Supporting information for:

Highly Enantioselective Palladium-Catalyzed Umpolung Allylation of Aldehydes

Shou-Fei Zhu, Xiang-Chen Qiao, Yong-Zhen Zhang, Li-Xin Wang, Qi-Lin Zhou*

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University Tianjin 300071, China.

CONTENTS:

1.	Preparation of New Chiral Spiro Phosphite Ligands	S2
2.	Typical Palladium-Catalyzed Allylation Procedures	S3
3.	Analytical Data for Homoallylic Alcohols	S3
4.	NMR Spectra for New Compounds	S10
5.	HPLC and SFC Charts for Homoallylic Alcohols	S20

General. All reactions and manipulations were performed using standard Schlenk techniques. THF and diethyl ether were distilled from sodium benzophenone ketyl under nitrogen atmosphere. Et₃N was distilled over CaH₂ under nitrogen atmosphere. PCl₃ was fresh distilled before use. Commercially available aldehydes and allylic alcohols were purified by recrystallization or distillation before use. Pd(OAc)₂, n-BuLi (2.15 M solution in hexane), Et₃B (1.0 M in hexane), Et₂Zn (2.8 M in hexane), 3,5-ditertbutylphenol, and 2,6-ditertbutyl-4-methylphenol were purchased from Acros and Alderich Co. Ltd. and used as received. $Pd(dba)_2$ was prepared according to the literature procedure.¹ Ligands 2b, 2d, 3a are commercially available from Aldrich, Strem and Jiuzhou Pharma Co. Ltd. and other ligands were prepared according to the literature procedures.² Melting points were measured on a RY-I apparatus and uncorrected. NMR spectra were recorded with a Bruker AV 300 spectrometer at 300 MHz (¹H NMR), 75 MHz (¹³C NMR) and 121.5 MHz (³¹P NMR) or a Varian Mercury Plus 400 spectrometer at 400 MHz (¹H NMR), 100 MHz (¹³C NMR) and 162 MHz (³¹P NMR). Chemical shifts (δ values) were reported in ppm down field from internal Me₄Si (¹H and ¹³C NMR) and external 85% H₃PO₄ (³¹P NMR), respectively. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. Elemental analyses were performed on Yanaca CDRDER MT-3 instrument. Mass spectra were recorded on a VG-7070E spectrometer. HPLC analyses were performed on a Hewlett Packard Model HP 1100 Series. SFC analyses were performed using a Mettler-Toledo Model Analytix SFC.

¹ T. Ukai, H. Kawazura, Y. Ishii, J. J. Bonnet and J. A. Ibers, J. Organometal. Chem., 1974, 65, 253–266.

² (*a*) P. H. Dussault and K. R. Woller, *J. Org. Chem.*, 1997, **62**, 1556–1559; (*b*) H. Zhou, W.-H. Wang, Y. Fu, J.-H. Xie, W.-J. Shi, L.-X. Wang, Q.-L. Zhou, *J. Org. Chem.*, 2003, **68**, 1582–1584; (*c*) W.-J. Shi, L.-X. Wang, Y. Fu, S.-F. Zhu and Q.-L. Zhou, *Tetrahedron: Asymmetry*, 2003, **14**, 3867–3872; (*d*) W.-J. Shi, J.-H. Xie and Q.-L. Zhou, *Tetrahedron: Asymmetry*, 2005, **16**, 705–710; (*e*) S.-F. Zhu, Y. Yang, L.-X. Wang, B. Liu and Q.-L. Zhou, *Org. Lett.*, 2005, **7**, 2333–2335; (*f*) H.-F. Duan, J.-H. Xie, W.-J. Shi, Q. Zhang and Q.-L. Zhou, *Org. Lett.*, 2006, **8**, 1479–1481; (*g*) W. Zhang, S.-F. Zhu, X.-C. Qiao and Q.-L. Zhou, *Chem. Aisan J.*, 2008, **3**, 2105–2111.

1 Preparation of New Chiral Phosphite Ligands

Synthesis of (S)-3,5-di-tert-butylphenyl-(1,1'-spirobiindane-7,7'-diyl)phosphite ((S)-3d)

A solution of (S)-1,1'-spirobiindane-7,7'-diol (500 mg, 1.98 mmol) and Et₃N (445 mg, 4.4 mmol) in THF (20 mL) was cooled to -78 °C and fresh distilled PCl₃ (288 mg, 2.10 mmol) was added with stirring. After the addition of PCl₃, the reaction mixture was stirred for 1 h at -78 °C, warmed to room temperature and continuously stirred overnight. The resulting suspension was filtered under nitrogen and the filtrate was concentrated in vacuum. The residue was re-dissolved with THF (10 mL) and the solution was cooled to -78 °C and treated with lithium 3,5-di-tert-butylphenolate prepared from 3,5-di-tert-butylphenol (2.0 mmol) and butyllithium (2.15 M solution in hexane, 1.0 mL, 2.2 mmol) in 10 mL THF at -78 °C. The resulting solution was warmed to room temperature and stirred for 2 days. The solvent was removed in vacuum and the residue was filtered through a silica gel plug eluting with ethyl acetate/petroleum ether (1:40, v/v) to afford pure product in 72% yield as a white solid, mp 88–90 °C. $[\alpha]_D^{20^2} = -366$ (c 0.5, CH_2Cl_2 ; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.2 Hz, 2H, Ar-H), 7.19–6.97 (m, 6H, Ar-H), 6.72 (d, J = 10.4 Hz 1H, Ar-H), 3.14–3.03 (m, 2H, CH₂), 2.88–2.79 (m, 2H, CH₂), 2.30–2.22 (m, 2H, CH₂), 2.05–1.92 (m, 2H, CH₂), 1.29 (s, 18H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 146.1, 145.8, 145.0, 144.9, 143.5, 140.3, 128.6, 128.1, 127.5, 123.3, 122.7, 121.9, 121.5, 59.6, 39.1, 38.1, 36.3, 33.0, 31.1, 30.8; ³¹P NMR (161 MHz, CDCl₃) δ 124.7 (s); MS (EI) m/z 486 (M⁺); Anal. Calcd for C₃₁H₃₅O₃P: C 76.52, H 7.25; Found: C 76.36; H 7.38.

Synthesis of (S)-2,6-di-tert-butyl-4-methylphenyl-(1,1'-spirobiindane-7,7'-diyl)phosphite ((S)-3e)

Ligand (*S*)-**3e** was synthesized from (*S*)-1,1'-spirobiindane-7,7'-diol and lithium 2,6-di-tert-butyl-4-methylphenolate by the same procedure as that for (*S*)-**3d**. 53% yield; white solid, mp 125–127 °C. $[\alpha]_D^{20} = -272$ (*c* 0.5, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.23–6.97 (m, 7H, Ar-H), 6.73 (d, J = 7.8 Hz , 1H, Ar-H), 3.13–3.02 (m, 2H, CH₂), 2.87–2.78 (m, 2H, CH₂), 2.29–2.21 (m, 5H), 2.03–1.91 (m, 2H, CH₂), 1.28 (s, 18H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 145.8, 145.3, 145.0, 144.9, 143.3, 140.3, 136.0, 132.0, 128.6, 128.1, 125.8, 122.8, 121.9, 121.4, 59.5, 39.1, 38.1, 36.1, 34.5, 33.1, 32.4, 31.2, 30.8, 21.4; ³¹P NMR (161 MHz, CDCl₃)

δ 124.8 (s); MS (EI) m/z 500 (M⁺); Anal. Calcd for C₃₂H₃₇O₃P: C 76.78, H 7.45; Found: C 76.91, H 7.62.

2 Typical Palladium-Catalyzed Allylation Procedures

2.1 Typical procedure for palladium-catalyzed allylation of aromatic aldehydes with allylic alcohols: A oven-dried Schlenk tube was charged with Pd(dba)₂ (8.0 mg, 0.014 mmol) and (S)-3e (14.0 mg, 0.028 mmol) in an argon-filled glove-box. Diethyl ether (0.8 mL) was added to the Schlenk tube with a syringe, and the resulting mixture was stirred at 25 °C for 1 h. 2-Naphthaldehyde (44 mg, 0.28 mmol), propan-2-en-1-ol (65 mg, 1.12 mmol) and Et₃B (1.4 mL, 1.0 M in hexane, 1.4 mmol) were added sequentially. The Schlenk tube was then sealed with a glass stopple and the mixture was stirred at 25 °C for 3 days. The reaction mixture was concentrated under reduced pressure, and the residue was chromatographied on silica gel column with ethyl acetate/petroleum ether (1:5, v/v) to afford (S)-1-(2-naphthyl)but-3-en-1-ol (7aa) in 93 % yield as colorless oil. Enantiomeric excess (96%) was determined by chiral HPLC analyses using a Chiralcel OJ column.

2.2 Typical procedure for palladium-catalyzed allylation of aliphatic aldehydes with allylic alcohols: A oven-dried Schlenk tube was charged with Pd(dba)₂ (8.0 mg, 0.014 mmol) and (S)-3e (14.0 mg, 0.028 mmol) in an argon-filled glove-box. Diethyl ether (0.8 mL) was added to the Schlenk tube with a syringe, and the resulting mixture was stirred at 25 °C for 1 h. 3-Phenylpropanal (38 mg, 0.28 mmol), propan-2-en-1-ol (65 mg, 1.12 mmol), oven-dried silical gel (80 mg) and Et₃B (1.4 mL, 1.0 M in hexane, 1.4 mmol) were added sequentially. The Schlenk tube was then sealed with a glass stopple and the mixture was stirred at 25 °C for 4 days. The reaction mixture was concentrated under reduced pressure, and the residue was chromatographied on silica gel column with ethyl acetate/petroleum ether (1:5, v/v) to afford (R)-1-phenyl-hexa-5-en-3-ol (7qa) in 83 % yield as colorless oil. Enantiomeric excess (93%) was determined by chiral HPLC analyses using a Chiralcel OD column.

2.3 Typical procedure for palladium-catalyzed allylation of aromatic aldehydes with various allylic **donors:** A oven-dried Schlenk tube was charged with $Pd(dba)_2$ (8.0 mg, 0.014 mmol) and (R)-3e (14.0 mg, 0.028 mmol) in an argon-filled glove-box. THF (2.0 mL) was added to the Schlenk tube with a syringe, and the resulting mixture was stirred at 25 °C for 1 h. 2-Naphthaldehyde (44 mg, 0.28 mmol), allyl acetate (42 mg, 0.42 mmol) and Et₂Zn (0.1 mL, 2.8 M in hexane, 0.28 mmol) were added sequentially at 10 °C. The Schlenk tube was then sealed with a glass stopple and the mixture was stirred at 10 °C for 5 days. The reaction mixture was concentrated under reduced pressure, and the residue was chromatographied on silica gel column with ethyl acetate/petroleum ether (1:5, v/v) to afford (R)-1-(2-naphthyl)but-3-en-1-ol (7aa) in 97 % yield as colorless oil. Enantiomeric excess (95%) was determined by chiral HPLC analyses using a Chiralcel OJ column.

3 Analytical Data for Homoallylic Alcohols

(S)-1-(2-Naphtyl)but-3-en-1-ol $(7aa)^3$

Colorless oil; 93% yield; ¹H NMR (300 MHz, CDCl₃) & 7.74-7.69 (m, 4H, Ar-H), 7.39–7.35 (m, 3H, Ar-H), 5.80–5.65 (m, 1H, CH), 5.11–5.02 (m, 2H, CH_2), 4.80 (t, J = 6.3 Hz, 1H, CH), 2.52–2.44 (m, 2H, CH_2), 2.19 (s, 1H, OH); 96% ee [HPLC condition: Chiralcel OJ column, *n*-hexane/propan-2-ol = 90:10,

flow rate = 1.0 mL/min, wavelength = 220 nm, $t_{\rm R}$ = 12.9 min for (S)-enantiomer, $t_{\rm R}$ = 18.5 min for (R)-enantiomer], $[\alpha]_{\rm D}^{27}$ = -66.9 (c 1.20, CHCl₃) [lit: $[\alpha]_{\rm D}$ = -55.0 (c 1.16, CHCl₃) for 90% ee, (S)].

(S)-1-Phenvlbut-3-en-1-ol $(7ba)^4$

Colorless oil; 65% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.25 (m, 5H, Ar-H), 5.88-5.73 (m, 1H, CH), 5.19-5.12 (m, 2H, CH₂), 4.75-4.71 (m, 1H, CH), 2.56-2.43 (m, 2H, CH₂), 2.08 (d, J = 2.1 Hz, 1H, OH); 95% ee [HPLC condition: Chiralcel OD column, n-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 19.2 min for (*R*)-enantiomer and $t_{\rm R}$ =23.8 min for (*S*)-enantiomer]; [α]_D²⁰ = -48.2 $(c \ 0.50, \text{ benzene})$ [lit: $[\alpha]_D = +43.7 (c \ 6.7, \text{ benzene})$ for 90% ee, (R)].

(S)-1-(2-Methylphenyl)but-3-en-1-ol $(7ca)^5$

³ A. V. Malkov, M. Bell, M. Orsini, D. Pernazza, A. Massa, P. Herrmann, P. Meghani and P. Kočovský, J. Org. Chem., 2003, **68**, 9659–9668.

⁴ M. Riediker and R. O. Duthaler, Angew. Chem., Int. Ed. Engl., 1989, 28, 494–495.

⁵ A. Kina, T. Shimada and T. Hayashi, Adv. Synth. Catal., 2004, **346**, 1169–1174.

Colorless oil; 70% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, J = 7.2 Hz, 1H, Ar-H), δ 7.18–7.04 (m, 3H, Ar-H), 5.85–5.71 (m, 1H, CH), 5.14–5.06 (m, 2H, CH₂), 4.91–4.87 (m, 1H, CH), 2.46–2.32 (m, 2H, CH₂), 2.26 (s, 3H, CH₃), 1.94 (d, J = 2.7 Hz, 1H, OH); 91% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 17.4

min for (R)-enantiomer and $t_{\rm R} = 21.3$ min for (S)-enantiomer]; $\left[\alpha\right]_{\rm D}^{29} = -42.1$ (c 0.47, EtOH) [lit: $\left[\alpha\right]_{\rm D}^{20} =$ -46.8 (c 1.26, EtOH) for 90% ee, (S)].

(-)-1-(2-Chlorophenyl)but-3-en-1-ol (7da)⁶

Colorless oil; 90% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.50–7.46 (m, 1H, Ar-H), 7.26-7.08 (m, 3H, Ar-H), 5.85-5.71 (m, 1H, CH), 5.13-5.04 (m, 3H, CH and CH₂), 2.59-2.50 (m, 1H, CH₂), 2.35-2.24 (m, 1H, CH₂), 2.21 (d, J = 3.3 Hz, 1H, OH); 89% ee [HPLC condition: Chiralcel OB column, n-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 8.3 min (major) and $t_{\rm R}$ = 9.9 min (minor)]; $[\alpha]_{D}^{20} = -72.6 \ (c \ 1.07, benzene).$

(-)-1-(3-Methoxyphenyl)but-3-en-1-ol (7ea)⁷

Colorless oil; 87% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.28-7.22 (m, 1H, Ar-H), 6.93–6.91 (m, 2H, Ar-H), 6.83–6.78 (m, 1H, Ar-H), 5.87–5.73 (m, 1H, CH), 5.19-5.11 (m, 2H, CH₂), 4.72-4.67 (m, 1H, CH), 3.80 (s, 3H, CH₃), 2.52-2.44 (m, 2H, CH₂), 2.14 (br, 1H, OH); 96% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 51.6 min (minor) and $t_{\rm R}$ = 54.1 min (major)]; $[\alpha]_{\rm D}^{23} = -25.4$ (c 1.25, benzene).

(-)-1-(3-Methylphenyl)but-3-en-1-ol (7fa)⁸

Colorless oil; 72% yield; ¹H NMR (300 MHz, CDCl₃) & 7.17-6.98 (m, 4H, Ar-H), 5.79–5.64 (m, 1H, CH), 5.10–5.02 (m, 2H, CH₂), 4.59 (t, J = 6.5 Hz, 1H, CH), 2.43-2.38 (m, 2H, CH₂), 2.27 (s, 3H, CH₃), 2.09 (s, 1H, OH); 96% ee [HPLC condition: Chiralcel OD column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0mL/min, wavelength = 210 nm, t_R = 16.5 min (minor) and t_R = 22.1 min (major)];

 $[\alpha]_D^{23} = -35.3$ (*c* 0.15, benzene).

(-)-1-(3-Chlorophenyl)but-3-en-1-ol (7ga)⁸

Colorless oil; 82% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.28 (s, 1H, Ar-H), 7.20-7.12 (m, 3H, Ar-H), 5.78-5.63 (m, 1H, CH), 5.12-5.06 (m, 2H, CH₂), 4.63-4.60 (m, 1H, CH), 2.44-2.34 (m, 2H, CH₂), 2.13 (s, 1H, OH); 93% ee [HPLC condition: Chiralcel OB column, *n*-hexane/propan-2-ol = 98:2, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 9.7 min (major) and $t_{\rm R}$ = 11.9 min (minor)]; $[\alpha]_D^{23} = -28.6$ (*c* 0.90, benzene).

(S)-1-(4-Methoxyphenyl)but-3-en-1-ol (7ha)⁹

Colorless oil; 63% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.18 (d, J = 8.7 Hz, 2H, Ar-H), 6.80 (d, J = 8.7 Hz, 2H, Ar-H), 5.78–5.63 (m, 1H, CH), 5.08–5.01 (m, 2H, CH₂), 4.61–4.55 (m, 1H, CH), 3.71 (s, 3H, CH₃), 2.43–2.38 (m, 2H, CH₂), 2.10 (s, 1H, OH); 94% ee [HPLC condition: Chiralcel OD column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm,

 $t_{\rm R} = 28.7$ min for (*R*)-enantiomer and $t_{\rm R} = 34.0$ min for (*S*)-enantiomer]; $\left[\alpha\right]_{\rm D}^{20} = -33.7$ (*c* 0.73, benzene) [lit: $\left[\alpha\right]_{D}^{23} = +30.5 \ (c \ 1.0, \text{ benzene) for } 95\% \ \text{ee, } (R)].$

(S)-1-(4-Methylphenyl)but-3-en-1-ol (7ia)³

Colorless oil; 69% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.24 (d, J = 7.8 Hz, 2H, Ar-H), 7.16 (d, J = 7.8 Hz, 2H, Ar-H), 5.86–5.72 (m, 1H, CH), 5.17–5.10 (m, 2H, CH₂), 4.70–4.66 (m, 1H, CH), 2.51–2.47 (m, 2H, CH₂), 2.34 (s, 3H, CH₃), 2.08 (d, J = 2.4 Hz, 1H, OH); 95% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ =

22.2 min for (R)-enantiomer and $t_{\rm R} = 24.8$ min for (S)-enantiomer]; $\left[\alpha\right]_{\rm D}^{23} = -47.2$ (c 0.38, CHCl₃) [lit: $\left[\alpha\right]_{\rm D}$

⁶ Z. Zha, A. Hui, Y. Zhou, Q. Miao, Z. Wang and H. Zhang, Org. Lett., 2005, 7, 1903–1905.

G-L. Li and G. Zhao, J. Org. Chem., 2005, 70, 4272-4278.

⁸ H. Yamataka, K. Nishikawa and T. Hanafusa, Bull. Chem. Soc. Jpn., 1992, 65, 2145-2150.

⁹ M. Wadamoto, N. Ozasa, A. Yanagisawa and H. Yamamoto, J. Org. Chem., 2003, 68, 5593-5601.

= -31.1 (c 0.9, CHCl₃) for 87% ee, (S)].

(-)-1-(4-Fluorophenyl)but-3-en-1-ol (7ja)⁸

Colorless oil; 77% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.24 (dd, J = 8.4 and 5.4 Hz, 2H, Ar-H), 6.95 (t, J = 8.7 Hz, 2H, Ar-H), 5.78–5.63 (m, 1H, CH), 5.11–5.04 (m, 2H, CH₂), 4.67–4.60 (m, 1H, CH), 2.43–2.37 (m, 2H, CH₂), 2.11 (d, J = 3.0Hz, 1H, OH); 96% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 22.0 min (minor) and $t_{\rm R} = 22.9$ min (major)]; $[\alpha]_{\rm D}^{23} = -32.1$ (c 1.0, benzene).

(S)-1-(4-Chlorophenyl)but-3-en-1-ol (7ka)¹⁰

Colorless oil; 81% yield; ¹H NMR (300 MHz, CDCl₃) & 7.25–7.18 (m, 4H, Ar-H), 5.76-5.62 (m, 1H, CH), 5.09-5.04 (m, 2H, CH₂), 4.62-4.59 (m, 1H, CH), 2.44–2.33 (m, 2H, CH₂), 2.14 (d, J = 3.0 Hz, 1H, OH); 95% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, Cl² wavelength = 210 nm, $t_{\rm R}$ = 25.0 min for (*R*)-enantiomer and $t_{\rm R}$ = 26.3 min for (*S*)-enantiomer]; $[\alpha]_{\rm D}^{20} = -28.5 \ (c \ 1.15, \ benzene) \ [lit: <math>[\alpha]_{\rm D}^{28} = +26.4 \ (c \ 0.38, \ benzene) \ for \ 98\% \ ee, \ (R)].$

(S)-1-(4-Trifluoromethylphenyl)but-3-en-1-ol (7la)³

Colorless oil; 83% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 2H, Ar-H), 7.39 (d, J = 8.1 Hz, 2H, Ar-H), 5.78–5.63 (m, 1H, CH), 5.12–5.07 (m, 2H, CH₂), 4.75–4.68 (m, 1H, CH), 2.51–2.32 (m, 2H, CH₂), 2.17 (d, J = 3.3 Hz, 1H, OH); 92% ee [HPLC condition: Chiralpak AD-H column, n-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 19.8 min for (*R*)-enantiomer and $t_{\rm R}$ =20.9 min for (*S*)-enantiomer]; $\left[\alpha\right]_{\rm D}^{23} = -35.7$ (c 0.78,

 CH_2Cl_2 [lit: $[\alpha]_D = -33.6$ (c 0.25, CH_2Cl_2) for 91% ee, (S)].

(-)-1-(3,4-Dichlorophenyl)but-3-en-1-ol (7ma)¹¹

Colorless oil; 86% yield; ¹H NMR (300 MHz, CDCl₃) & 7.38-7.31 (m, 2H, Ar-H), 7.11-7.08 (m, 1H, Ar-H), 5.76-5.62 (m, 1H, CH), 5.12-5.06 (m, 2H, CH₂), 4.65–4.59 (m, 1H, CH), 2.48–2.29 (m, 2H, CH₂), 2.15 (d, J = 3.3 Hz, 1H, OH); 92% ee [HPLC condition: Chiralpak AD-H column, n-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 25.8 min (minor) and

 $t_{\rm R} = 29.2 \text{ min (major)}; [\alpha]_{\rm D}^{23} = -23.2 (c \ 1.30, \text{ benzene}).$

(S)-1-(2-Furyl)but-3-en-1-ol (7na)⁹

Colorless oil; 52% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (s, 1H, CH), 6.33–6.24 (m, 2H, CH), 5.88-5.73 (m, 1H, CH), 5.21-5.12 (m, 2H, CH₂), 4.77-4.72 (m, 1H, CH), 2.66–2.60 (m, 2H, CH₂), 2.11 (s, 1H, OH); 97% ee [HPLC condition: Chiralcel OD column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210mm, $t_{\rm R} = 21.0$ min for (*R*)-enantiomer and $t_{\rm R} = 23.2$ min for (*S*)-enantiomer]; $[\alpha]_{\rm D}^{20} = -28.4$ (*c* 0.28, Et₂O) [lit: $[\alpha]_{\rm D}^{26} = +29.9$ (*c* 1.0, Et₂O) for 95% ee, (*R*)].

(S)-1-(2-Thienyl)but-3-en-1-ol (70a)¹²

Colorless oil; 60% yield; ¹H NMR (300 MHz, CDCl₃) & 7.25-7.22 (m, 1H, CH), 6.97-6.94 (m, 2H, CH), 5.89-5.75 (m, 1H, CH), 5.21-5.13 (m, 2H, CH₂), 4.99-4.94 (m, 1H, CH), 2.63–2.58 (m, 2H, CH₂), 2.32 (s, 1H, OH); 96% ee [HPLC condition: Chiralcel OD column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 22.5 min for (*R*)-enantiomer and $t_{\rm R}$ =24.3 min for (*S*)-enantiomer]; $[\alpha]_{\rm D}^{23} = -20.0 (c \ 0.53, \rm CH_2Cl_2)$ [lit: $[\alpha]_{\rm D}^{27} = -8.2 (c \ 1.20, \rm CH_2Cl_2)$ for 80% ee, (*S*)].

(S)-1-Phenyl-hexa-1,5-dien-3-ol (7pa)¹³

OH

Colorless oil; 88% yield; ¹H NMR (300 MHz, CDCl₃) & 7.39-7.20 (m, 5H, Ar-H), 6.60 (d, J = 15.9 Hz, 1H, CH), 6.27–6.19 (m, 1H, CH), 5.93–5.78 (m, 1H, CH), 5.20-5.13 (m, 2H, CH₂), 4.38-4.31 (m, 1H, CH), 2.49-2.32 (m, 2H,

- 10 K. Sugimoto, S. Aoyagi, C. Kibayashi, J. Org. Chem., 1997, 62, 2322-2323.
- R. A. Batev, A. N. Thadani, D. V. Smil and A. J. Lough, Synthesis, 2000, 990-998.
- ¹² S. Singh, S. Kumar and S. S. Chimni, *Tetrahedron: Asymmetry*, 2002, **13**, 2679–2687.

¹³ Â. de Fátima, L. K. Kohn, J. E. de Carvalho and R. A. Pilli, *Bioorg. Med. Chem.*, 2006, 14, 622–631.

CH₂), 1.90 (s, 1H, OH); 94% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 36.2 min for (*R*)-enantiomer and $t_{\rm R}$ = 38.5 min for (*S*)-enantiomer]; $[\alpha]_{\rm D}^{23}$ = -23.2 (*c* 0.38, CHCl₃) [lit: $[\alpha]_{\rm D}^{25}$ = -22.4 (*c* 2.0, CHCl₃) for 96% ee, (*S*)].

(-)-1-(2-Naphtyl)-3-methylbut-3-en-1-ol (7ab)¹⁴

Colorless oil, 72% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.83–7.79 (m, 4H, Ar-H), 7.50–7.43 (m, 3H, Ar-H), 4.98–4.87 (m, 3H, CH and CH₂), 2.51–2.48 (m, 2H, CH₂), 2.29 (s, 1H, OH), 1.81 (s, 3H, CH₃); 93% ee [HPLC condition: Chiralcel OJ column, *n*-hexane/propan-2-ol = 90:10, flow rate = 1.0 mL/min, wavelength = 225 nm, $t_{\rm R}$ = 12.4 min (major), $t_{\rm R}$ = 16.2 min (minor)]; $[\alpha]_{\rm D}^{26}$ =

 $-70.7 (c \ 1.05, \text{CHCl}_3)$ [lit: $[\alpha]_D = +56.7 (c \ 0.51, \text{CHCl}_3)$ for 62% ee].

(-)-1-(Naphthalen-2-yl)-3-phenylbut-3-en-1-ol (7ac)

Colorless oil, 74% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.79–7.74 (m, 3H, Ar-H), 7.69 (s, 1H, Ar-H), 7.44–7.41 (m, 5H, Ar-H), 7.36–7.28 (m, 3H, Ar-H), 5.36 (d, *J* = 1.2 Hz, 1H, CH), 5.12 (d, *J* = 0.9 Hz, 1H, CH), 4.83 (q, *J* = 4.5 Hz, 1H, CH), 3.06–3.00 (m, 1H, CH₂), 2.94–2.86 (m, 1H, CH₂), 2.28 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 145.1, 141.4, 140.5,

133.4, 133.1, 128.6, 128.2, 128.0, 127.8, 127.7, 126.4, 126.1, 125.8, 124.6, 124.1, 115.9, 72.3, 45.9; EI-HRMS Calcd for C₂₀H₁₈O: 274.1357. Found: 274.1371; 95% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 90:10, flow rate = 1.0 mL/min, wavelength = 225 nm, $t_{\rm R}$ = 12.3 min (major), $t_{\rm R}$ = 14.4 min (minor)]; [α]_D²³ = -48.6 (*c* 1.35, CHCl₃).

(S)-1-Phenyl-3-methylbut-3-en-1-ol (7bb)¹⁴

Colorless oil, 68% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.39–7.24 (m, 5H, Ar-H), 4.92–4.77 (m, 3H, CH and CH₂), 2.44–2.41 (m, 2H, CH₂), 2.18 (s, 1H, OH), 1.79 (s, 3H, CH₃); 93% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/propan-2-ol = 95:5, flow rate = 1.0 mL/min, wavelength = 210 nm, *t*_R = 8.5 min for (*S*)-enantiomer, *t*_R = 9.1 min for (*R*)-enantiomer]; $[\alpha]_D^{23} = -81.5$ (*c* 0.8, benzene) [lit: $[\alpha]_D = +40.0$ (*c*

0.58, benzene) for 66% ee, (*R*)].

(-)-1,3-Diphenylbut-3-en-1-ol (7bc)¹⁴

Colorless oil, 92% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.37–7.33 (m, 2H, Ar-H), 7.25–7.12 (m, 8H, Ar-H), 5.31 (d, J = 1.2 Hz, 1H, CH), 5.05 (s, 1H, CH), 4.62 (q, J = 4.2 Hz, 1H, CH), 2.93–2.86 (m, 1H, CH₂), 2.80–2.71 (m, 1H, CH₂), 2.05 (s, 1H, OH); 96% ee [SFC condition: Chiralpak AD-H column, *sc* CO₂/propan-2-ol = 90:10, $P_{CO2} = 100$ bar, flow rate = 2.0 mL/min, wavelength

 CO_2 /propan-2-ol = 90:10, P_{CO2} = 100 bar, flow rate = 2.0 mL/min, wavelength = 210 nm, t_R = 8.9 min (major), t_R = 10.4 min (minor)]; $[\alpha]_D^{30}$ = -21.2 (*c* 1.45, CHCl₃) [lit: $[\alpha]_D^{22}$ = -16.7 (*c* 1.72, CHCl₃) for 59% ee].

(R)-1-Phenyl-hexa-5-en-3-ol $(7qa)^3$

Colorless oil, 83% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.24–7.08 (m, 5H, Ar-H), 5.82–5.67 (m, 1H, CH), 5.10–5.04 (m, 2H, CH₂), 3.65–3.55 (m, 1H, CH), 2.79–2.55 (m, 2H, CH₂), 2.30–2.05 (m, 2H, CH₂), 1.75–1.65 (m, 3H, CH₂ and OH); 93% ee [HPLC condition: Chiralcel OD column, *n*-hexane/propan-2-ol = 95:5, flow rate = 1.0 mL/min, wavelength = 210 nm,

 $t_{\rm R} = 9.3 \text{ min for } (S)$ -enantiomer and $t_{\rm R} = 13.7 \text{ min for } (R)$ -enantiomer]; $[\alpha]_{\rm D}^{23} = +15.2 \ (c \ 0.63, \text{ CHCl}_3)$ [lit: $[\alpha]_{\rm D} = +1.8 \ (c \ 0.9, \text{ CHCl}_3)$ for 49% ee, (R)].

(-)-1-(Naphthalen-2-yloxy)pent-4-en-2-ol (7ra)

White solid, 91% yield. Mp: 57 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.69–7.62 (m, 3H, Ar-H), 7.37–7.23 (m, 2H, Ar-H), 7.10–7.04 (m, 2H, Ar-H), 5.89–5.75 (m, 1H, CH), 5.15–5.06 (m, 2H, CH₂), 4.02–3.87 (m, 3H, CH₂ and CH), 2.36 (br, 3H, OH and CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 155.5, 133.5, 132.8, 128.5, 128.2, 126.6, 125.8, 125.4, 122.8,

117.7, 117.2, 106.0, 70.5, 68.34, 36.9; EI-HRMS Calcd for $C_{15}H_{16}O_2$: 228.1150, Found: 228.1152; 87% ee [HPLC condition: Chiralpak OD-H column, *n*-hexane/propan-2-ol = 95:5, flow rate = 1.0 mL/min, wavelength = 227 nm, t_R = 18.9 min (major) and t_R = 25.0 min (minor)]; [α]_D²⁰ = -3.6 (c 0.73, EtOH).

¹⁴ M. Nakajima, S. Kotani, T. Ishizuka and S. Hashimoto, *Tetrohedron Lett.*, 2005, 46, 157–159.

(R)-1-(Benzyloxy)-2-hydroxypent-4-ene (7sa)¹⁵

Colorless oil, 65% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.28 (m, 5H, Ar-H), 5.88–5.77 (m, 1H, CH), 5.15–5.08 (m, 2H, CH₂), 4.56 (s, 2H, CH₂), 3.92–3.85 (m, 1H, CH), 3.52 (dd, J = 9.6, 3.2 Hz, 1H, CH₂), 3.37 (dd, J = 9.6, 7.6 Hz, 1H, CH₂), 2.37 (d, J = 3.6 Hz, 1H, OH), 2.28 (t, J = 6.4 Hz, 2H, CH₂);

88% ee [HPLC condition: Chiralpak AS column, *n*-hexane/propan-2-ol = 98:2, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 8.4 min for (*S*)-enantiomer and $t_{\rm R}$ = 9.8 min for (*R*)-enantiomer]; $[\alpha]_{\rm D}^{26}$ = -2.83 (c 1.88, CHCl₃) [lit: $[\alpha]_{\rm D}^{29}$ = -3.1 (c 2.07, CHCl₃), (*R*)].

(S)-1-(Benzyloxy)-4-hydroxypent-6-ene (7ta)¹⁶

Colorless oil, 67% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.26 (m, 5H, Ar-H), 5.89–5.78 (m, 1H, CH), 5.14–5.09 (m, 2H, CH₂), 4.52 (s, 2H, CH₂), 3.69–3.62 (m, 1H, CH), 3.51 (t, J = 6.0 Hz, 2H, CH₂), 2.44 (br s, 1H, OH), 2.31–2.14 (m, 2H, CH₂), 1.81–1.61 (m, 3H, CH₂), 1.50–1.45 (m,

1H, CH₂); 93% ee [HPLC condition: Chiralpak AS column, *n*-hexane/propan-2-ol = 95:5, flow rate = 1.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 6.0 min (*R*) and $t_{\rm R}$ = 7.9 min (*S*)]; $[\alpha]_{\rm D}^{24}$ = -4.3 (c 1.25, CH₂Cl₂) [lit: $[\alpha]_{\rm D}$ = -7.2 (c 1.24, CH₂Cl₂) for 91% ee, (*S*)].

(-)-2-Hydroxypent-4-enyl benzoate (7ua)¹⁷

Colorless oil, 88% yield, ¹H NMR (300 MHz, CDCl₃) δ 8.00–7.95 (m, 2H, Ar-H), 7.51–7.46 (m, 1H, Ar-H), 7.38–7.33 (m, 2H, Ar-H), 5.86–5.72 (m, 1H, CH), 5.14–5.07 (m, 2H, CH₂), 4.31 (dd, J = 11.4 and 3.6 Hz, 1H, CH₂), 4.20 (dd, J = 11.4 and 6.6 Hz, 1H, CH₂), 3.99 (br, 1H, CH) 2.37 (br, 1H, OH), 2.33–2.21 (m, 2H, CH₂); 83% ee [HPLC condition: Chiralpak AS column,

n-hexane/propan-2-ol = 98:2, flow rate = 1.0 mL/min, wavelength = 230 nm, $t_{\rm R}$ = 13.6 min for (minor) and $t_{\rm R}$ = 16.5 min for (major)]; [α]_D³⁰ = -4.5 (c 1.1, CHCl₃).

(+)-Tridec-1-en-4-ol (7va)¹⁸

Colorless oil, 70% yield, ¹H NMR (400 MHz, CDCl₃) δ 5.91–5.76 (m, 1H, CH), 5.16–5.11 (m, 2H, CH₂), 3.61–3.67 (m, 1H, CH), 2.35–2.26 (m, 1H, CH₂), 2.19–2.08 (m, 1H, CH₂), 1.62 (br s, 1H,

OH), 1.47–1.40 (br m, 3H, CH₂), 1.35–1.20 (br, 13H, CH₂), 0.87 (t, J = 6.4 Hz, 3H, CH₃); 92% ee [enantioselevtivity was determined by SFC analysis of the corresponding benzoate using a Chiralpak AD-H column, sc CO₂/propan-2-ol = 97:3, $P_{CO2} = 100$ bar, flow rate = 2.0 mL/min, wavelength = 215 nm, $t_R = 6.0$ min (major) and $t_R = 7.1$ min (minor)]; $[\alpha]_D^{30} = +11.2$ (c 1.3, CHCl₃).

(-)-1-(1-Methyl-1H-indol-3-yl)hex-5-en-3-ol (7wa)

Colorless oil, 62% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 1H, Ar-H), 7.37–7.28 (m, 2H, Ar-H), 7.19 (t, J = 7.2 Hz, 1H, Ar-H), 6.91 (s, 1H, Ar-H), 5.96–5.85 (m, 1H, CH), 5.24–5.19 (m, 2H, CH₂), 3.84–3.77 (m, 4H, CH₃ and CH), 3.05–2.87 (m, 2H, CH₂), 2.43–2.37 (m, 1H, CH₂), 2.31–2.22 (m, 1H, CH₂), 1.98–1.91 (m, 3H, OH and CH₂); ¹³C NMR (100 128 1, 126 5, 121 8, 119 3, 118 9, 118 4, 114 9, 109 5, 70 6, 42 4, 37 6, 32 8

MHz, CDCl₃) δ 137.4, 135.2, 128.1, 126.5, 121.8, 119.3, 118.9, 118.4, 114.9, 109.5, 70.6, 42.4, 37.6, 32.8, 21.6; EI-HRMS Calcd for C₁₅H₁₉NO: 229.1467. Found: 229.1462; 93% ee [HPLC condition: Chiralpak AS column, *n*-hexane/propan-2-ol = 97:3, flow rate = 1.0 mL/min, wavelength = 210 nm, *t*_R = 22.6 min (major) and *t*_R = 26.1 min (minor)]; [α]_D²⁵ = -14.2 (c 0.88, CH₂Cl₂).

(-)-N-(3-Hydroxyhex-5-enyl)benzamide (7xa)

Colorless oil, 80% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* =7.2 Hz, 2H, Ar-H), 7.68 (t, *J* =5.6 Hz, 1H, NH), 7.41 (t, *J* = 7.6 Hz, 1H, Ar-H), 7.31 (t, *J* = 8.0 Hz, 1H, Ar-H), 5.81–5.71 (m, 1H, CH), 5.06–5.01 (m, 2H, CH₂), 4.11 (br, 1H, OH), 3.77–3.68 (m, 2H, CH₂), 3.38–3.30 (m, 1H, CH), 2.25–2.15 (m, 2H, CH₂), 1.77–1.69 (m, 1H, CH₂), 1.59–1.50 (m, 1H,

¹⁵ W. R. Roush, L. K. Hoong, M. A. J. Palmer, J. A. Straub and A. D. Palkowitz, *J. Org. Chem.*, 1990, **55**, 4117–4126.

¹⁶ J. Lu, S.-J. Ji, Y.-C.Teo, T.-P. Loh, Org. Lett., 2005, 7, 159–161.

¹⁷ J. Cossy, S. Bouzbouz and J. C. Caille, *Tetrahedron: Asymmetry*, 1999, **10**, 3859–3862.

¹⁸ H. Kakiya, S. Nishimae, H. Shinokubo and K. Oshima, *Tetrahedron*, 2001, **57**, 8807–8815.

CH₂); 13 C NMR (100 MHz, CDCl₃) δ 168.5, 134.9, 134.4, 131.7, 128.7, 127.2, 118.0, 69.3, 42.2, 37.7, 36.1; EI-HRMS Calcd for C13H17NO2: 219.1259. Found: 219.1257; 93% ee [SFC condition: Chiralpak AD-H column, sc CO₂/propan-2-ol = 95:5, $P_{CO2} = 100$ bar, flow rate = 2.0 mL/min, wavelength = 230 nm, $t_{\rm R} = 22.4 \text{ min (major) and } t_{\rm R} = 24.1 \text{ min (minor)]}; [\alpha]_{\rm D}^{25} = -6.2 \text{ (c } 1.08, \text{CH}_2\text{Cl}_2\text{)}.$

(-)-4-Hydroxy-1-phenylhept-6-en-1-one (7ya)

Colorless oil, 91% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.97–7.95 (m, 2H, Ar-H), 7.56–7.51 (m, 1H, Ar-H), 7.43 (t, J = 7.6 Hz, 1H, Ar-H), 5.89–5.78 (m, 1H, CH), 5.15-5.11 (m, 2H, CH₂), 3.76-3.70 (m, 1H, CH), 3.22-3.08 (m, 2H, CH₂), 2.36–2.18 (m, 3H, OH and CH₂), 2.03–1.95 (m, 1H, CH₂), 1.86–1.77 (m, 1H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 137.1, 134.8, 133.3,

128.8, 128.3, 118.4, 70.4, 42.5, 35.1, 31.0; EI-HRMS Calcd for C₁₃H₁₆O₂: 204.1150. Found: 204.1151; 94% ee [SFC condition: Chiralpak AD-H column, sc CO_2 /propan-2-ol = 90:10, P_{CO2} = 100 bar, flow rate = 2.0 mL/min, wavelength = 240 nm, $t_{\rm R}$ = 10.6 min (major) and $t_{\rm R}$ = 11.5 min (minor)]; $[\alpha]_{\rm D}^{27} = -7.8$ (c 0.4, CH_2Cl_2).

(+)-(*E*)-Trideca-1,7-dien-4-ol (7za)

OH

Colorless oil, 77% yield, ¹H NMR (400 MHz, CDCl₃) δ 5.87–5.76 (m, 1H, CH), 5.48–5.36 (m, 2H, CH), 5.14–5.10 (m, 2H, CH₂), 3.69-3.62 (m, 1H, OH), 2.31 (m, 1H, CH₂), 2.18-2.11 (m, 3H,

CH₂), 1.98–1.94 (m, 2H, CH₂), 1.75 (br, 1H, OH), 1.55–1.49 (m, 2H, CH₂), 1.36–1.20 (m, 6H, CH₂), 0.87 (t, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 131.3, 129.7, 118.1, 70.5, 66.1, 42.1, 36.7, 32.8, 31.6, 29.5, 29.1, 22.8; EI-HRMS Calcd for C₁₃H₂₄O: 196.1827. Found: 196.1821; 91% ee [enantioselevtivity was determined by SFC analysis of the corresponding 3,5-dinitrobenzoate using a Chiralpak AD-H column, sc CO₂/propan-2-ol = 92:8, P_{CO2} = 100 bar, flow rate = 2.0 mL/min, wavelength = 230 nm, $t_{\rm R}$ = 4.9 min (major) and $t_{\rm R}$ = 5.6 min (minor)]; $[\alpha]_{\rm D}^{25}$ = + 9.9 (c 0.95, CH₂Cl₂).

(S)-5-Methyl-1-phenyl-5-hexen-3-ol (7qb)¹⁹

Colorless oil, 83% yield, ¹H NMR (300 MHz, CDCl₃) & 7.31-7.15 (m, 5H, Ar-H), 4.88 (s, 1H, CH), 4.80 (s, 1H, CH), 3.80-3.70 (m, 1H, CH), 2.88-2.77 (m, 1H, CH₂), 2.75–2.64 (m, 1H, CH₂), 2.26–2.09 (m, 2H, CH₂), 1.82–1.70 (m, 6H, CH₃ and OH and CH₂); 85% ee [SFC condition: Chiralcel OD-H column, Sc sc CO₂/propan-2-ol = 90:10, P_{CO2} = 100 bar, flow rate = 2.0 mL/min,

wavelength = 210 nm, $t_{\rm R}$ = 4.3 min for (*S*)-enantiomer and $t_{\rm R}$ = 5.7 min for (*R*)-enantiomer]; $[\alpha]_{\rm D}^{26} = -15.3$ (c 0.95, CHCl₃) [lit: $[\alpha]_{\rm D}^{25} = -18.12$ (c 0.63, CHCl₃) for (*S*)].

(-)-1,5-Diphenylhex-5-en3-ol (7qc)²⁰

Colorless oil, 62% yield, ¹H NMR (400 MHz, CDCl₃) & 7.47-7.22 (m, 10H, Ar-H), 5.47 (d, J = 1.2 Hz, 1H, CH), 5.23 (s, 1H, CH), 3.76 (br, 1H, CH), 2.91–2.83 (m, 2H, CH₂), 2.74–2.61 (m, 2H, CH₂), 1.91–1.81 (m, 3H, OH and CH₂); 83% ee [SFC condition: Chiralcel OD-H column, sc CO_2 /propan-2-ol = 80:20, P_{CO2} = 100 bar, flow rate = 2.0 mL/min, wavelength = 210 nm, $t_{\rm R}$ = 5.3 min (major) and $t_{\rm R}$ = 6.8 min (minor)]; $[\alpha]_{\rm D}^{26} = -7.0$ (c 1.2, CHCl₃).

(-)-5-(4-Methoxyphenyl)-1-phenylhex-5-en-3-ol (7qd)

Colorless oil, 57% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.19 (m, 7H, Ar-H), 6.89-6.87 (m, 2H, Ar-H), 5.37 (d, J = 1.2 Hz, 1H, CH), 5.10 (s, 1H, CH), 3.83 (s, 3H, CH₃), 3.77 (m, 1H, CH), 2.87-2.79 (m, 2H, CH₂), 2.71-2.65 (m, 1H, CH₂), 2.59-2.52 (m, 1H, CH₂), 1.87–1.80 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ

159.5, 144.7, 142.3, 132.9, 128.6, 127.6, 126.0, 114.1, 69.3, 55.5, 44.0, 38.8, 32.3; EI-HRMS Calcd for C19H22O2: 282.1620. Found: 282.1612; 86% ee [SFC condition: Chiralpak AD-H column, sc CO_2 /propan-2-ol = 80:20, P_{CO2} = 100 bar, flow rate = 2.0 mL/min, wavelength = 210 nm, t_R = 7.8 min (major) and t_R = 9.5 min (minor)]; $[\alpha]_D^{-26} = -26.6$ (c 0.9, CHCl₃).

(-)-1-Phenyl-5-(4-(trifluoromethyl)phenyl)hex-5-en-3-ol (7qe)

Colorless oil, 69% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H, Ar-H), 7.51 (d, J = 8.0 Hz,

¹⁹ (a) H. Hanawa, D. Uraguchi, S. Konishi, T. Hashimoto and K. Maruoka, Chem. Eur. J., 2003, 9, 4405–4413; (b) V.

Rauniyar, H. Zhai and D. G. Hall, J. Am. Chem. Soc., 2008, 130, 8481-8490.

²⁰ Y. Hanzawa, N. Kowase, S.-i. Momose and T. Taguchi, *Tetrahedron*, 1998, **54**, 11387–11398.

2H, Ar-H), 7.32 (t, J = 7.6 Hz, 2H, Ar-H), 7.26–7.21 (m, 3H, Ar-H), 5.51 (s, 1H, CH), 5.32 (s, 1H, CH), 3.77-3.71 (m, 1H, CH), 2.90–2.81 (m, 2H, CH₂), 2.74–2.65 (m, 2H, CH₂), 2.36 (br, 1H, OH), 1.94–1.81 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 144.5, 142.1, 128.7, 128.6, 126.8, 126.2, 125.7, 117.5, 69.3, 43.8, 38.9, 32.2; EI-HRMS Calcd for C₁₉H₁₉F₃O: 320.1388. Found: 320.1377; 86% ee [SFC condition: Chiralcel]

OD-H column, *sc* CO₂/propan-2-ol = 90:10, $P_{CO2} = 100$ bar, flow rate = 2.0 mL/min, wavelength = 210 nm, $t_R = 8.7 \text{ min (major)}$ and $t_R = 12.5 \text{ min (minor)}$; $[\alpha]_D^{-26} = -6.5$ (c 1.53, CHCl₃).

4 NMR Spectra for New Compounds (S)-3,5-Di-*tert*-butylphenyl-(1,1'-spirobiindane-7,7'-diyl)phosphite ((S)-3d)

(S)-2,6-Di-*tert*-butyl-4-methylphenyl-(1,1'-spirobiindane-7,7'-diyl)phosphite ((S)-3e)

1-(Naphthalen-2-yl)-3-phenylbut-3-en-1-ol (7ab)

1-(Naphthalen-2-yloxy)pent-4-en-2-ol (7ra)

1-(1-Methyl-1H-indol-3-yl)hex-5-en-3-ol (7wa)

4-Hydroxy-1-phenylhept-6-en-1-one (7ya)

(E)-Trideca-1,7-dien-4-ol (7za)

5-(4-Methoxyphenyl)-1-phenylhex-5-en-3-ol (7qd)

1-Phenyl-5-(4-(trifluoromethyl)phenyl)hex-5-en-3-ol (7qe)

5 HPLC and SFC Charts for Homoallylic Alcohols

2-Naphtylbut-3-en-1-ol (7aa)

1	12.872	VB	0.5669	2.88274e4	741.85315	97.9943
2	18.532	BB	0.8242	590.03552	10.25416	2.0057

1-Phenylbut-3-en-1-ol (7ba)

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	옹
1	19.200	VV	0.6336	913.	84613	20.7	73353	2.4182
2	23.817	VV	0.7641	3.687	58e4	702.2	25085	97.5818

1-(2-Methylphenyl)but-3-en-1-ol (7ca)

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	17.358	PP	0.3338	638.	10925	29.3	18002	4.7055
2	21.312	VV	0.4133	1.292	29e4	479.	76920	95.2945

2

9.902 VB

1-(2-Chlorophenyl)but-3-en-1-ol (7da)

0.5224 2311.74780

65.97372

5.5907

(-)-1-(3-Methoxyphenyl)but-3-en-1-ol (7ea)

Peak RetTime Type Width Height Area Area *s [min] 응 # [min] [mAU] mAU 1 51.568 PV 0.8408 356.68362 5.79130 2.1648 54.096 VB 0.9536 1.61198e4 260.44543 97.8352 2

1-(3-Methylphenyl)but-3-en-1-ol (7fa)

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	융
1	16.453	BB	0.4822	792.	20239	24.	02969	1.9157
2	22.089	VP	0.6824	4.056	513e4	886.	35663	98.0843

1-(3-Chlorophenyl)but-3-en-1-ol (7ga)

1-(4-Methoxyphenyl)but-3-en-1-ol (7ha)

1-(4-Fluorophenyl)but-3-en-1-ol (7ja)

#	[min]		[min]	mAU	*s	[mAU		8
1	22.034	VV	0.3912	697.1	0730	27.	55626	2.0722
2	22.931	VV	0.4751	3.2944	6e4	1071.	65112	97.9278

2

1-(4-Chlorophenyl)but-3-en-1-ol (7ka)

24.991 VV	0.4728	718.45959	23.14384	2.3313
26.312 VB	0.5210	3.00997e4	887.29016	97.6687

- S30 -

1-(4-Trifluoromethylphenyl)but-3-en-1-ol (7la)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	응
1	19.849	BV	0.3820	1243.27222	49.71237	3.8440
2	20.927	VB	0.4315	3.10998e4	1110.63440	96.1560

1-(2-Furyl)but-3-en-1-ol (7na)

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
									Ľ
1	20.988	VB	0.6252	604.	36084	14.3	31089	1.5132	
2	23.246	BP	0.6952	3.933	39e4	834.9	91901	98.4868	

1-(2-Thienyl)but-3-en-1-ol (7oa)

2

24.356 VP

0.8647 2.97573e4

516.24829

98.1709

1-Phenyl-hexa-1,5-dien-3-ol (7pa)

Peak	ak RetTime Type		Width Area		Height	Area
#	[min]		[min]	mAU *s	[mAU]	용
					-	
1	36.242	PV	0.7794	411.15222	2 6.31957	2.7980
2	38.502	VB	1.0721	1.42835e4	212.21214	97.2020

1-(2-Naphtyl)-3-methylbut-3-en-1-ol (7ab)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	용
1	12.415	VB	0.7257	6.39852e4	1459.03687	96.5463
2	16.232	BB	0.7206	2288.94067	46.32555	3.4537

1-(Naphthalen-2-yl)-3-phenylbut-3-en-1-ol (7ac)

1-Phenyl-3-methylbut-3-en-1-ol (7bb)

Peak	Peak RetTime Type		Width Area		Height		Area	
#	[min]		[min]	mAU *	s	[mAU]	응
1	8.525	VV	0.1638	1.42839	e4	1354.4	46619	96.2222
2	9.138	VV	0.1755	560.80	896	48.0	05576	3.7778

1,3-Diphenylbut-3-en-1-ol (7bc)

Peak	RetTime	Туре	Width	Area	Area
#	[min]		[min]	mAU *s	90
					-
1	8.933	BB	0.2336	2573.29395	5 97.9572
2	10.410	BB	0.2366	53.6625	7 2.0428

1-Phenyl-hexa-5-en-3-ol (7qa)

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	00
1	9.262	VB	0.2783	562	.63861	29.	44474	3.3904
2	13.713	VB	0.4360	1.603	325e4	538.	74188	96.6096

1-(Benzyloxy)-4-hydroxypent-6-ene (7ta)

2-Hydroxypent-4-enyl benzoate (7ua)

Tridec-1-en-4-ol (7va)

2

7.144 BB

The ee was determined by SFC analysis of the corresponding benzoate.

0.2527

220.90178

4.2303

1-(1-Methyl-1H-indol-3-yl)hex-5-en-3-ol (7wa)

	RT	Area	% Area	Height
1	22.599	135621348	96.66	1704793
2	26.138	4681644	3.34	63433

N-(3-Hydroxyhex-5-enyl)benzamide (7xa)

4-Hydroxy-1-phenylhept-6-en-1-one (7ya)

2

5-Methyl-1-phenyl-5-hexen-3-ol (7qb)

5.657 BB 0.1900 965.44751 7.4692

1,5-Diphenylhex-5-en3-ol (7qc)

Peak	RetTime	Туре	Width	Area		Area
#	[min]		[min]	mAU	*s	90
		·				
1	5.253	VV	0.1622	3758.	80713	91.4037
2	6.830	VB	0.2189	353.	.50784	8.5963

5-(4-Methoxyphenyl)-1-phenylhex-5-en-3-ol (7qd)

1-Phenyl-5-(4-(trifluoromethyl)phenyl)hex-5-en-3-ol (7qe)