵Cl), 221 (M, ³⁷Cl); HRMS (EI) *m/z* calc'd for C₁₂H₁₀NOCl [M, ³⁵Cl]⁺: 219.0451; found: 219.0450.

1-Benzyl-3-bromopyridin-2(1H)-one (2y): Prepared from **1y** according to general procedure A (99%). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 1.9Hz, J = 7.2Hz, 1H), 7.38-7.28 (m, 6H), 6.06 (t, J = 7.0Hz, 1H), 5.18 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.2, 141.5, 136.7, 135.8, 129.1, 128.6, 128.5, 117.1, 106.3, 53.6. IR (neat) 3062, 1647, 1596, 1523, 1455, 1373, 1215, 1117, 1079, 1059, 845, 752, 699 cm⁻¹. MS (EI) *m/z* 263 (M, ⁷⁹Br), 265 (M, ⁸¹Br); HRMS (EI) *m/z* calc'd for C₁₂H₁₀NOBr [M, ⁷⁹Br]⁺: 262.9946; found: 262.9945.

1-(Naphthalen-2-ylmethyl)pyridin-2(1H)-one (2aa): Prepared from **1aa** according to general procedure A (99%). White solid. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 4.6Hz, J = 8.3Hz, 3H), 7.71 (s, 1H), 7.47-7.45 (m, 2H), 7.40 (dd, J = 1.6Hz, J = 8.5Hz, 1H), 7.31-7.25 (m, 3H), 6.62 (d, J = 9.0Hz, 1H), 6.10 (dt, J = 1.3Hz, J = 6.7Hz, 1H), 5.27 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.8, 139.5, 137.3, 134.0, 133.3, 133.0, 128.9, 127.9, 127.8, 127.2, 126.5, 126.3, 125.9, 121.3, 106.3, 51.9.

1-(Naphthalen-1-ylmethyl)pyridin-2(1H)-one (2bb): Prepared from **1bb** according to general procedure A at 90 °C (92%). White solid; m.p. 145-147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 6.7Hz, 1H), 7.92-7.84 (m, 2H), 7.59-7.41 (m, 3H), 7.35 (d, J = 7.0Hz, 1H), 7.31 (t, J = 6.7Hz, 1H), 7.12 (d, J = 7.0Hz, 1H), 6.68 (d, J = 8.8Hz, 1H), 6.05 (t, J = 6.7Hz, 1H), 5.62 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 139.2, 136.3, 133.6, 131.5, 131.3, 129.2, 128.7, 127.6, 127.0, 126.2, 125.3, 123.4, 120.9, 106.2, 48.8. IR (neat) 3064, 1654, 1585, 1536, 1422, 1393, 1253, 1174, 1145, 946, 844, 795, 764 cm⁻¹. MS (ESI) *m/z* 258 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₆H₁₃NONa: 258.0889; found: 258.0884.

1-(Furan-2-ylmethyl)pyridin-2(1H)-one (2cc): Prepared from **1cc** according to general procedure A at 90 °C (99%). Orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 0.8Hz, J = 1.8Hz, 1H), 7.27-7.24 (m, 1H), 7.22-7.20 (m, 1H), 6.49 (d, J = 8.9Hz, 1H), 6.34 (dd, J = 0.5Hz, J = 3.3Hz, 1H), 6.27 (dd, J = 1.9Hz, J = 3.2Hz, 1H), 6.07 (dt, J = 1.4Hz, J = 6.7Hz, 1H), 5.03 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.4, 149.1, 143.1, 139.6, 136.9, 121.1, 110.8, 110.1, 106.1, 44.5. IR (neat) 3126, 1654, 1582, 1538, 1503, 1144, 1010, 762 cm⁻¹. MS (ESI) m/z 176 (M+H), 198 (M+Na); HRMS (ESI) m/z calc'd for C₁₀H₁₀NO₂ [M+H]⁺: 176.0706; found: 176.0707.

5-Chloro-1-(furan-2-ylmethyl)pyridin-2(1H)-one (2dd): Prepared from **1dd** according to general procedure A at 90 °C (95%). Off-white solid; m.p. 76-76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 0.5Hz, J = 1.7Hz, 1H), 7.37 (d, J = 2.8Hz, 1H), 7.25 (dd, J = 2.8Hz, J = 9.7Hz, 1H), 6.54 (d, J = 9.7Hz, 1H), 6.45 (d, J = 3.1Hz, 1H), 6.37 (dd, J = 1.9Hz, J = 3.2Hz, 1H), 5.08 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 148.3, 143.4, 140.6, 134.4, 121.9, 112.4, 110.9, 110.6, 44.7. IR (neat) 2923, 1655, 1582, 1527, 1432, 1257, 1147, 1012,

825, 748, 669 cm⁻¹. MS (EI) m/z 209 (M, ³⁵Cl), 211 (M, ³⁷Cl); HRMS (EI) m/z calc'd for C₁₀H₈NO₂Cl [M, ³⁵Cl]⁺: 209.0244; found: 209.0247.

1-(Benzofuran-2-ylmethyl)pyridin-2(1H)-one (**2ee**): Prepared from **1ee** according to general procedure A at 90 °C (81%). Light green solid; m.p. 85-87 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, *J* = 7.7Hz, 1H), 7.44 (d, *J* = 7.1Hz, 2H), 7.32 (t, *J* = 6.8Hz, 1H), 7.29 (d, *J* = 7.3Hz, 1H), 7.21 (t, *J* = 7.4Hz, 1H), 6.79 (s, 1H), 6.60 (d, *J* = 8.9Hz, 1H), 6.18 (t, *J* = 6.7Hz, 1H), 5.26 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.1, 155.0, 151.6, 139.6, 137.0, 127.9, 124.5, 122.9, 121.2, 121.0, 111.2, 106.5, 106.1, 45.0. IR (neat) 3062, 1653, 1583, 1537, 1455, 1422, 1336, 1245, 1139, 1100, 1010, 930, 847, 812, 737 cm⁻¹. MS (EI) *m/z* 225 (M); HRMS (EI) *m/z* calc'd for C₁₄H₁₁NO₂ [M]⁺: 225.0790; found: 225.0793.

1-(Benzo[d][1,3]dioxol-5-ylmethyl)pyridin-2(1H)-one (2ff): Prepared from **1ff** according to general procedure A at 90 °C (99%). White solid; m.p. 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 2H), 6.82-6.74 (m, 3H), 6.58 (d, *J* = 9.1Hz, 1H), 6.13 (dt, *J* = 1.3Hz, *J* = 6.7Hz, 1H), 5.93 (s, 2H), 5.03 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.7, 148.2, 147.5, 139.4, 137.1, 130.2, 121.9, 121.2, 108.8, 108.4, 106.2, 101.2, 51.7. IR (neat) 2914, 1651, 1577, 1496, 1448, 1243, 1037, 925, 758, 728 cm⁻¹. MS (ESI) *m/z* 230 (M+H), 252 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₃H₁₂NO₃ [M+H]⁺: 230.0811; found: 230.0817.

1-Phenethylpyridin-2(1H)-one (2gg): Prepared from 1gg according to general procedure A

at 120 °C (64%). White solid, m.p. 95-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.20 (m, 4H), 7.15 (d, J = 6.8Hz, 2H), 6.89 (dd, J = 1.8Hz, J = 6.7Hz, 1H), 6.58 (d, J = 9.1Hz, 1H), 5.98 (dt, J = 1.3Hz, J = 6.7Hz, 1H), 4.14 (t, J = 7.1Hz, 2H), 3.06 (t, J = 7.1Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 139.6, 138.1, 138.0, 129.1, 128.7, 126.8, 121.1, 105.5, 52.1, 35.1. IR (neat) 2943, 1653, 1589, 1534, 1160, 1140, 885, 846, 761, 746, 702 cm⁻¹. MS (ESI) m/z 200 (M+H), 222 (M+Na); HRMS (ESI) m/z calc'd for C₁₃H₁₄NO [M+H]⁺: 200.1069; found: 200.1071.

1-(3-Phenylpropyl)pyridin-2(1H)-one (2hh): Prepared from **1hh** according to general procedure A at 110 °C (92%). White solid; m.p. 42-44 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.25 (m, 4H), 7.19-7.16 (td, J = 2.2Hz, J = 6.7Hz, 4H), 6.54 (d, J = 9.2Hz, 1H), 6.11 (dt, J = 1.3Hz, J = 6.7Hz, 1H), 3.93 (dd, J = 7.2Hz, 2H), 2.67 (dd, J = 7.6Hz, 2H), 2.08 (td, J = 7.6Hz, J = 15.0Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.9, 139.3, 137.6, 128.5, 128.4, 126.2, 121.2, 105.9, 49.5, 32.8, 30.5. IR (neat) 3024, 2947, 1656, 1587, 1538, 1143, 831, 762, 741, 698 cm⁻¹. MS (ESI) *m/z* 214 (M+H), 236 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₄H₁₆NO [M+H]⁺: 214.1226; found: 214.1229.

1-(2-((*tert***-Butyldimethylsilyl)oxy)ethyl)pyridin-2(1H)-one (2ii):** Prepared from **1ii** according to general procedure A at 120 °C (65%). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.29 (m, 2H), 6.55 (dd, J = 1.2Hz, J = 9.7Hz, 1H), 6.11 (dt, J = 1.3Hz, J = 6.7Hz, 1H), 4.05 (m, 2H), 3.90 (m, 2H), 0.83 (s, 9H), -0.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 139.6, 139.5, 120.6, 104.9, 60.8, 52.3, 25.8, 18.1, -5.7. IR (neat) 2928, 2856, 1654, 1574, 1539, 1463, 1360, 1252, 1103, 1057, 935, 834, 772 cm⁻¹. MS (ESI) *m/z* 254 (M+H); HRMS (ESI) *m/z* calc'd for C₁₃H₂₄NO₂Si [M+H]⁺: 254.1570; found: 254.1571.

2-Benzyl-6-chloropyridazin-3(2H)-one (4a): Prepared from **3a** according to general procedure A at 90 °C (70%). Light brown solid; m.p. 85-87 °C. All spectral data are in agreement with reported literature data.¹³ ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, *J* = 6.6Hz, 2H), 7.37-7.29 (m, 3H), 7.15 (d, *J* = 9.7Hz, 1H), 6.91 (d, *J* = 9.7Hz, 1H), 5.25 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.7, 137.4, 135.5, 133.6, 132.1, 128.8, 128.6, 128.1, 55.4. IR (neat) 3032, 1654, 1574, 1493, 1438, 1396, 1294, 1207, 1128, 1061, 937, 900, 838, 748, 697 cm⁻¹. MS (EI) *m/z* 220 (M); HRMS (EI) *m/z* calc'd for C₁₁H₉ClN₂O [M]⁺: 220.0403; found: 220.0402.

Subjecting **3a**-*d*₂ to general procedure A at 90 °C for 8 h gave recovered starting material **3a/3a**-*d*₁/**3a**-*d*₂ in 57% (**3a**:**3a**-*d*₁:**3a**-*d*₂ = 0.01 : 0.19 : 0.80, based on ¹H NMR integration; 0.01 : 0.15 : 0.84, based on MS (ESI) integration) and isolated product **4a/4a**-*d*₁/**4a**-*d*₂ in 35% (**4a/4a**-*d*₁/**4a**-*d*₂ = 0.05 : 0.73 : 0.22, based on ¹H NMR integration; 0.04 : 0.69 : 0.27, based on MS (ESI) integration). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 6.6Hz, 2H), 7.37-7.29 (m, 3H), 7.15 (d, *J* = 9.7Hz, 1H), 6.91 (d, *J* = 9.7Hz, 1H), 5.25 (s, 0.10H, **4a**), 5.23 (m, 0.73H, **4a**-*d*₁). MS (ESI) *m/z* 221 (M+H, **4a**), 222 (M+H, **4a**-*d*₁), 223 (M+H, **4a**-*d*₂).

6-Chloro-2-(4-chlorobenzyl)pyridazin-3(2H)-one (4b): Prepared from **3b** according to general procedure A at 90 °C (92%). Off-white solid; m.p. 77-78 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.38 (d, *J* = 8.5Hz, 2H), 7.29 (d, *J* = 8.5Hz, 2H), 7.15 (d, *J* = 9.7Hz, 1H), 6.90 (d, *J* = 9.7Hz, 1H), 5.19 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.6, 137.6, 134.2, 133.9, 133.7, 132.2, 130.3, 128.8, 54.7. IR (neat) 3032, 1660, 1575, 1491, 1426, 1332, 1296, 1138, 1071, 1016, 904, 842, 803, 654 cm⁻¹. MS (ESI) *m/z* 255 (M+H); HRMS (ESI) *m/z* calc'd for C₁₁H₉Cl₂N₂O [M]⁺: 255.0086; found: 255.0072.

6-Chloro-2-(4-methoxybenzyl)pyridazin-3(2H)-one (4c): Prepared from **3c** according to general procedure A at 120 °C (64%). Light brown solid; m.p. 78-79 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, *J* = 8.7Hz, 2H), 7.13 (d, *J* = 9.7Hz, 1H), 6.89 (d, *J* = 9.7Hz, 1H), 6.86 (d, *J* = 8.7Hz, 2H), 5.18 (s, 2H), 3.79 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.5, 158.6, 137.3, 133.5, 132.1, 130.4, 127.7, 113.9, 55.2, 54.9. IR (neat) 2963, 1661, 1610, 1576, 1510, 1437, 1290, 1248, 1173, 1135, 1074, 1031, 933, 901, 839, 779 cm⁻¹. MS (ESI) *m/z* 273 (M+Na); HRMS (ESI) *m/z* calc'd for C₁₂H₁₁ClN₂O₂Na: 273.0401; found: 273.0413.

2-(4-((*tert*-**Butyldimethylsilyl**)**oxy**)**butyl**)-**6-chloropyridazin-3(2H)-one** (**4d**): Prepared from **3d** according to general procedure A at 120 °C (60%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 9.6Hz, 1H), 6.88 (d, *J* = 9.6Hz, 1H), 4.11 (t, *J* = 7.3Hz, 2H), 3.63 (t, *J* = 6.3Hz, 2H), 1.90-1.79 (m, 2H), 1.60-1.50 (m, 2H), 0.87 (s, 9H), 0.03 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.9, 137.1, 133.3, 131.9, 62.5, 51.7, 29.7, 25.9, 24.9, 18.3, -5.4. IR (neat) 2928, 2856, 1669, 1582, 1471, 1300, 1253, 1099, 1043, 834, 775 cm⁻¹. MS (ESI) *m/z* 317 (M+H); HRMS (ESI) *m/z* calc'd for C₁₄H₂₆ClN₂O₂Si [M+H]⁺: 317.1446; found: 317.1445.

2-Benzyl-6-(benzyloxy)pyridazin-3(2H)-one (4e): Prepared from **3e** according to general procedure A at 120 °C (94%). Off-white solid; m.p. 58-59 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.27 (m, 10H), 6.92 (s, 2H), 5.20 (s, 2H), 5.16 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃)

δ 158.8, 152.1, 136.4, 135.9, 133.1, 128.7, 128.5, 128.4, 128.3, 128.2, 127.7, 126.5, 68.8, 54.3. IR (neat) 3045, 1660, 1577, 1537, 1494, 1448, 1424, 1283, 1151, 1079, 1024, 996, 935, 871, 812, 729, 693 cm⁻¹. MS (ESI) *m/z* 293 (M+H); HRMS (ESI) *m/z* calc'd for C₁₈H₁₇N₂O₂ [M+H]⁺: 293.1284; found: 293.1283.

2-(4-Chlorobenzyl)-6-((4-chlorobenzyl)oxy)pyridazin-3(2H)-one (4f): Prepared from **3f** according to general procedure A at 80 °C (94%). Off-white solid; m.p. 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.25 (m, 8H), 6.92 (d, *J* = 1.7Hz, 2H), 5.12 (s, 2H), 5.11 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.7, 151.9, 134.8, 134.4, 134.1, 133.7, 133.2, 130.1, 129.4, 128.7, 128.6, 126.6, 68.0, 53.6. IR (neat) 3071, 2958, 1666, 1593, 1543, 1490, 1430, 1281, 1136, 1077, 1003, 914, 810, 746 cm⁻¹. MS (ESI) *m/z* 361 (M+H); HRMS (ESI) *m/z* calc'd for C₁₈H₁₅Cl₂N₂O₂ [M+H]⁺: 361.0505; found: 361.0502.

6-(3-Phenylpropoxy)-2-(3-phenylpropyl)pyridazin-3(2H)-one (4g): Prepared from **3g** according to general procedure A at 110 °C (64%). Pale brown oil. ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.13 (m, 10H), 6.88 (s, 2H), 4.14 (t, *J* = 6.4Hz, 2H), 4.06 (t, *J* = 7.2Hz, 2H), 2.76 (t, *J* = 7.7Hz, 2H), 2.68 (t, *J* = 7.8Hz, 2H), 2.17-2.01 (m, 4H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.0, 152.5, 141.4, 141.2, 132.8, 128.4, 128.3, 128.2, 126.2, 126.0, 125.9, 66.2, 50.4, 32.9, 32.1, 30.2, 29.6. IR (neat) 3025, 2942, 1667, 1593, 1496, 1442, 1283, 1137, 1028, 839, 746, 699 cm⁻¹. MS (ESI) *m/z* 349 (M+H); HRMS (ESI) *m/z* calc'd for C₂₂H₂₅N₂O₂ [M+H]⁺: 349.1910; found: 349.1910.

2-Benzylisoquinolin-1(2H)-one (6a): Prepared from **5a** according to general procedure A at 80 °C (96%). Pale brown solid; m.p. 63-65 °C. All spectral data are in agreement with reported literature data.^{14 1}H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.1Hz, 1H), 7.62 (t, *J* = 8.1Hz, 1H), 7.48 (m, 2H), 7.35-7.27 (m, 5H), 7.08 (d, *J* = 7.4Hz, 1H), 6.47 (d, *J* = 7.4Hz, 1H), 5.22 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.2, 136.9, 136.8, 132.1, 131.2, 128.7, 128.0, 127.9, 127.7, 126.8, 126.3, 125.9, 106.3, 51.6. IR (neat) 3022, 1647, 1595, 1489, 1453, 1366, 1288, 1178, 979, 787, 734, 690 cm⁻¹. MS (ESI) *m/z* 236 (M+H); HRMS (ESI) *m/z* calc'd for C₁₆H₁₄NO [M+H]⁺: 236.4069; found: 236.1075.

1-Benzylpyrazin-2(1H)-one (6b): Prepared from **5b** according to general procedure A at 120 °C (33%). Orange solid; m.p. 81-83 °C. All spectral data are in agreement with reported literature data.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 1.1Hz, 1H), 7.40-7.29 (m, 5H), 7.27 (d, *J* = 4.4Hz, 1H), 7.05 (dd, *J* = 1.1Hz, *J* = 4.4Hz, 1H), 5.07 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.1, 149.8, 134.6, 129.1, 128.6, 128.5, 127.9, 123.9, 51.6. IR (neat) 3066, 1644, 1576, 1493, 1455, 1350, 1213, 1171, 1108, 1076, 1029, 920, 813, 733, 691 cm⁻¹. MS (ESI) *m/z* 187 (M+H); HRMS (ESI) *m/z* calc'd for C₁₁H₁₁N₂O [M+H]⁺: 187.0875; found: 187.0865.

1-Benzyl-3-methyl-1H-benzo[d]imidazol-2(3H)-one (6f): Prepared from **5f** according to general procedure A at 100 °C (95%). Pale brown solid; m.p. 73-74 °C. All spectral data are in agreement with reported literature data.¹⁵ ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.23 (m, 5H), 7.12-6.95 (m, 3H), 6.88 (d, *J* = 7.1Hz, 1H), 5.08 (s, 2H), 3.46 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.5, 136.3, 130.0, 129.0, 128.6, 127.6, 127.4, 121.2, 121.1, 108.1, 107.3, 44.8, 27.1. IR (neat) 3029, 2922, 1702, 1618, 1498, 1435, 1398, 1358, 1247, 1121, 1003, 837, 731 cm⁻¹. MS (ESI) *m/z* 239 (M+H); HRMS (ESI) *m/z* calc'd for C₁₅H₁₄N₂O [M+H]⁺: 239.1178; found: 239.1187.

3-Benzylbenzo[d]oxazol-2(3H)-one (6g): Prepared from **5g** according to general procedure A at 100 °C (55%). White solid; m.p. 113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.27 (m, 5H), 7.23-7.17 (m, 1H), 7.12-7.05 (m, 2H), 6.88-6.81 (m, 1H), 5.01 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.7, 142.6, 134.7, 130.8, 128.9, 128.2, 127.6, 123.8, 122.5, 109.9, 108.9, 46.0. IR (neat) 3036, 1757, 1615, 1484, 1363, 1239, 1151, 1075, 1016, 924, 737 cm⁻¹. MS (ESI) *m/z* 226 (M+H); HRMS (ESI) *m/z* calc'd for C₁₄H₁₂NO₂ [M+H]⁺: 226.0862; found: 226.0852.

3-Benzylthiazol-2(3H)-one (6h): Prepared from **5h** according to general procedure A at 110 °C (55%). Pale brown oil. ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.23 (m, 5H), 6.49 (d, *J* = 5.4Hz, 1H), 6.10 (d, *J* = 5.4Hz, 1H), 4.88 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 172.0, 135.9, 128.9, 128.1, 127.8, 124.1, 101.5, 48.5. IR (neat) 3111, 1645, 1564, 1495, 1454, 1335, 1222, 1077, 940, 825, 702 cm⁻¹. MS (EI) *m/z* 191 (M); HRMS (EI) *m/z* calc'd for C₁₀H₉NOS [M]⁺: 191.0405; found: 191.0405.

4. References

- (1) Lanni, E. L.; Bosscher, M. A.; Ooms, B. D.; Shandro, C. A.; Ellsworth, B. A.; Anderson, C. E., *J. Org. Chem.* **2008**, 73, 6425-6428.
- (2) Poon, K. W. C.; Dudley, G. B., J. Org. Chem. 2006, 71, 3923-3927.
- (3) Cherng, Y.-J., *Tetrahedron* **2002**, 58, 4931-4935.
- (4) Albiniak, P. A.; Amisial, S. M.; Dudley, G. B.; Hernandez, J. P.; House, S. E.; Matthews, M. E.; Nwoye, E. O.; Reilly, M. K.; Tlais, S. F. Synth. Commun. 2008, 38, 656-665.
- (5) Tlais, S. F.; Lam, H., House, S. E.; Dudley, G. B. J. Org. Chem. 2009, 74, 1876-1885.
- (6) Yang, J.; Dudley, G. B. J. Org. Chem. 2009, 74, 7998.
- (7) Kawasuji, T.; Yoshinaga, T.; Sato, A.; Yodo, M.; Fujiwara, T.; Kiyama, R., *Bioorg. Med. Chem.* 2006, 14, 8430-8445.
- (8) Faure-Tromeur, M.; Zardd, S. Z. Tetrahedron Lett. 1998, 39, 7301-7304.
- (9) Flickinger, S. T.; Patel, M.; Binkowski, B. F.; Lowe, A. M.; Li, M.-H.; Kim, C.; Cerrina, F.; Belshaw, P. J., Org. Lett. 2006, 8, 2357-2360.
- (10) Heumann, L. V.; Keck, G. E., Org. Lett. 2007, 9, 4275-4278.
- (11) Paquette, L. A.; Slomp, G. J. Am. Chem. Soc. 1963, 85, 765-769.
- (12) Ballesteros, P.; Claramunt, R. M.; Elguero, J. Tetrahedron 1987, 43, 2557.
- (13) Johnston, K. A.; Allcock, R. W.; Jiang, Z.; Collier, I. D.; Blakli, H.; Rosair, G. M.; Bailey, P. D.; Morgan, K. M.; Kohno, Y.; Adams, D. R., *Org. Biomol. Chem.* 2008, 6, 175-186.
- (14) Fujita, R.; Watanabe, N.; Tomisawa, H., Chem. Pharm. Bull. 2002, 50, 225-228.
- (15) Nakamura, S.; Tsuno, N.; Yamashita, M.; Kawasaki, I.; Ohta, S.; Ohishi, Y., J. Chem. Soc., Perkin Trans. 1 2001, 429-436.
- (16) (a) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. J. Am. Chem. Soc. 2009, 131, 1753-1765. (b) Arthus, M.; Pontikis, R.; Florent, J.-C. J. Org. Chem. 2009, 74, 2234-2237. (c) Sunami, S.; Nishimura, T.; Nishimura, I.; Ito, S.; Arakawa, H.; Ohkubo, M. J. Med. Chem. 2009, 52, 3225-3237. (d) Park, B. H.; Lee, Y. R.; Lyoo, W. S. Synthesis 2009, 2146-2154.
- (17) Shaikh, N. S.; Junge, K.; Beller, M. Org. Lett. 2007, 9, 5429-5432.
- (18) Maruoka, K.; Concepcion, A. B.; Murase, N.; Oishi, M.; Hirayama, N.; Yamamoto, H. *J. Am. Chem. Soc.* **1993**, *115*, 3943-3949.
- (19) (a) Furayama, T.; Yonehara, M.; Uchiyama, M.; Arimoto, S.; Matsumoto, Y.; Kobayashi, M. *Chem. Eur. J.* 2008, *14*, 10348-10356. (b) Uchiyama, M.; Furuyama, T.; Kobayashi, M.; Matsumoto, Y.; Tanaka, K. *J. Am. Chem. Soc.* 2006, *128*, 8404-8405. (c) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K. *Chem. Eur. J.* 2006, *12*, 4407-4416. (d) Jorapur, Y. R.; Chi, D. Y. *J. Org. Chem.* 2005, *70*, 10774-10777. (e) Sahoo, A. K.; Oda, T.; Nakao, Y.; Hiyama, T. *Adv. Synth. Catal.* 2004, *346*, 1715-1727.
- (20) (a) Kaganovsky, L.; Gelman, D.; Rueck-Braun, K. J. Organomet. Chem. 2010, 695, 260-266. (b) Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007, 129, 2772-2773. (c) Cho, B. T.; Kang, S. K.; Kim, M. S.; Ryu, S. R.; An, D. K. Tetrahedron 2006, 62, 8164-8168. (d) Tanaka, A.; Terasawa, T.; Hagihara, H.; Ishibe, N.; Sawada, M.; Sakuma, Y.; Hashimoto, M.; Takasugi, H.; Tanaka, H. J. Med. Chem. 1998, 41,

2390-2410. (e) Marsh, I. R.; Bradley, M. *Tetrahedron* **1997**, *53*, 17317-17334. (f) Nagao, Y.; Kawabata, K.; Seno, K.; Fujita, E. J. Chem. Soc. Perkin Trans. 1 **1980**, 2470-2473.

- (21) (a) Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932-6933. (b) Shen, Z.; Dornan, P. K.; Khan, H. A.; Woo, T. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 1077-1091.
- (22) Joseph, B.; Benarab, A.; Guillaumet, G. Heterocycles 1994, 38, 1355-1360.
- (23) (a) Kim, Y. H.; Kim, Y.-J.; Chang, S.-Y.; Kim, B. T.; Heo, J.-N. *Bull. Kor. Chem. Soc.* 2007, 28, 777-782. (b) Shiao, M. J.; Tarng, K. Y. *Heterocycles* 1990, 31, 819-824.
- (24) (a) Maytum, H. C.; Tavassoli, B.; Williams, J. M. J. Org. Lett. 2007, 9, 4387-4389. (b) Orita, A.; Ye, F.; Babu, G.; Ikemoto, T.; Otera, J. Can. J. Chem. 2005, 83, 716-727. (c) Kim, D. W.; Hong, D. J.; Seo, J. W.; Kim, H. S.; Kim, H. K.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2004, 69, 3186-3189. (d) Solladie-Cavallo, A.; Diep-Vohuule, A. J. Org. Chem. 1995, 60, 3494-3498.
- (25) Gabriele, B.; Mancuso, R.; Salerno, G., J. Org. Chem. 2008, 73, 7336-7341.
- (26) Qu, W.; Kung, M.-P.; Hou, C.; Benedum, T. E.; Kung, H. F., *J. Med. Chem.* **2007**, 50, 2157-2165.
- (27) (a) O'Hagan, D.; Goss, R. J.; Meddour, A.; Courtieu, J. J. Am. Chem. Soc. 2003, 125, 379-387. (b) Barluenga, J.; Fananas, F. J.; Sanz, R.; Marcos, C.; Trabada, M. Org. Lett. 2002, 4, 1587-1590. (c) Raftery, M. J.; Bowie, J. H.; Sheldon, J. C. J. Chem. Soc. Perkin Trans. 2 1988, 4, 563-569. (d) Yoshimura, T.; Yoshizawa, M.; Tsukurimichi, E. Bull. Chem. Soc. Jpn. 1987, 60, 2491-2496.
- (28) (a) Wang, Q.; Sheng, X.; Horner, J. H.; Newcomb, M. J. Am. Chem. Soc. 2009, 131, 10629-10636. (b) Bialecki, J.; Ruzicka, J.; Attygalle, A. B. J. Mass. Spec. 2006, 41, 1195. (c) Shapley, P. A.; Zhang, N.; Allen, J. L.; Pool, D. H.; Liang, H.-C. J. Am. Chem. Soc. 2000, 122, 1079-1091. (d) Wolfe, S.; Yang, K.; Weinberg, N.; Shi, Z.; Hsieh, Y.-H.; Sharma, R. D.; Ro, S.; Kim, C.-K. Chem. Eur. J. 1998, 4, 886-902. (e) Miyashita, A.; Hotta, M.; Saida, Y. J. Organomet. Chem. 1994, 473, 353-358. (f) Im, H.-S.; Bernstein, E. R.; Secor, H. V.; Seeman, J. I. J. Am. Chem. Soc. 1991, 113, 4422-4431. (g) Kwart, H.; Gaffney, A. J. Org. Chem. 1983, 48, 4502-4508. (h) Boyd, J. W.; Schmalzl, P. W.; Miller, L. L. J. Am. Chem. Soc. 1980, 102, 3856-3862 (i) Blum, Y.; Becker, Y.; Shvo, Y. J. Organomet. Chem. 1980, 202, 65-76.

5. NMR Spectra for New Compounds

NMR spectra for 1c

NMR spectra for 1d

NMR spectra for 1g

NMR spectra for 1k

NMR spectra for 1n

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

NMR spectra for 1p

NMR spectra for 1q

NMR spectra for 1s

NMR spectra for 1u

NMR spectra for 1v

NMR spectra for 1x

NMR spectra for 1bb

NMR spectra for 1cc

NMR spectra for 1dd

NMR spectra for 1ee

NMR spectra for 1ff

NMR spectra for 1hh

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

NMR spectra for 1ii

NMR spectra for 1jj

NMR spectra for 1kk

NMR spectra for 2c

NMR spectra for 2d

NMR spectra for 2g

NMR spectra for 2h

NMR spectra for 2i

NMR spectra for 2j

NMR spectra for 2k

NMR spectra for 2n

NMR spectra for 2p

NMR spectra for 2q

NMR spectra for 2s

NMR spectra for 2w

NMR spectra for 2y

NMR spectra for 2bb

NMR spectra for 2cc

NMR spectra for 2dd

NMR spectra for 2ee

NMR spectra for 2ff

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

NMR spectra for 2gg

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

NMR spectra for 2hh

NMR spectra for 2ii

NMR spectra for 3a

NMR spectra for $3a-d_2$

NMR spectra for 3b

NMR spectra for 3c

NMR spectra for 3d

NMR spectra for 3e

NMR spectra for 3f

NMR spectra for 3g

NMR spectra for 4b

NMR spectra for 4c

NMR spectra for 4d

NMR spectra for 4e

NMR spectra for 4f

NMR spectra for 4g

NMR spectra for 5a

NMR spectra for 5e

NMR spectra for 5f

NMR spectra for 5g

NMR spectra for 5h

NMR spectra for 6g

NMR spectra for 6h

