
Supporting Information for "Kinetics-Driven High Power Li-ion Battery with *a*-Si/NiSi_x Core-Shell Nanowire Anodes"

Kibum Kang¹, Kyeong-Se Song,³ Hoseok Heo,² Sunyoung Yoo¹, Gil-Sung Kim,¹ Geunhee Lee, Yong-Mook Kang,^{3,*} and Moon-Ho Jo^{1,2,*}

¹Department of Materials Science and Engineering and ²Division of Advanced Materials Science,
Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Nam Gu, Pohang,
Gyungbuk 790-784, Korea, ³Division of Advanced Materials Engineering, Kongju National University,
275 Budae-Dong, Cheonan, Chungnam 330-717, Korea

*E-mail: Moon-Ho Jo; mhjo@postech.ac.kr, Yong-Mook Kang; dake1234@kongju.ac.kr

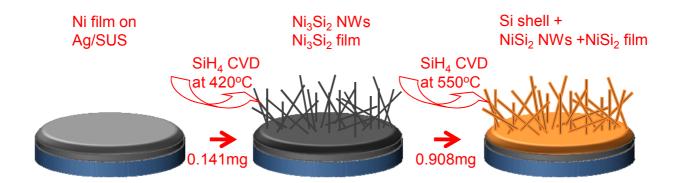
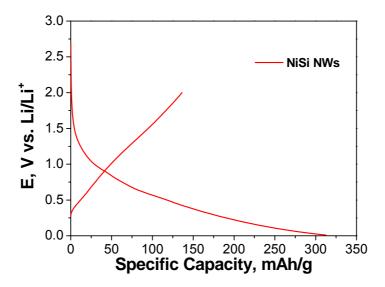

c-Si/NiSix NWs

Figure S1 (a) TEM image of an individual c-Si /NiSi_x NW. The inset shows a plan-view SEM image of c-Si/NiSi_x NW grown on SUS substrate. (b) HAADF image of a c-Si/NiSi_x NW and EDX elemental mapping images (inset). (c) HRTEM image of an individual c-Si/NiSi_x NW at the core region and the corresponding FFT-DP along the [1-10] zone axis (inset). The spot in orange color circle arise from the interface-twin boundary between c-Si and NiSi₂ (d) HRTEM image of an individual c-Si/NiSi_x NW at the shell region and the corresponding FFT-DP along the [1-10] zone axis (inset).

Figure S2 A photograph of the a-Si/NiSi_x NW grown on the whole SUS substrate of 15 Φ diameter.



- Phase of Ni-silicide after SiH₄ reactions
- SiH₄ CVD on Ni at 420°C→ Ni₃Si₂ NWs and Ni₃Si₂ film
- SiH₄ CVD on Ni₃Si₂ NWs and Ni₃Si₂ film at 550°C → Si Shell, NiSi₂ NWs and NiSi₂ film
- Average mass change
- SiH₄ CVD on Ni film at 420°C for Ni₃Si₂ NW growth: 0.141mg
- SiH₄ CVD on Ni₃Si₂ NWs and Ni₃Si₂ film at 550°C for Si shell deposition: 0.908mg
- Additional mass due to phase transition
 Ni → Ni₃Si₂ NWs + Ni₃Si₂ film : 0.141mg
 From this result estimated additional mass due to phase transition
 Ni₃Si₂ NWs + Ni₃Si₂ film → NiSi₂ NWs + NiSi₂ film : 0.282mg
- Mass calculation of the Si Shell
 0.908mg = Si Shell + additional mass due to phase transition + other silicide reaction

Phase transition mass from $\mathrm{Ni_3Si_2}$ to $\mathrm{NiSi_2}$ is 0.282mg, Therefore mass of Si shell is 0.626mg

We finally normalized the specific capacity of Si/Ni-silicide NW anode using the mean value of the expected mass of Si shell, 0.626mg.

Figure S3 Explanation of the normalization method for calculating the gravimetric capacity.

Figure S4 The current charge/discharge curve for the 1st cycle of the NiSi_x NW cell in the galvanostatic mode.