Structurally-simple lipid bilayer transport agents for chloride and bicarbonate

Natalie J. Andrews, ${ }^{[a]}$ Cally J.E. Haynes, ${ }^{[a]}$ Mark E. Light, ${ }^{[\text {a] }}$ Stephen J. Moore, ${ }^{[a]}$ Christine C. Tong, ${ }^{[a]}$ Jeffery T. Davis, ${ }^{[b]}$ William A. Harrell Jr. ${ }^{[b]}$ and Philip A. Gale* ${ }^{[a]}$

Supplementary Information

Contents

S1 General remarks 1
S2 Synthetic procedure 1
S3 NMR spectra 9
S4 Anion transport results using ion selective electrodes
S4.1 Experimental details 24
S4.2 Additional membrane transport studies 25
S5 ${ }^{1} \mathrm{H}$ NMR titration binding curves 46
S6 Job plot analyses 58
S7 X-ray crystallography 65
$\mathrm{S} 8 \mathrm{H}^{13} \mathrm{CO}_{3}{ }^{-}$Transport studies 72
S9 References 74

S1 General remarks

${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz) were determined on a Bruker AV300 spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are reported in parts per million (ppm), calibrated to the solvent peak set. The following abbreviations are used for spin multiplicity: $s=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet. Chemical shifts for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR are reported in ppm, relative to the central line of a septet at $\delta=39.52 \mathrm{ppm}$ for DMSO- d_{6}. Infrared (IR) spectra were recorded on a Matterson Satellite (ATR). FTIR are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. HRMS(ES) spectra were recorded using a Bruker Apex III spectrometer and reported as m / z (relative intensity). All solvents and starting materials were purchased from commercial sources and used without further purification unless otherwise stated. Dry DCM was obtained by distillation over CaH_{2} prior to use. Aniline was distilled prior to use. POPC was supplied by Genzyme. NMR titrations were performed by addition of aliquots of the putative anionic guest as the tetrabutylammonium (TBA) or tetraethylammonium (TEA) salt (0.15 M), in a solution of the receptor $(0.01 \mathrm{M})$ in DMSO- d_{6} to 0.01 M solution of the receptor. Chloride concentrations during transport experiments were determined using an Accumet or Cole-Parmer chloride selective electrode.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

S2 Synthetic procedure

Compound $\mathbf{3}^{1}$

Butylisocyanate ($0.44 \mathrm{~g}, 4.44 \mathrm{mmol}$) was dissolved in DCM (70 ml) and isopentylamine ($0.45 \mathrm{~g}, 12.2 \mathrm{mmol}$) was added. The mixture was stirred overnight at room temperature. The solution was washed with $2 \times 100 \mathrm{ml}$ water and the organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure to give a solid which was azeotroped with $2 \times 50 \mathrm{ml}$ ether to give compound $\mathbf{3}$ as a fluffy white solid.

Yield: $409 \mathrm{mg}(49 \%)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=5.68$ (m, 2H, 2 overlapping NH signals), 2.97 ($\mathrm{m}, 4 \mathrm{H}, 2$ overlapping CH_{2} signals), 1.58 ($\mathrm{m}, 1 \mathrm{H}$, alkyl CH), 1.29 ($\mathrm{m}, 6 \mathrm{H}, 3$ overlapping CH_{2} signals), 0.87 ($\mathrm{m}, 9 \mathrm{H}, 3$ overlapping CH_{3} signals); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=158.0$ (carbonyl C=O), 37.4 (alkyl), 32.2 (alkyl), 25.1 (alkyl), 22.4 (alkyl), 19.5 (alkyl), 13.7 (alkyl); LRMS(ESI+): $m / z=209.2$ ([M + Na] ${ }^{+}$); HRMS(ES): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}=209.1630$ (calculated), 209.1627 (found); IR (film): $v=3340$ (urea NH stretching), 1630 (carbonyl CO stretching); $\mathrm{M}_{\mathrm{p}}: 54-55^{\circ} \mathrm{C}$.

Compound 4

Butyl isothiocyanate ($500 \mathrm{mg}, 4.34 \mathrm{mmol}$) was dissolved in 100 ml DCM and i pentylamine ($397 \mathrm{mg}, 4.56 \mathrm{mmol}$) was added. The mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure and the oily residue thus obtained was heated to $30^{\circ} \mathrm{C}$ under vacuum to remove excess amine. On cooling, this afforded compound 4 as an oily off white solid.

Yield: $434 \mathrm{mg}(49 \%)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80$ (br. s, 2 H , overlapping NH peaks), 3.41 (br. s, 4 H , overlapping CH_{2} peaks), 1.53 (complex m, $7 \mathrm{H}+8 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{2}+\mathrm{CH}+1 / 2 \mathrm{H}_{2} \mathrm{O}\right), 0.94\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=181.9$ (thiourea C=S), 43.1 (alkyl), 41.7 (alkyl), 37.7 (alkyl), 30.9 (alkyl), 25.2 (alkyl), 22.4 (alkyl), 19.5 (alkyl), 13.7 (alkyl); LRMS(ESI+): $\mathrm{m} / \mathrm{z}=203.2$ ([M+H] ${ }^{+}$); HRMS(ES): for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=203.1582$ (calculated), 203.1582 (found); IR (film): $v=3250$ (thiourea NH stretching); $\mathrm{M}_{\mathrm{p}}: 52-53.5^{\circ} \mathrm{C}$.

Compound 5^{2}

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Phenyl isocyanate ($200 \mathrm{mg}, 1.69 \mathrm{mmol}$) was dissolved in chloroform (50 ml) and isopentylamine ($220 \mathrm{mg}, 2.53 \mathrm{mmol}$) was added. The reaction mixture was stirred overnight at room temperature. The solution was washed with $2 \times 100 \mathrm{ml}$ water and the organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure to give a white solid, which was recrystallized from DCM/ hexane (50:50) to give compound 5 as a white crystalline solid.

Yield: $251 \mathrm{mg}, 72 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=8.37$ (s, 1H, urea NH), 7.38 (d, 2H, J=8.4 Hz, aromatic CH), 7.20 (t, 2H, J=7.7 Hz, aromatic CH), 6.87 (m, 1H, aromatic CH), 6.07 (t, 1H, J=5.5 Hz, urea NH), 3.10 (q, 2H, J=6.3 Hz, alkyl CH_{2}), 1.60 (m, 1H, alkyl CH), 1.32 (q, 2H, J=7.0 Hz, alkyl CH_{2}), 0.89 (d, 6 H , $\left.\mathrm{J}=6.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d): $\delta=155.1$ (carbonyl C=O), 140.6 (aromatic CH), 128.5 (aromatic CH), 120.8 (aromatic CH), 117.5 (aromatic CH), $37.2\left(\mathrm{CH}_{2}\right), 25.1$ (alkyl CH or CH_{2}), 22.4 (alkyl CH or CH_{2}); IR (film): v= 3330 (urea NH stretching), 1640 (carbonyl CO stretching); LRMS(ESI+): m/z = $207.2\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS(ES): for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}=229.1317$ (calculated), 229.1315 (found); M_{p} : 111-113 ${ }^{\circ} \mathrm{C}$.

Compound 6^{3}

Phenyl isothiocyanate ($200 \mathrm{mg}, 1.48 \mathrm{mmol}$) was dissolved in chloroform (50 ml) and isopentylamine ($194 \mathrm{mg}, 2.22 \mathrm{mmol}$) was added. The reaction mixture was stirred overnight at room temperature. The solution was washed with $2 \times 100 \mathrm{ml}$ water and the organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure to give a white solid, which was recrystallized from DCM/ hexane (50:50) to give compound 6 as a white crystalline solid.

Yield: $159 \mathrm{mg}(48 \%) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=9.40$ (br s, 1 H , urea NH), 7.68 (br s, 1H, urea NH), $7.40(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH), 7.31 ($\mathrm{m}, 2 \mathrm{H}$, aromatic CH), $7.09(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH$), 3.48\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.60(\mathrm{~m}, 1 \mathrm{H}$, alkyl CH), $1.43\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, DMSO- d_{6}): $\delta=180.2$ (thiourea $\mathrm{C}=\mathrm{S}$), 128.5 (aromatic CH), 124.0 (aromatic CH), 122.9 (aromatic CH), $42.1\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 25.3$ (alkyl CH or CH_{2}), 22.4 (alkyl CH or CH_{2}); LRMS(ESI-): $m / z=221.2$ ([M-H] $)$; $\mathrm{HRMS}(\mathrm{ES})$: for $[\mathrm{M}+\mathrm{Na}]^{+} m / z=$ 245.1088 (calculated), 245.1089 (found); IR (film): v= 3320 (urea NH stretching), 3170 (urea NH stretching); $\mathrm{M}_{\mathrm{p}}: 103-104^{\circ} \mathrm{C}$.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Compound 7

7-Aminoindole was prepared via a literature procedure. ${ }^{1} 7$-nitroindole (250 mg , 1.5 mmol) was dissolved in 100 ml ethanol and Pd/C (10\% wt., catalytic) was added. The solution was stirred under atmosphere of hydrogen for 2 h . The Pd/C was removed by filtration through celite and the solvent was removed under reduced pressure to give 7-aminoindole as a white solid (assumed 100\% yield).

7-aminoindole (1.5 mmol) was dissolved in 75 ml DCM and CDI ($750 \mathrm{mg}, 4.5$ mmol) was added. The mixture was stirred at room temperature overnight under nitrogen. The white precipitate thus formed was isolated by filtration, washed with ice-cold DCM and dried under vacuum to afford intermediate A as a white solid which was used without further purification (234 mg).

Intermediate A (234 mg) was suspended in 100 ml DCM under nitrogen. Isopentylamine ($1.5 \mathrm{~g}, 17.2 \mathrm{mmol}$) was added and the reaction mixture was refluxed overnight. On cooling, the crude produce was purified by column chromatography on silica (elution with DCM/ethyl acetate $85: 15$). This yielded compound 7 as a white solid.

Yield: 163 mg (44% overall yield); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=10.71$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.32 (s, 1H, NH), 7.35 (t, 1H, J=2.6 Hz, aromatic CH), 7.25 (d, 1H, $\mathrm{J}=7.9 \mathrm{~Hz}$, aromatic CH$), 6.93(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH$), 6.45(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH$)$, 6.21 (t, 1H, J=5.3 Hz, NH), 3.22 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.69 (m, 1H, alkyl CH), 1.43 (q, $2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), 0.97 (d, $6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=155.6$ (carbonyl C=O), 129.1 (aromatic CH), 127.8 (aromatic CH), 124.9 (aromatic CH), 119.1 (aromatic CH), 114.5 (aromatic CH), 111.8 (aromatic CH), 101.4 (aromatic CH), $37.6\left(\mathrm{CH}_{2}\right), 25.2$ (alkyl), 22.4 (alkyl); LRMS(ESI-): m/z = 244.2 ([M-H] ${ }^{-}$); HRMS(ES): for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}=268.1423$ (calculated), 268.1423 (found); IR (film): v= 3390 (indole NH stretching), 3280 (urea NH stretching), 1650 (carbonyl CO stretching); $\mathrm{M}_{\mathrm{p}}: 159-160^{\circ} \mathrm{C}$.

Compound 8

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

7-isothiocyanato-1H-indole was prepared via a literature procedure. ${ }^{4}$ 7aminoindole (prepared as described above, 1.5 mmol) was dissolved in a 2 phase mixture of DCM (75 ml) and sat. NaHCO_{3} (aq) (75 ml) and stirred vigorously. Thiophosgene, ($0.171 \mathrm{~g}, 0.114 \mathrm{ml}, 1.5 \mathrm{mmol}$) was added and the reaction was stirred overnight at room temperature. The organic layer was isolated and washed with $2 \times 100 \mathrm{ml}$ water. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure to leave a brown residue. The residue was triturated in hexane to afford 7-isothiocyanato-1Hindole as a brown solid which was isolated by filtration. This intermediate was not characterized due to its assumed high reactivity. The isothiocyanate was redissolved in 100 ml DCM and i-pentylamine ($0.131 \mathrm{~g}, 1.5 \mathrm{mmol}$) was added. The reaction was stirred at room temperature overnight under nitrogen. The solution was washed with $2 \times 100 \mathrm{ml}$ water and the organic layer was dried over MgSO_{4}. The crude mixture was subjected to column chromatography on silica (eluent DCM/MeOH 4\%). The solvent was removed to leave an orange residue. Hexane (10 ml) was added causing an off white solid to form which was isolated by filtration and recrystallized from DCM to give compound 8 as a white solid.

Yield: $89 \mathrm{mg}(24 \%) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=10.88$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 9.20 (br s, 1H, NH), $7.42(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{x}$ overlapping aromatic CH), $7.28(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}$, aromatic CH), $6.97(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ overlapping aromatic CH$), 6.46\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=2.6\right.$ $\mathrm{Hz}, \mathrm{J}_{2}=1.9 \mathrm{~Hz}, \mathrm{NH}$), $3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56(\mathrm{~m}, 1 \mathrm{H}$, alkyl CH), 1.42 (q, 2H, J=6.9 $\mathrm{Hz}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=180.6$ (thiourea $\mathrm{C}=\mathrm{S}$), 129.4 (aromatic CH), 125.6 (aromatic CH), 119.0 (aromatic CH), 118.0 (aromatic CH), $42.6\left(\mathrm{CH}_{2}\right), 25.6$ (alkyl), 22.5 (alkyl); LRMS(ESI-): $m / z=260.2$ ([M-H] ${ }^{-}$), 274.2 ([M.MeOH-H] $)$; HRMS(ES): for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=262.1378$ (calculated), 262.1378 (found) , for [M + Na] ${ }^{+} m / z=284.1197$ (calculated), 284.1195 (found); IR (film): $v=$ 3370 (indole NH stretching), 3310 (urea NH stretching), 3180 (urea NH stretching); $\mathrm{M}_{\mathrm{p}}: 88-90^{\circ} \mathrm{C}$.

Compound 9^{5}

4-methyl valeric acid ($461 \mathrm{mg}, 3.97 \mathrm{mmol}$) was activated by reflux in chloroform $(100 \mathrm{ml})$ with CDI ($644 \mathrm{mg}, 3.97 \mathrm{mmol}$). After 2 hours, n-butylamine ($370 \mathrm{mg}, 5$ mmol) was added and the reaction was refluxed overnight. On cooling, the product was washed with $2 \times 100 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}$ and $2 \times 100 \mathrm{ml}$ sat. NaHCO_{3}. The organic layer was dried over MgSO_{4} and the solvent removed to give compound 9 as a colourless oil.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Yield: 402 mg , (59\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=7.71$ (br. s, 1 H , amide NH), $3.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35(\mathrm{~m}, 7 \mathrm{H}$, overlapping alkyl $\mathrm{CH}+3$ $x \mathrm{CH}_{2}$) , $0.86\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=172.0$ (thioamide $\mathrm{C}=\mathrm{S}$), 38.0 (alkyl), 24.4 (alkyl), 33.5 (alkyl), 31.2 (alkyl), 27.2 (alkyl), 22.2 (alkyl), 19.5 (alkyl), 13.6 (alkyl); LRMS(ESI+): m/z = 172.2 ([M + H] ${ }^{+}$); HRMS(ES): for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}=194.1521$ (calculated), 194.1514 (found); IR (film): $v=3290$ (amide NH stretching), 1640 (carbonyl C=O stretching).

Compound 10

Compound 9 ($300 \mathrm{mg}, 1.75 \mathrm{mmol}$) was dissolved in THF and Lawesson's reagent ($710 \mathrm{mg}, 1.76 \mathrm{mmol}$) was added. The reaction was refluxed overnight. On cooling, the solvent was removed in situ and the oily residue obtained was redissolved in DCM. The product was washed with $2 \times 100 \mathrm{ml}$ of brine followed by $2 \times 100 \mathrm{ml}$ of 0.1 M HCl and $2 \times 100 \mathrm{ml}$ sat. NaHCO_{3}. The product was further purified by column chromatography on silica (elution with DCM). This afforded compound 10 as a colourless oil.

Yield: 245 mg (75%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.15$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), 3.66 (td, $2 \mathrm{H}, \mathrm{J}_{1}=7.3 \mathrm{~Hz}, \mathrm{~J}_{2}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65(\mathrm{~m}, 5 \mathrm{H}$, alkyl $\mathrm{CH}+2$ $\mathrm{x} \mathrm{CH}_{2}$), $1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.95\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=203.8$ (carbonyl CO), 44.8 (alkyl), 43.2 (alkyl), 38.2 (alkyl), 29.2 (alkyl), 27.0 (alkyl), 22.3 (alkyl), 19.6 (alkyl), 13.6 (alkyl); LRMS(ESI+): $m / z=188.3$ ([M + H ${ }^{+}$); HRMS(ES): for [M + Na] ${ }^{+} \mathrm{m} / \mathrm{z}=210.1292$ (calculated), 210.1287 (found); IR (film): v=3240 (amide NH stretching).

Compound 11^{6}

4-methyl valeric acid ($500 \mathrm{mg}, 4.30 \mathrm{mmol}$) was activated by reflux in chloroform (100 ml) with CDI ($700 \mathrm{mg}, 4.30 \mathrm{mmol}$). After 2 hours, aniline ($440 \mathrm{mg}, 4.73$ mmol) was added and the reaction was refluxed overnight. On cooling the product was washed with $2 \times 100 \mathrm{ml}$ water followed by $2 \times 100 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}$ and $2 \times 100 \mathrm{ml}$ sat. NaHCO_{3}. The combined organic layers were dried over MgSO_{4} and the solvent was removed to give an off-white solid. This was triturated in hexane to afford compound 11 as a white solid.

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2010

Yield: $623 \mathrm{mg}(76 \%)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=9.86$ (s, 1H, NH), 7.59 (d, 2H, J=8.7 Hz, aromatic CH), 7.28 (t, $2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}$, aromatic CH), 7.01 (m, 1H, aromatic CH), $2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~m}, 3 \mathrm{H}\right.$, Alkyl CH $+\mathrm{CH}_{2}$); $0.90(\mathrm{~d}, 6 \mathrm{H}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=171.4$ (carbonyl CO), 139.3 (aromatic CH), 128.6 (aromatic CH), 122.8 (aromatic CH), 119.0 (aromatic CH), 34.5 (aromatic CH), 34.0 (aromatic CH), 27.2 (aromatic CH), 22.2 (aromatic $\mathrm{CH})$; LRMS(ESI-): $m / z=190.2$ ([M - H] ${ }^{-}$); HRMS(ES): for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}=$ 214.1208 (calculated), 214.1202 (found); IR (film): $v=3250$ (amide NH stretching), 1650 (carbonyl $\mathrm{C}=\mathrm{O}$ stretching); $\mathrm{M}_{\mathrm{p}}: 109-110^{\circ} \mathrm{C}$.

Compound $12^{6 \mathrm{~d}}$

Compound 11 ($300 \mathrm{mg}, 1.57 \mathrm{mmol}$) was dissolved in THF and Lawesson's reagent ($634 \mathrm{mg}, 1.57 \mathrm{mmol}$) was added. The reaction was refluxed overnight. On cooling, the solvent was removed in situ and the oily residue obtained was redissolved in DCM. The product was washed with $2 \times 100 \mathrm{ml}$ of brine followed by $2 \times 100 \mathrm{ml}$ of 0.1 M HCl and $2 \times 100 \mathrm{ml}$ sat. NaHCO_{3}. The organic layer was dried over MgSO_{4} and the solvent removed to give compound 12 as an off white solid.

Yield: 201 mg (62\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta=11.49$ (s, 1H, NH), 7.77 (d, $2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}$, aromatic CH), $7.39(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}$, aromatic CH), $7.22(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH), $2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64\left(\mathrm{~m}, 3 \mathrm{H}\right.$, alkyl $\left.\mathrm{CH}+\mathrm{CH}_{2}\right), 0.92(\mathrm{~d}, 6 \mathrm{H}$, J=6.2 Hz, $2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=204.3$ (thiourea $\mathrm{C}=\mathrm{S}$), 139.6 (aromatic CH), 128.4 (aromatic CH), 125.8 (aromatic CH), 123.3 (aromatic CH), 45.1 (alkyl CH_{2}), 27.1 (alkyl), 22.4 (alkyl); LRMS(ESI-): m/z = 206.2 ([M -H^{-}); $\mathrm{HRMS}(E S)$: for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=208.1160$ (calculated), 208.1154 (found); IR (film): $v=3180$ (amide NH stretching); $\mathrm{M}_{\mathrm{p}}: 61-62{ }^{\circ} \mathrm{C}$.

Compound 13

4-methyl valeric acid ($276 \mathrm{mg}, 2.37 \mathrm{mmol}$) was activated by reflux in DCM (100 ml) with CDI ($400 \mathrm{mg}, 2.47 \mathrm{mmol}$). After 2 hours, 7 -aminoindole ($402 \mathrm{mg}, 2.48$ mmol) was added and the reaction was refluxed overnight. On cooling, the product was washed with 300 ml of 0.5 M HCl and 300 ml sat. NaHCO_{3}. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure to give compound 13 as an off-white solid.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Yield: 451 mg (83\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=10.66$ (br. s, 1 H , amide NH), 9.64 (s, 1H, indole NH), $7.34(\mathrm{~m}, 3 \mathrm{H}$, aromatic CH$), 6.92(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH), $6.43(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH$), 2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59(\mathrm{~m}, 3 \mathrm{H}$, alkyl $\mathrm{CH}+$ CH_{2}), $0.93\left(\mathrm{~d}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=171.3$ (carbonyl $\mathrm{C}=\mathrm{O}$), 129.0 (aromatic CH), 128.1 (aromatic CH), 125.0 (aromatic CH), 123.6 (aromatic CH), 118.9 (aromatic CH), 116.2 (aromatic CH), 113.3 (aromatic CH), 101.5 (aromatic CH), 34.1 (alkyl), 27.3 (alkyl), 22.3 (alkyl); LRMS(ESI-): m/z = 229.3 ([M - H] ${ }^{-}$); HRMS(ES): for [$\left.\mathrm{M}+\mathrm{Na}\right]^{+} \mathrm{m} / \mathrm{z}=253.1317$ (calculated), 253.1311 (found); IR (film): v= 3330 (amide NH stretching), 3240 (indole NH stretching), 1650 (carbonyl $\mathrm{C}=\mathrm{O}$ stretching); $\mathrm{M}_{\mathrm{p}}: 144-145^{\circ} \mathrm{C}$.

Compound 14

Compound 13 ($262 \mathrm{mg}, 1.14 \mathrm{mmol}$) was dissolved in THF and Lawesson's reagent ($457 \mathrm{mg}, 1.14 \mathrm{mmol}$) was added. The reaction was refluxed overnight. On cooling, the solvent was removed in situ and the oily residue obtained was redissolved in DCM. The product was washed with $2 \times 100 \mathrm{ml}$ of brine followed by $2 \times 100 \mathrm{ml}$ of 0.1 M HCl and $2 \times 100 \mathrm{ml}$ sat. $\mathrm{NaHCO}_{3} /$ brine (50:50). The product was further purified by column chromatography on silica (elution with DCM). Compound 14 was obtained as a white solid.

Yield: 202 mg (73\%); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=11.33$ (s, 1H, thioamide NH), 10.80 (br. s, 1H, indole NH), 7.48 (d, 1H, J=7.7 Hz, aromatic CH), 7.33 (t, $1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}$, aromatic CH), $7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$, aromatic CH$), 6.99(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH), $6.47(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH$)$, $2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71(\mathrm{~m}, 3 \mathrm{H}$, alkyl $\mathrm{CH}+\mathrm{CH}_{2}$), $0.96\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=$ 205.7 (thioamide C=S), 130.6 (aromatic CH), 129.3 (aromatic CH), 125.5 (aromatic CH), 124.2 (aromatic CH), 118.9 (aromatic CH), 118.5 (aromatic CH), 118.3 (aromatic CH), 43.9 (alkyl), 27.3 (alkyl), 22.4 (alkyl); LRMS(ESI-): m/z = 245.2 ($[\mathrm{M}-\mathrm{H}]^{-}$); HRMS(ES): for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=247.1269$ (calculated), 247.1261 (found), for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}=269.1088$ (calculated), 269.1061 (found); IR (film): $v=$ 3320 (amide NH stretching), 3180 (indole NH stretching); $\mathrm{M}_{\mathrm{p}}: 106-107^{\circ} \mathrm{C}$.

S3 NMR spectra

Figure $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR spectrum of intermediate \mathbf{A} in DMSO- d_{6}. Peaks associated with \mathbf{A} are labeled A; minor, undesired products are labeled B. Product was used without further purification.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S2 Expanded aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{A} (recorded in DMSO-d ${ }_{6}$)

Figure S3 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in DMSO- d_{6}

Figure S4 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ in DMSO- d_{6}

Figure S5 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S6 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in DMSO- d_{6}

Figure $\mathbf{S 7}{ }^{13} \mathrm{C}$ DEPT spectrum of compound $\mathbf{4}$ in DMSO- d_{6}

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in DMSO- d_{6}

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S10 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}$ in DMSO- d_{6}

Figure S11 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6}$ in DMSO

Figure $\mathbf{S} 12{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7}$ in DMSO- d_{6}

Figure S13 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7}$ in DMSO- d_{6}

Figure $\mathbf{S 1 4}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}$ in DMSO- d_{6}

Figure $\mathbf{S 1 5}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}$ in DMSO- d_{6}

Figure $\mathbf{S 1 6}{ }^{1} \mathrm{H}$ NMR spectrum of compound 9 in DMSO- d_{6}

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S17 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{9}$ in DMSO- d_{6}

Figure S18 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}$ in CDCl_{3}

Figure S19 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 10 in DMSO-d ${ }_{6}$

Figure S20 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11 in DMSO- d_{6}

Figure S21 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 1}$ in DMSO- d_{6}

Figure S22 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12 in DMSO- d_{6}

Figure $\mathbf{S 2 3}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 2}$ in DMSO- d_{6}

Figure S24 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13 in DMSO- d_{6}

Figure $\mathbf{S 2 5}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 3}$ in DMSO- d_{6}

Figure S26 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 in DMSO- d_{6}

Figure $\mathbf{S 2 7}{ }^{13} \mathrm{C}$ NMR spectrum of compound 14 in DMSO- d_{6}

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

S4 Anion Transport Studies

S4.1 Experimental details

Preparation of Vesicles

A lipid film of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (0% or 30%) was formed from a chloroform solution under reduced pressure and dried under vacuum for at least 6 hours. The lipid film was rehydrated by vortexing with a metal chloride (MCI) salt solution ($489 \mathrm{mM} \mathrm{MCI}, 5$ mM phosphate buffer at pH 7.2). The lipid suspension was then subjected to seven freeze-thaw cycles and allowed to age for 30 min at room temperature before extruding 25 times through a 200 nm polycarbonate membrane. The resulting unilamellar vesicles were dialyzed against the external medium to remove unencapsulated MCl salts.

Chloride Transport Assays

Unilamellar POPC vesicles containing NaCl , prepared as described above, were suspended in 489 mM NaNO 3 or $162 \mathrm{mM} \mathrm{Na} \mathrm{SO}_{4}$ solution buffered to pH 7.2 with sodium phosphate salts. The lipid concentration per sample was 1 mM . A DMSO solution of the carrier molecule (10 mM) was added to start the experiment and the chloride efflux was monitored using a chloride sensitive electrode. At 5 min , the vesicles were lysed with $50 \mu \mathrm{l}$ of polyoxyethylene(8)lauryl ether (0.232 mM in 7:1 water:DMSO v / v) and a total chloride reading was taken at 7 min . In the case of the external anion being sulfate, the experiment was extended such that the vesicles were lysed at 20 min and total chloride reading taken at 22 min.

Bicarbonate Transport Assay

Unilamellar POPC vesicles containing 489 mM NaCl solution buffered to pH 7.2 with 20 mM sodium phosphate salts, prepared as described above, were suspended in $162 \mathrm{mM} \mathrm{Na} \mathrm{SO}_{4}$ solution buffered to pH 7.2 with sodium phosphate salts. The lipid concentration per sample was 1 mM . A DMSO solution of the carrier molecule (10 mM) was added to start the experiment and chloride efflux was monitored using a chloride sensitive electrode. At 2 min, NaHCO_{3} solution (1.2 M in $162 \mathrm{mM} \mathrm{Na} \mathrm{NO}_{4}$ buffered to pH 7.2 with 20 mM sodium phosphate salts) was added so that the outer solution contained 40 mM NaHCO_{3}. At 8 min , the vesicles were lysed with $50 \mu \mathrm{l}$ of polyoxyethylene(8)lauryl ether (0.232 mM in $7: 1$ water:DMSO v / v) and a total chloride reading was taken at 10 min .

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

S4.2 Additional membrane transport studies

Figure S28 Chloride efflux promoted by 0.02 molar equiv of receptors $9-14$ from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Each point represents the average of three trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S29 Chloride efflux promoted by 0.02 molar equiv of receptor 4 from unilamellar POPC vesicles and unilamellar POPC/cholesterol (7:3) vesicles, loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in $489 \mathrm{mM} \mathrm{NaNO}_{3}$ buffered to pH 7.2 with 5 mM sodium phosphate salts. Each point represents the average of three trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S30 Chloride efflux promoted by 0.02 molar equiv of receptor 6 from unilamellar POPC vesicles and unilamellar POPC/cholesterol (7:3) vesicles, loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in $489 \mathrm{mM} \mathrm{NaNO}_{3}$ buffered to pH 7.2 with 5 mM sodium phosphate salts. Each point represents the average of three trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S31 Chloride efflux promoted by 0.02 molar equiv of receptor 8 from unilamellar POPC vesicles and unilamellar POPC/cholesterol (7:3) vesicles, loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Each point represents the average of three trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S32 Chloride efflux promoted by 0.02 molar equiv of receptors 3-8 and from unilamellar POPC vesicles loaded with 500 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in $167 \mathrm{mM} \mathrm{Na} \mathrm{SO}_{4}$ buffered to pH 7.2 with 5 mM sodium phosphate salts. At the end of the experiment, detergent was added to lyse the vesicles and calibrate the ISE to 100% chloride release. Each point represents the average of three trials

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S33 Chloride efflux promoted by addition of various molar\% (with respect to lipid) of receptor 4 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with sodium phosphate salts. At the end of the experiment, detergent was added to lyse the vesicles and calibrate the ISE to 100% chloride release. Each point represents the average of three trials.

Figure S34 Chloride efflux promoted by addition of various molar\% (with respect to lipid) of receptor 6 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with sodium phosphate salts. At the end of the experiment, detergent was added to lyse the vesicles and calibrate the ISE to 100% chloride release. Each point represents the average of three trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S35 Chloride efflux promoted by addition of various molar\% (with respect to lipid) of receptor 4 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in $167 \mathrm{mM} \mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S36 Chloride efflux promoted by addition of various molar\% (with respect to lipid) of receptor 6 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in $167 \mathrm{mM} \mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S37 Chloride efflux promoted by addition of various molar\% (with respect to lipid) of receptor 8 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40mM. The vesicles were dispersed in $167 \mathrm{mM} \mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S38 Hill plot for chloride release mediated by receptor 4 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Chloride efflux was measured at 270 s .

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S39 Hill plot for chloride release mediated by receptor 6 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Chloride efflux was measured at 270 s .

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure $\mathbf{S} 40$ Hill plot for chloride release mediated by receptor 8 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Chloride efflux was measured at 270 s .

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S41 Hill plot for chloride release mediated by receptor 4 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in 167 mM $\mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials at $t=390 \mathrm{~s}$ (270s after bicarbonate pulse).

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure $\mathbf{S 4 2}$ Hill plot for chloride release mediated by receptor 6 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in 167 mM $\mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials at $t=390 \mathrm{~s}$ (270s after bicarbonate pulse).

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S43 Hill plot for chloride release mediated by receptor 8 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in 167 mM $\mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials at $t=390 \mathrm{~s}$ (270s after bicarbonate pulse).

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S44 Chloride efflux promoted by 0.02 molar equiv of receptor 4 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Each point represents the average of three trials. The data for the first 90s after the bicarbonate pulse was fitted to a straight line of the form $y=m x+c$, where $m \propto k_{\text {initial }}=0.431 \% s^{-1}(4 \%$ error $)$.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S45 Chloride efflux promoted by 0.02 molar equiv of receptor 6 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Each point represents the average of three trials. The data for the first 90s after the bicarbonate pulse was fitted to a straight line of the form $y=m x+c$, where $m \propto k_{\text {initial }}=0.074 \%^{-1}$ (6% error).

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S46 Chloride efflux promoted by 0.02 molar equiv of receptor 8 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO 3 buffered to pH 7.2 with 5 mM sodium phosphate salts. Each point represents the average of three trials. The data for the first 90s after the bicarbonate pulse was fitted to a straight line of the form $y=m x+c$, where $m \propto k_{\text {initial }}=0.614 \%^{-1}(4 \%$ error $)$.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S47 Chloride efflux promoted by 0.02 molar equiv of receptor 4 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in $167 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials. The data for the first 90 s after the bicarbonate pulse was fitted to a straight line of the form $y=m x+c$, where $m \propto k_{\text {initial }}$ $=0.277 \% \mathrm{~s}^{-1}$ (6% error).

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S48 Chloride efflux promoted by 0.02 molar equiv of receptor 6 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in $167 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials. The data for the first 90 s after the bicarbonate pulse was fitted to a straight line of the form $y=m x+c$, where $m \propto k_{\text {initial }}$ $=0.188 \%^{-1}$ (1\% error).

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S49 Chloride efflux promoted by 0.02 molar equiv of receptor 8 from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts upon addition of a NaHCO_{3} pulse to make the extravesicular bicarbonate concentration 40 mM . The vesicles were dispersed in $167 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{SO}_{4}$ buffered at pH 7.2 with 20 mM sodium phosphate salts. Each point represents an average of 3 trials. The data for the first 90 s after the bicarbonate pulse was fitted to a straight line of the form $y=m x+c$, where $m \propto k_{\text {initial }}$ $=0.386 \% s^{-1}$ (2\% error).

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

S5 ${ }^{1} \mathrm{H}$ NMR titration binding curves

$\mathrm{K}_{\mathrm{a}}=<10 \mathrm{M}^{-1} \quad$ Error $=$ N.A.
Figure S50 NMR titration of compound 3 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 5.68ppm.
$K_{a}=10 M^{-1} \quad$ Error $=10 \%$
Figure S51 NMR titration of compound 4 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} /$ DMSO- d_{6} following NH at 7.25ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=21 M^{-1} \quad$ Error $=<1 \%$
Figure S52 NMR titration of compound 5 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 6.05ppm.

$\mathrm{K}_{\mathrm{a}}=22 \mathrm{M}^{-1} \quad$ Error $=<1 \%$
Figure S53 NMR titration of compound 5 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 8.34ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$\mathrm{K}_{\mathrm{a}}=22 \mathrm{M}^{-1} \quad$ Error $=5 \%$
Figure S54 NMR titration of compound 6 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 7.68ppm.

$\mathrm{K}_{\mathrm{a}}=26 \mathrm{M}^{-1} \quad$ Error $=4 \%$
Figure S55 NMR titration of compound 6 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 9.40ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=96 M^{-1} \quad$ Error $=6 \%$
Figure S56 NMR titration of compound 7 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 6.15 ppm .

$K_{a}=128 \mathrm{M}^{-1} \quad$ Error $=4 \%$
Figure S57 NMR titration of compound $\mathbf{7}$ with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 8.26 ppm .

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=126 M^{-1} \quad$ Error $=4 \%$
Figure S58 NMR titration of compound 7 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 10.65ppm.

$\mathrm{K}_{\mathrm{a}}=28 \mathrm{M}^{-1} \quad$ Error $=3 \%$
Figure S59 NMR titration of compound 8 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 7.42ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$\mathrm{K}_{\mathrm{a}}=29 \mathrm{M}^{-1} \quad$ Error $=4 \%$
Figure S60 NMR titration of compound 8 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}^{-} \mathrm{d}_{6}$ following NH at 9.21ppm.

$K_{a}=24 M^{-1} \quad$ Error $=7 \%$
Figure S61 NMR titration of compound 8 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}-\mathrm{d}_{6}$ following NH at 10.87ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=18 M^{-1} \quad$ Error $=4 \%$
Figure S62 NMR titration of compound $\mathbf{3}$ with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-\mathrm{d}_{6}$ following NH at 5.69 ppm .

$\mathrm{K}_{\mathrm{a}}=58 \mathrm{M}^{-1} \quad$ Error $=7 \%$
Figure S63 NMR titration of compound 4 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 7.26ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=135 \mathrm{M}^{-1} \quad$ Error $=4 \%$
Figure S64 NMR titration of compound 5 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 6.05ppm.

$K_{a}=143 M^{-1} \quad$ Error $=2 \%$
Figure S65 NMR titration of compound 5 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 8.35 ppm .

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=343 M^{-1} \quad$ Error $=5 \%$
Figure S66 NMR titration of compound 6 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 7.68ppm.

$K_{a}=1170 M^{-1} \quad$ Error $=7 \%$
Figure S67 NMR titration of compound 7 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 6.15ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=1104 M^{-1} \quad$ Error $=5 \%$
Figure S68 NMR titration of compound 7 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 8.26 ppm .

$K_{a}=1228 \mathrm{M}^{-1} \quad$ Error $=6 \%$
Figure $\mathbf{S} 69$ NMR titration of compound 7 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 10.65ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$\mathrm{K}_{\mathrm{a}}=516 \mathrm{M}^{-1} \quad$ Error $=5 \%$
Figure S70 NMR titration of compound 8 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 7.42 ppm .

$K_{a}=526 M^{-1} \quad$ Error $=6 \%$
Figure S71 NMR titration of compound 8 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 9.21ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

$K_{a}=613 M^{-1} \quad$ Error $=7 \%$
Figure S72 NMR titration of compound 8 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 10.87ppm.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

S6 Job's Plot Analyses

Figure S73 Job plot of compound 3 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 5.68 ppm

Figure S74 Job plot of compound 4 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}-\mathrm{d}_{6}$ following NH at 7.25 ppm

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S75 Job plot of compound 5 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 6.05 ppm

Figure S76 Job plot of compound 5 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 8.35 ppm

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S77 Job plot of compound 6 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 7.68 ppm

Figure S78 Job plot of compound 6 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 9.42 ppm

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S79 Job plot of compound 7 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 6.17 ppm

Figure S80 Job plot of compound 7 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 8.28ppm

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S81 Job plot of compound 7 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 10.66ppm

Figure S82 Job plot of compound 8 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 9.20ppm

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S83 Job plot of compound 8 with TBACI in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 10.87ppm

Figure S84 Job plot of compound 3 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 5.69ppm

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S85 Job plot of compound 4 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}-\mathrm{d}_{6}$ following NH at 7.26ppm

Figure S86 Job plot of compound 5 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / D M S O-d_{6}$ following NH at 6.05ppm

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S87 Job plot of compound 5 with TEAHCO_{3} in $0.5 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}-\mathrm{d}_{6}$ following NH at 8.34ppm

S7 X-ray Crystallography

Crystals of compound 5 suitable for X-ray crystallography were grown by slow evaporation of a solution of 5 in DMSO. The resulting structure obtained and relevant structural data are listed below.

Figure S88 X-ray crystal structure of compound 5
References

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S89 Hydrogen bonding chains of compound 5 showing the different twists

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Table S1. Crystal data and structure refinement details for compound 5.

CCDC Deposition number
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=25.02^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (all data)
Largest diff. peak and hole

791977
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
206.28

120(2) K
0.71073 Å

Orthorhombic
Pccn
$a=21.8777(7) \AA$
$b=24.4332(8) \AA$
$c=8.9667(2) \AA$
4793.1(2) \AA^{3}

16
$1.143 \mathrm{Mg} / \mathrm{m}^{3}$
$0.074 \mathrm{~mm}^{-1}$
1792
Block; Colourless
$0.20 \times 0.10 \times 0.04 \mathrm{~mm}^{3}$
$2.91-25.02^{\circ}$
$-26 \leq h \leq 26,-29 \leq k \leq 29,-10 \leq I \leq 9$
55376
$4234\left[R_{\text {int }}=0.1849\right]$
99.9 \%

Semi-empirical from equivalents 0.9971 and 0.9854

Full-matrix least-squares on F^{2} 4234 / 189 / 287
1.153
$R 1=0.1143, w R 2=0.1725$
$R 1=0.1841, w R 2=0.2013$
0.247 and -0.261 e \AA^{-3}

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill asymmetric unit). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: Sheldrick, G. M. SADABS - Bruker Nonius area detector scaling and absorption correction - V2.10 Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Special details: All hydrogen atoms were placed in idealised positions and refined using a riding model. The carbon chain is modelled as disordered over 2 positions.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Table S2. Hydrogen bonds [\AA and ${ }^{\circ}$].

$D-H \cdots A$	$d(D-H)$	$d(H \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
N2A-H2A \cdots O1 $^{\text {i }}$	0.88	2.19	$2.895(4)$	136.4
N2B-H2B $\cdots 1^{\text {i }}$	0.88	2.11	$2.895(4)$	149.0
N1-H1A $\cdots 1^{i}$	0.88	1.95	$2.788(4)$	158.0
N4-H4A $\cdots 2^{i i}$	0.88	2.16	$2.933(4)$	146.5
N3-H3A $\cdots 2^{i i}$	0.88	2.01	$2.844(4)$	158.1

Symmetry transformations used to generate equivalent atoms:
(i) $x,-y+1 / 2, z+1 / 2$
(ii) $-x+1 / 2, y, z-1 / 2$

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Figure S90 The X-ray crystal structure of compound 8. Thermal ellipsoids are at the 35% probability level, selected hydrogens have been omitted for clarity.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Table S3. Crystal data and structure refinement details for compound 8.

CCDC Deposition number
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=25.02^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$F^{2}>2 \sigma\left(F^{2}\right)$]
R indices (all data)
Largest diff. peak and hole

793790
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}$
261.38

120(2) K
0.71073 Å

Tetragonal
141/a
$a=29.2158(5) \AA$
$c=7.5897(2) \AA$
6478.3(2) \AA^{3}

16
$1.072 \mathrm{Mg} / \mathrm{m}^{3}$
$0.189 \mathrm{~mm}^{-1}$
2240
Needle; Colourless
$0.23 \times 0.03 \times 0.03 \mathrm{~mm}^{3}$
$3.10-25.02^{\circ}$
$-23 \leq h \leq 24,0 \leq k \leq 34,0 \leq I \leq 9$
2849
$2849\left[R_{\text {int }}=0.0000\right]$
99.9 \%

Semi-empirical from equivalents
0.9944 and 0.9579

Full-matrix least-squares on F^{2}
2849 / 0 / 165
1.059
$R 1=0.0815, w R 2=0.1815$
$R 1=0.1060, w R 2=0.1930$
0.592 and -0.314 e \AA^{-3}

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill asymmetric unit). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: Sheldrick, G. M. SADABS - Bruker Nonius area detector scaling and absorption correction - V2.10 Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Special details: All hydrogens were identified in the difference map and subsequently placed in idealised positions and refined using a riding model. An unidentified (probably Et2O) disordered solvent is present in channels running along the c direction. This was treated using the Squeeze algorithm (SQUEEZE - Sluis, P. v.d. \& Spek, A. L. (1990) Acta Cryst. A46, 194-201.). This has left a void of 252.00 A**3.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

Table S4. Hydrogen bonds $\left[\AA\right.$ and $\left.{ }^{\circ}\right]$ in the solid-state structure of compound 5.

$D-\mathrm{H} \cdots A$	$d(D-\mathrm{H})$	$d(\mathrm{H} \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.88	2.55	$3.292(3)$	142.3
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.88	2.47	$3.263(3)$	150.5

Symmetry transformations used to generate equivalent atoms:
$\begin{array}{ll}\text { (i) }-x+3 / 2,-y+3 / 2,-z-1 / 2 & \text { (ii) }-x+3 / 2,-y+3 / 2,-z+1 / 2\end{array}$

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010

S8 $\mathrm{H}^{13} \mathrm{CO}_{3}{ }^{-}$Transport studies

Supporting Information Figure S91. ${ }^{13} \mathrm{C}$ NMR liposome experiments following exchange of $\mathrm{H}^{13} \mathrm{CO}_{3}^{-}$for Cl^{\prime} promoted by 0.04 molar equiv. of receptors 3-8. a) before and b) after addition of a 50 mM NaCl pulse to EYPC vesicles containing $100 \mathrm{mM} \mathrm{NaH}{ }^{13} \mathrm{CO}_{3}$ buffered to pH 7.4 with 20 mM HEPES, dispersed in 75 mM $\mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered to pH 7.4 with 20 mM HEPES; c) spectra 5 min after addition of $3-8$ and DMSO ; d) following addition of 0.5 mM MnCl 2 , a paramagnetic line broadening agent that only affects external bicarbonate.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
General Experimental for ${ }^{13} \mathrm{C}$ NMR Liposome Assays. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVIII-600 operating at 150.92 MHz . Deuterated solvents were purchased from Cambridge Isotope Labs. Phospholipids used to prepare liposomes were purchased from Avanti Polar Lipids. High-pressure extrusion was performed on the Avanti mini-extruder using a 5.0 mm polycarbonate membrane. Dialysis was performed using a \#2 Spectra/Por dialysis membrane. ${ }^{13} \mathrm{C}$ labeled sodium bicarbonate was purchased from Sigma/Isotec. All other chemicals were purchased from Sigma, Aldrich, Fisher, Fluka or Acros and used without further purification.

Preparation of Liposomes for ${ }^{13} \mathrm{C}$ NMR Anion Transport Assay. A stock

 solution of egg-yolk phosphatidylcholine (EYPC) in $\mathrm{CHCl}_{3}(280 \mathrm{mg}$ in 14 mL$)$ was evaporated under reduced pressure to produce a thin film that was dried in vacuo overnight. The lipid film was hydrated with a 2 mL solution containing 20 mM HEPES (pH 7.4) and $100 \mathrm{mM} \mathrm{NaH}{ }^{13} \mathrm{CO}_{3}$ in a $9: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ mixture. Freeze/thaw cycles were repeated at 6 times until no solids were visible. The frozen solution was warmed to $30-35{ }^{\circ} \mathrm{C}$ before each freeze cycle. The mixture was placed on a vortexer every 3 cycles for 30 s to facilitate hydration. The cloudy solution was extruded in 2 separate 1 mL batches through a 5.0 mm polycarbonate membrane 17 times. In order to exchange external $\mathrm{NaH}^{13} \mathrm{CO}_{3}$ with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, this solution was placed in dialysis tubing and stirred in a $9: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ solution containing of 20 mM HEPES and $75 \mathrm{mM} \mathrm{Na}_{2} \mathrm{SO}_{4}$ at pH 7.4 for 4 hr . Stock solutions of liposomes were stored in the refrigerator and used within 24 hr . for transport assays. Liposome stock solution concentration was determined assuming 90\% retention of lipid throughout preparation process.${ }^{13} \mathrm{C}$ NMR Anion Transport Assays. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVIII-600 operating at 150.92 MHz , with chemical shifts reported in ppm. The instrument was locked on $9: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$. Experimental conditions were: temperature, $27^{\circ} \mathrm{C}$; acquisition time, 0.93 s ; spectrum width $35,211 \mathrm{~Hz}$; relaxation delay, 0.2 s ; number of scans, 196. For each experiment, an initial ${ }^{13} \mathrm{C}$ NMR spectrum of a $520 \mu \mathrm{~L}$ of the liposome solution was acquired. This solution consisted of EYPC liposomes containing $100 \mathrm{mM} \mathrm{NaH}{ }^{13} \mathrm{CO}_{3}$ buffered to pH 7.4

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
with 20 mM HEPES, dispersed in $75 \mathrm{mM} \mathrm{Na}_{2} \mathrm{SO}_{4}$ buffered to pH 7.4 with 20 mM HEPES. A NaCl pulse followed, resulting in final extravesicular concentrations of 41 mM lipid and 50 mM NaCl . The ${ }^{13} \mathrm{C}$ NMR of this liposome mixture was taken, followed by the addition of a solution of 3-8 (in DMSO, $15 \mu \mathrm{~L}$) or $15 \mu \mathrm{~L}$ of DMSO. Ligands 3-8 were added to give a 0.04 molar equiv. to lipid ratio and another spectrum was taken approxiamately 5 min after addition of the compounds 3-8 or the DMSO blank. $\mathrm{A}^{13} \mathrm{C}$ NMR of the ligand containing mixture was acquired before and 5 min after the addition $3 \mu \mathrm{~L}$ of a solution of $\mathrm{MnCl}_{2}\left(0.5 \mathrm{mM}\right.$ final Mn^{2+} concentration).

S9 References

[1] A.V. Pechenkin, L. G. Tignibidina, T. V. Antonova, Z. M. Murav'eva, Izvestiya Tomskogo Politekhnicheskogo Instituta, 1970, 185, 90-92.
[2] a) J. S. Buck, A. M. Hjort, E. J. De Beer, C. W. Ferry, W. S. Ide, J.
Pharmacol.,1937, 60, 369-386; b) T Curtius, W. Sieber, F. Nadenheim, O.
Hambsch, W. Ritter, Journal fuer Praktische Chemie (Leipzig), 1930, 125, 152210.
[3] M. L. Willard, M. Z. Jones, J. Am. Chem. Soc., 1940, 62, 2876-2877.
[4] C. Caltagirone, J. R. Hiscock, M. B. Hursthouse, M. E. Light, P. A. Gale, chem.. Eur. J., 2008, 14, 10236-10243
[5] a) N. I. Rezaev, Z. V. Davydova, I. A. Makolkin, Biologicheskie Nauki (Moscow), 1969, 8, 49-67; b) F. Troxler, F. Seemann, A. Hofmann, Helv. Chim. Act., 1959, 42, 2073-2103; E. J. Corey, W. R. Hertler, J. Am. Chem. Soc., 1960, 82, 1657-1668.
[6] a) L. N. Heydorn, L. M. Carter, R. D. Bowen, J. K. Terlouw, Eur. J. Mass Spectrom., 2003, 9(4), 343-350; b) K. Ito, T. Iida, T. Fujita, S. Tsuji, Synthesis, 1981, 4, 287; c) A. Jart, Acta Polytech. Scand., Chem. Met. Ser, 1965, 44, 54 pp.; d) W. Geiger, Spectrochim. Acta, 1966, 22(3), 495-499; d) F. W. Matthews, J. H. Michell, Ind. Eng. Chem. Anal. Ed., 1946, 18, 662-665.

