Supporting Information

for

A β -to- β 2,5-Thienylene-bridged Cyclic Porphyrin Tetramer: Its Rational Synthesis and 1:2 Binding Mode with C₆₀

Jianxin Song,¹ Naoki Aratani,^{*1,2} Hiroshi Shinokubo,^{*3} and Atsuhiro Osuka^{*1}

¹Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, ²PRESTO, Japan Science and Technology Agency, ³Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

E-mail: aratani@kuchem.kyoto-u.ac.jp; hshino@kuchem.kyoto-u.ac.jp; osuka@kuchem.kyoto-u.ac.jp

Table of Contents

Instrumentation and Materials	S2
General Procedures	S2
MALDI-TOF Mass Spectra	S5
¹ H NMR Spectra	S10
UV-vis Spectral Studies	S15
X-Ray Crystal Structures of 4Zn and 4Ni- C ₆₀	S18

Instrumentation and Materials

¹H NMR (600 MHz) spectra were taken on a JEOL ECA-600 spectrometer, and chemical shifts were reported as the delta scale in ppm relative to CHCl₃ as internal reference for ¹H NMR (δ = 7.260 ppm). UV/Vis absorption spectra were recorded on a Shimadzu UV-2550 spectrometer. Mass spectra were recorded on a Shimadzu AXIMA-CFRplus using positive-MALDI-TOF method with matrix. X-Ray data were taken on a Bruker SMART APEX X-Ray diffractometer equipped with a large area CCD detector. Preparative separations were performed by silica gel gravity column chromatography (Wako gel C-300). Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silica gel 60 F254 (Merck 5554). Recycling preparative GPC-HPLC was carried out on a JAI LC-908 using preparative JAI-GEL-2.5H, 3H, and 4H columns (chloroform eluant; flow rate 3.8 mL min⁻¹). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

General Procedure

Synthesis of 2Br: A toluene-DMF solution (4 mL/2 mL) of **1** (140 mg, 0.124 mmol), 2,5-dibromothiophene (2.0 μl, 0.0177 mmol), Pd₂(dba)₃ (1.6 mg, 0.00177 mmol), PPh₃ (1.9 mg, 0.007 mmol), Cs₂CO₃ (11.5 mg, 0.035 mmol), and CsF (5.4 mg, 0.035 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 24 h. The reaction mixture was diluted with CH₂Cl₂, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by GPC and recrystallization with CH₂Cl₂/MeOH provided **2B** (containing 10% mono-borylated dimer) in ca. 80% yield as a dark red solid. A toluene-DMF solution (2 mL/1 mL) of **2B** (20.8 mg), 2,5-dibromothiophene (0.050 mL, 0.44 mmol), Pd₂(dba)₃ (0.34 mg, 0.00038 mmol), PPh₃ (0.4 mg, 0.0015 mmol), Cs₂CO₃ (6.5 mg, 0.020 mmol), and CsF (3.0 mg, 0.020 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 24 h. The resulting mixture was a diluted with CH₂Cl₂/MeOH provided **2B** (containing 10% mono-borylated dimer) in ca. 80% yield as a dark red solid. A toluene-DMF solution (2 mL/1 mL) of **2B** (20.8 mg), 2,5-dibromothiophene (0.050 mL, 0.44 mmol), Pd₂(dba)₃ (0.34 mg, 0.00038 mmol), PPh₃ (0.4 mg, 0.0015 mmol), Cs₂CO₃ (6.5 mg, 0.020 mmol), and CsF (3.0 mg, 0.020 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 24 h. The reaction mixture was diluted with CH₂Cl₂, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by GPC and silica-gel column chromatography (CH₂Cl₂-hexane as an eluent)

and recrystallization with CH₂Cl₂/MeOH furnished **2Br** (13 mg, 0.006 mmol) in 48% yield (in 2 steps) as a dark red solid. **2B**: ¹H NMR (CDCl₃): δ 11.70 (s, 2H, *meso*-H), 9.58 (s, 2H, β -H), 9.26 (s, 2H, β -H), 8.99 (d, *J* = 4.6 Hz, 2H, β -H), 8.94 (d, *J* = 4.6 Hz, 2H, β -H), 8.84 (m, 4H, β -H), 8.61 (s, 2H, thiophene-H), 8.20 (d, *J* = 1.8 Hz, 4H, Ar-o-H), 8.09 (d, *J* = 1.8 Hz, 4H, Ar-o-H), 8.09 (d, *J* = 1.8 Hz, 4H, Ar-o-H), 8.08 (d, *J* = 1.8 Hz, 4H, Ar-o-H), 7.80 (m, 6H, Ar-*p*-H), 1.58 (s, 36H, *tert*-butyl), 1.56 (s, 36H, *tert*-butyl), 1.55 (s, 36H, *tert*-butyl), 1.43 (s, 24H, *Bpin*), and -2.47 (s, 4H, NH) ppm; MS (MALDI-TOF-MS): *m/z* = 2082.40, calcd for C₁₄₀H₁₇₀B₂N₈O₄S = 2082.33 [*M*]⁺. **2Br**: ¹H NMR (CDCl₃): δ 11.20 (s, 2H, *meso*-H), 9.38 (s, 2H, β -H), 9.08 (s, 2H, β -H), 9.03 (d, *J* = 4.6 Hz, 2H, β -H), 9.01 (d, *J* = 5.0 Hz, 2H, β -H), 8.98 (m, 4H, β -H), 8.47 (s, 2H, thiophene-H), 8.29 (d, *J* = 1.8 Hz, 4H, Ar-o-H), 8.21 (d, *J* = 1.8 Hz, 4H, Ar-o-H), 8.16 (d, *J* = 1.8 Hz, 4H, Ar-o-H), 7.92 (t, *J* = 1.8 Hz, 2H, Ar-*p*-H), 7.89 (t, *J* = 1.8 Hz, 2H, Ar-*p*-H), 7.88 (d, *J* = 3.6 Hz, 2H, thiophene-H), 1.65 (s, 36H, *tert*-butyl), 1.63 (s, 36H, *tert*-butyl), 1.60 (s, 36H, *tert*-butyl), and -2.38 (s, 4H, NH) ppm; MS (MALDI-TOF-MS): *m/z* = 2152.90, calcd for C₁₃₆H₁₅₀Br₂N₈S₃ = 2152.95 [*M*]⁺.

Synthesis of 4H: A toluene–DMF solution (2 mL/1 mL) of 2Br (13 mg, 0.006 mmol), 2B (12.5 mg, 0.006 mmol), Pd₂(dba)₃ (0.92 mg, 0.001 mmol), PPh₃ (1.1 mg, 0.004 mmol), Cs₂CO₃ (3.9 mg, 0.012 mmol), and CsF (1.8 mg, 0.012 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. The reaction mixture was diluted with CH₂Cl₂, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by GPC and silica-gel column chromatography (CH₂Cl₂–hexane as an eluent) and recrystallization with CH₂Cl₂/MeOH afforded **4H** (12 mg, 0.0031 mmol) in 52% yield as a dark red solid. **4H:** ¹H NMR (CDCl₃, rt): δ 11.27 (s, 4H, *meso*-H), 9.07 (s, 8H, β -H), 8.81 (d, *J* = 5.0 Hz, 8H, β -H), 8.77 (d, *J* = 5.0 Hz, 8H, β -H), 8.67 (s, 8H, thiophene-H), 8.06 (t, *J* = 1.8 Hz, 8H, Ar-o-H), 8.04 (t, *J* = 1.8 Hz, 4H, Ar-o-H), 7.71 (t, *J* = 1.8 Hz, 8H, Ar-o-H), 7.89 (t, *J* = 1.8 Hz, 4H, Ar-o-H), 7.73 (t, *J* = 1.8 Hz, 4H, Ar-p-H), 7.71 (t, *J* = 1.8 Hz, 8H, Ar-p-H), 1.52 (s, 72H, *tert*-butyl), 1.49 (s, 36H, *tert*-butyl), 1.41 (s, 36H, *tert*-butyl), 1.38 (s, 72H, *tert*-butyl), and -2.60 (s, 8H, NH) ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) =

428 (270000), 531 (78000), 603 (32000), and 657 (6000) nm; MS (MALDI-TOF-MS): m/z = 3821.30, calcd for C₂₆₄H₂₉₆N₁₆S₄ = 3821.26 [*M*]⁺; Fluorescence (CH₂Cl₂, λ_{ex} = 428 nm): λ_{max} = 666 nm. Φ_F = 0.032.

Synthesis of 4Ni: **4H** (5.0 mg) was added to a round-bottomed 50-mL flask with a magnetic bar, and dissolved in toluene. Excess nickel(II) acetylacetonate was added. After stirring for 5 h, the reaction mixture was passed through an alumina column, evaporated and recrystallized from methanol and dichloromethane. **4Ni** was obtained quantitatively. **4Ni**: ¹H NMR (CDCl₃, rt): δ 10.81 (s, 4H, *meso*-H), 8.93 (s, 8H, β -H), 8.70 (d, *J* = 5.0 Hz, 8H, β -H), 8.69 (d, *J* = 5.0 Hz, 8H, β -H), 8.11 (s, 8H, thiophene-H), 7.66 (t, *J* = 1.8 Hz, 4H, Ar-*p*-H), 7.60 (t, *J* = 1.8 Hz, 8H, Ar-*p*-H), 1.42 (s, 72H, *tert*-butyl), and 1.29 (s, 144H, *tert*-butyl) ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 437 (30000), 545 (67000), and 578 (50000) nm; HR-MS (MALDI-TOF-MS): *m*/*z* = 4047.84, calcd for C₂₆₄H₂₈₈N₁₆Ni₄S₄ = 4047.94 [*M*]⁺.

Synthesis of 4Zn: **4H** (5.0 mg) was added to a round-bottomed 50-mL flask and dissolved in chloroform. An excess amount of saturated zinc(II) acetate in methanol was added. The complete metalation was confirmed by TLC and MALDI-TOF mass spectra. The reaction mixture was passed through a short alumina column and recrystallized with CH₂Cl₂/MeOH. **4Zn** was obtained as a red solid quantitatively. **4Zn**: ¹H NMR (CDCl₃, rt): δ 11.37 (s, 4H, *meso*-H), 9.16 (s, 8H, β -H), 8.93 (d, *J* = 5.0 Hz, 8H, β -H), 8.89 (d, *J* = 5.0 Hz, 8H, β -H), 8.67 (s, 8H, thiophene-H), 8.07 (t, *J* = 1.8 Hz, 8H, Ar-o-H), 8.05 (t, *J* = 1.8 Hz, 4H, Ar-o-H), 7.98 (t, *J* = 1.8 Hz, 8H, Ar-o-H), 7.91 (t, *J* = 1.8 Hz, 4H, Ar-o-H), 7.73 (t, *J* = 1.8 Hz, 4H, Ar-p-H), 7.71 (t, *J* = 1.8 Hz, 8H, Ar-p-H), 1.52 (s, 72H, *tert*-butyl), 1.49 (s, 36H, *tert*-butyl), 1.43 (s, 36H, *tert*-butyl), and 1.37 (s, 72H, *tert*-butyl) ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 429 (290000), 452 (270000), 563 (80000), and 597(2600) nm; MS (MALDI-TOF-MS): m/z = 4074.80, calcd for C₂₆₄H₂₈₈N₁₆Zn₄S₄ = 4074.90 [M]+; Fluorescence (CH₂Cl₂, λ_{ex} = 428 nm): λ_{max} = 663 nm. Φ_{F} = 0.037.

Single crystals of **4Zn** suitable for X-ray crystallographic analysis were obtained by vapor diffusion of ethanol into toluene and pyridine solution of **4Zn**.

Single crystals of 4Ni- C_{60} suitable for X-ray crystallographic analysis were obtained by vapor diffusion of 2-propanol into dichlorobenzene solution of 4Ni and C_{60} (the amount of C_{60} is excess relative to 4Ni).

MALDI-TOF mass spectra

Figure S1. MALDI-TOF mass spectrum of 2B.

Figure S2. MALDI-TOF mass spectrum of 2Br.

Figure S3. MALDI-TOF mass spectrum of 4H.

Figure S5. MALDI-TOF mass spectrum of 4Zn.

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2011

¹H NMR spectra

Figure S6. ¹H NMR spectrum of 2B in CDCl₃.

Figure S7. ¹H NMR spectrum of 2Br in CDCl₃.

Figure S8. ¹H NMR spectrum of 4H in CDCl₃.

Figure S9. ¹H NMR spectrum of 4Ni in CDCl₃.

Figure S10. ¹H NMR spectrum of 4Zn in CDCl₃.

UV-vis Absorption Spectra

Figure S11. UV-vis absorption spectra of (a) **4H** (black line), **4Zn** (red line), **4Ni** (blue line), and Fluorescence spectra of (b) **4H** (black line), **4Zn** (red line) in dichloromethane.

UV-vis., and ¹H NMR studies of 4Ni with C₆₀ and job's plot

Typical procedure of UV-vis. titration

An aliquot of a solution of C₆₀ (3.2×10^{-3} M in toluene) was added to a solution of **4Ni** (2.0×10^{-6} M in toluene), and the resulting solutions were subjected to UV-vis. spectroscopy at 25°C (Figure S12). The spectrum was corrected with a dilution factor and background subtraction. The difference in absorbance of **4Ni** induced by the addition of C₆₀ was measured at 438 nm. Binding curves were obtained by plotting *y* against C₆₀, where *y* denotes a fraction of complex **4Ni**-C₆₀ and defined as *y* = (Abs_{obs}-Abs₀)/(Abs_∞-Abs₀) where Abs₀, Abs_∞ is Abs_{obs} at C₆₀ = 0 and infinite, respectively (Figure S12, inset). The analysis of the spectral data provided a value of log*K* = 7.7 ± 0.6, *N* = 1.6.

Typical procedure of job's plot

Solution of **4Ni** and C₆₀ (each 0.02 mM in toluene) were mixed to prepare 12 samples (each 0.3 mL) with varying mole fractions of **4Ni** from 0 to 1, which were subjected to UV-vis spectroscopies at 25°C. Absorbance values at 438 nm were normalized to the maximal increase Δ Abs in absorbance with the following equation, Δ Abs = Abs_{obs}-Abs_{ref}, where Abs_{ref} is absorbance of **4Ni** in the absence of C₆₀ under the same concentration of **4Ni** in the conditions of Abs_{obs}. Job's plot was obtained by plotting Δ Abs values against mole fractions of **4Ni** (Figure S13).

area is enlarged at right side.

formation

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2011

Typical procedure of the ¹H NMR titration

An aliquot of a solution of C_{60} was added to a solution of **4Ni**, after evaporation and dissolved in suitable CDCl₃, and the resulting solutions were subjected to ¹H NMR spectroscopy at 25°C (Figure S14).

Figure S14 ¹H NMR titration spectra of 4Ni with C₆₀ in CDCl₃ at 25°C.

Figure S15. Plots of chemical shift change versus $[C_{60}]/[4Ni]$ in CDCl₃, 25°C. ($\Delta \delta = \delta_{obs} - \delta_0$, where δ_0 is δ_{obs} at $[C_{60}] = 0$ M)

Table S1. Crystal data for **4Zn** and **4Ni**-C₆₀.

Compound	4Zn*	4Ni- C ₆₀ *
Empirical formula	$C_{264}H_{288}N_{16}Zn_4S_4$	$C_{264}H_{282}N_{16}Ni_4S_4(C_{60})_3(dichlorobenzene)_4$
Formula weight	4074.82	6791.90
Temperature (K)	90(2)	90(2)
Wavelength (Å)	0.71069	0.71073
Crystal system	Tetragonal	Monoclinic
Space group	I-42 <i>d</i>	C2/c
Unit cell dimensions	a = 41.392(5) Å	a = 25.617(4) Å
		$b = 71.860(12) \text{ Å} \ \beta = 92.466(4)^{\circ}$
	c = 22.518(5)Å	c = 26.909(5) Å
Volume (Å ³)	38580(11)	49490(14)
Ζ	4	4
Density (calc) (Mg/m ³)	0.702	0.912
mu (mm ⁻¹)	0.302	0.256
F(000)	8672	14120
Crystal size (mm ³)	0.60 x 0.30 x 0.20	0.30 x 0.20 x 0.10
θ for data collection	1.39 to 23.50°	0.84 to 23.50°
Index ranges -4	6<=h<=42, -46<=k<=45, -25<=l<=23	-28<=h<=28, -79<=k<=80, -25<=l<=30
Reflections collected	87359	113582
Independent reflections	14251 [<i>R</i> (int) = 0.1355]	36533 [<i>R</i> (int) = 0.1018]
Completeness	99.7 % (<i>θ</i> = 23.50°)	99.7 % (<i>θ</i> = 23.50°)
Absorption correction	Empirical	Empirical
Max. and min. transmis	sion 0.9421 and 0.8397	0.9748 and 0.9271
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data/restraints/parame	eters 14251 / 604 / 613	36533 / 3447 / 2999
Goodness-of-fit on F ²	0.715	0.991
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0860, wR_2 = 0.2110$	$R_1 = 0.1191, wR_2 = 0.2915$
R indices (all data)	$R_1 = 0.2196, wR_2 = 0.2413$	$R_1 = 0.1780, wR_2 = 0.3194$
Largest diff. peak and h	ole 0.252 and -0.238 e.Å ⁻³	0.929 and -0.361 e.Å ⁻³
CCDC number	801517	801516

* The contributions to the scattering arising from the presence of the disordered solvents in the crystal were removed by use of the utility SQUEEZE in the PLATON software package.

Figure S16. X-Ray crystal structure of **4Zn**. (a) Top view, and (b) side view. The thermal ellipsoids are 15% probability level. Hydrogen atoms and 'Bu groups are omitted for clarity.

Explanation for a "level A" alert: Since the crystals contained many severely disordered solvent molecules, they gave only week diffractions. However, these are not significant concern for the main skeletal structure.

Figure S17. X-Ray crystal structure of **4Ni**- C_{60} . The thermal ellipsoids are 30% probability level. Hydrogen atoms, solvent molecules, disordered and outside C_{60} molecules, and *t*Bu groups are omitted for clarity.

Explanation for a "level A" alert: The alert comes from the rotational disorder of *tert*-Butyl groups.

Figure S18. A columnar zigzag array of the fullerene molecules along the *a*-axis shown as a space-filling model. The blue fullerene molecules interconnect face-to-face with two $(C_{60})_2$ @**4Ni**. For clarity, **4Ni** units at bottom are shown as a ball-and-stick model. ^{*t*}Bu groups are omitted for clarity.