Nickel-Catalyzed Amination of Aryl Carbamates and Sequential Site-Selective Cross-Couplings

Tehetena Mesganaw, Amanda L. Silberstein, Stephen D. Ramgren Noah Fine Nathel, Xin Hong, Peng Liu, and Neil K. Garg*

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095

Supporting Information – Table of Contents

Experimental Materials and Methods	
Experimental Procedures	
A. Synthesis of Aryl Carbamate Substrates	
B. Aminations of Aryl Carbamates	
C. Experiments Involving Carbamate and Sulfamate Substrates	S14
D. Key Optimization Studies	S20
Computational Methods	S21
A. Complete Reference of Gaussian 09	
B. Single Point Calculations using Other DFT Methods,	
Base sets and Solvation Models	S23
C. The Cartesian Coordinates (Å), and Gibbs Free Energies at 298K	
for the Optimized Structures	S25
¹ H NMR Spectra	S51

Experimental Materials and Methods. Unless stated otherwise, reactions were conducted in flamedried glassware under an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed through activated alumina columns). Unless otherwise stated, commercially obtained reagents were used as received. Amines were purified by filtration over basic Brockman Grade I 58 Å Al₂O₃ (Activity 1), followed by distillation over calcium hydride, prior to use. Ni(cod)₂ was obtained from Strem Chemicals and SIPr•HCl was obtained from Sigma Aldrich. Dioxane was purified by distillation over sodium benzophenone ketyl radical and degassed by the freeze-pump-thaw method. Reaction temperatures were controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were performed at room temperature (rt, approximately 23 °C). Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.25 mm) and visualized using a combination of UV, anisaldehyde, ceric ammonium molybdate, iodine, vanillin, and potassium permanganate staining. Silicycle Siliaflash P60 (particle size 0.040-0.063 mm) was used for flash column chromatography. ¹H NMR spectra were recorded on Bruker spectrometers (at 300, 400, 500, 600 MHz) and are reported relative to deuterated solvent signals. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. ¹³C NMR spectra were recorded on Bruker Spectrometers (at 125 MHz). Data for ¹³C NMR spectra are reported in terms of chemical shift. ¹⁹F NMR (at 300, 400 MHz) spectra are reported in terms of chemical shift. IR spectra were recorded on a Perkin-Elmer 100 spectrometer and are reported in terms of frequency of absorption (cm⁻¹). Melting points are uncorrected and were obtained on a Laboratory Devices Mel-Temp II instrument. High resolution mass spectra were obtained from the UC Irvine Mass Spectrometry Facility.

Experimental Procedures.

A. Synthesis of Aryl Carbamate Substrates

Note: Supporting information for the synthesis of the aryl carbamates shown in Tables 1–3 have previously been reported,¹ with the exception of the carbamate **SI-2**, carbamate **SI-4**, and carbamate **SI-6**.

SI-2 (Table 2, Entry 3). To a solution of phenyl carbamate (SI-1) (1.0 g, 4.82 mmol, 1 equiv) in THF (24 mL) was added TMEDA (0.79 mL, 5.31 mmol, 1.1 equiv) at 0 °C. The solution was cooled to -78 °C and s-BuLi (1.04 M in Hexanes, 5.11 mL, 5.31 mmol, 1.1 equiv) was added dropwise over 15 min. The mixture was stirred at -78 °C for 1 h and then TMSCl (0.80 ml, 6.3 mmol, 1.3 equiv) was added dropwise over 10 min. The resulting mixture was stirred at -78 °C for 45 min and then allowed to warm to 23 °C. The reaction was quenched with saturated aqueous NH₄Cl (10 mL). The layers were separated and the aqueous layer was extracted with Et₂O (5 x 25 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and then evaporated to dryness. The crude residue was purified by flash chromatography (5:1 Hexanes:EtOAc) to furnish 2-(trimethylsilyl)phenyl carbamate SI-2 as a colorless solid (1.17 g, 85% yield). $R_f 0.41$ (5:1 Hexanes: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.46 (dd, J = 7.5, 1.5 Hz, 1H), 7.37 (ddd, J = 7.5, 1.5, 1.0 Hz, 1H), 7.18 (td, J = 7.0, 1.0 Hz, 1H), 7.04 (dd, J = 8.0, 0.5 Hz, 1H), 3.49 (q, J = 7.5 Hz, 2H), 3.49 (q, J = 7.5 Hz, 2H), 3.40 (q, J = 7.5 Hz, 3.40 (q, J = 7.5 Hz J = 7.5 Hz, 2H), 1.26 (t, J = 7.5 Hz, 3H), 1.20 (t, J = 7.5 Hz, 3H), 0.29 (s, 9H); ¹³CNMR (125 MHz, CDCl₃): δ 156.5, 154.6, 135.0, 131.7, 130.5, 124.9, 122.4, 42.1, 41.7, 14.3, 13.4, -0.7; IR (film): 2972, 1714. 1412. 1258. 1152 cm⁻¹: HRMS-ESI (m/z) [M + Na]⁺ calcd for C₁₄H₂₃NO₂SiNa. 288.1396: found, 288.1393.

¹ a) Yamazaki, K.; Kawamorita, S.; Ohmiya, H.; Sawamura, M. *Org. Lett.* **2010**, *12*, 3978–3981. b) Quasdorf, K. W.; Riener, M.; Petrova, K.; Garg, N. K. *J. Am. Chem. Soc.* **2009**, *131*, 17748–17749. c) Sengupta, S.; Leite, M.; Raslan, D. S.; Quenelle, C.; Snieckus, V. *J. Org. Chem.* **1992**, *57*, 4066–4068. d) Zhao, Z.; Snieckus, V. *Org. Lett.* **2005**, *7*, 2523–2526. e) Kamila, S.; Mukherjee, C.; Mondal, S. S.; De, A. *Tetrahedron* **2003**, *59* 1339–1348. f) Bedford, R. B.; Webster, R. L.; Mitchell, C. J. *Org. Biomol. Chem.* **2009**, *7*, 4853–4857. g) Azzena, U.; Pisano, L.; Pittalis, M. *Appl. Organolmetal. Chem.* **2008**, *22*, 523–528.

SI-4 (Table 2, entry 5). To a round bottom flask containing NaH (0.85 g, 21.4 mmol, 1.2 equiv, 60% dispersion in oil) was added a solution of 2-flurophenol (**SI-3**) (2.0 g, 17.8 mmol, 1 equiv) in DME (71 mL) via cannula transfer. A solution of diethylcarbamoyl chloride (2.15 mL, 16.9 mmol, 0.95 equiv) in DME (10 mL) was then added dropwise via cannula to the reaction vessel. The reaction mixture was allowed to stir for 15 h and was then quenched with H₂O (10 mL). The volatiles were removed under reduced pressure, and Et₂O (50 mL) and H₂O (20 mL) were added. The layers were separated, and the organic layer was washed successively with 1 M KOH (20 mL) and H₂O (20 mL). The combined aqueous layers were extracted with Et₂O (3 x 25 mL). The combined organic layers were then washed with brine (10 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (5:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.21–7.09 (m, 4H), 3.46 (q, *J* = 6.5, 2H), 3.39 (q, *J* = 6.5, 2H), 1.27 (t, *J* = 6.5, 3H) 1.21 (t, *J* = 7.0, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 154.6 (d, *J* = 246.5), 153.2, 139.0 (d, *J* = 12.1), 126.2 (d, *J* = 7.0), 124.2, 124.1 (d, *J* = 3.9), 116.3 (d, *J* = 18.4), 42.4, 42.0, 13.9, 13.2; IR (film): 2977, 1720, 1600, 1502, 1417, 1255 cm⁻¹; HRMS-ESI (*m/z*) [M + Na]⁺ calcd for C₁₁H₁₄FNO₂Na, 234.0906; found, 234.0912.

SI-6 (Table 2, entry 6). To a round bottom flask containing NaH (0.33 g, 8.15 mmol, 1.2 equiv, 60% dispersion in oil) was added a solution of *N*-methyl-5-hydroxyindole (**SI-5**) (1.0 g, 6.79 mmol, 1 equiv) in DME (27 mL) via cannula transfer. A solution of diethylcarbamoyl chloride (0.875 mL, 6.45 mmol, 0.95 equiv) in DME (15 mL) was then added dropwise via cannula to the reaction vessel. The reaction was allowed to stir for 3.5 d, and then quenched with H₂O (10 mL). The volatiles were

removed under reduced pressure, and then Et₂O (50 mL) and H₂O (15 mL) were added. The layers were separated, and the organic layer was washed successively with 1 M KOH (20 mL) and H₂O (20 mL). The combined aqueous layers were extracted with Et₂O (3 x 20 mL). The combined organic layers were then washed with brine (20 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (9:1 Benzene:Et₂O) to yield carbamate **SI-6** as a white solid (1.55g, 98% yield). R_f 0.44 (9:1 Benzene:Et₂O); ¹H NMR (500 MHz, CDCl₃): δ 7.33 (d, *J* = 2.5, 1H), 7.26 (d, *J* = 9.0, 1H), 7.05 (d, *J* = 3.0, 1H), 6.98 (dd, *J* = 8.5, 2.3, 1H), 6.43 (dd, *J* = 3.0, 0.5, 1H), 3.78 (s, 3H), 3.47 (bs, 2H), 3.41 (bs, 2H), 1.27 (bs, 3H), 1.21 (bs, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 155.4, 145.1, 134.5, 129.8, 128.7, 116.3, 113.2, 109.4, 101.1, 42.3, 41.9, 33.1, 14.4, 13.6; IR (film): 2972, 1708, 1467, 1418, 1218, 1159 cm⁻¹; HRMS-ESI (*m/z*) [M + Na]⁺ calcd for C₁₄H₁₈N₂O₂Na, 269.1266; found, 269.1267.

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

B. Aminations of Aryl Carbamates

Representative Procedure (coupling of phenylcarbamate SI-1, Table 1, entry 3) is used as an example). SI-7. A 20 mL reaction vial was charged with Ni(cod)₂ (6.8 mg, 0.025 mmol, 5 mol%), SIPr•HCl (21.2 mg, 0.05 mmol, 10 mol%), anhydrous powdered NaOtBu (67.2 mg, 0.7 mmol, 1.4 equiv), and a magnetic stir bar, all in a glove box. Subsequently, a solution of carbamate substrate SI-1 (96.6 mg, 0.50 mmol, 1 equiv) and morpholine (52.4 μ L, 0.60 mmol, 1.2 equiv) in dioxane (2.5 mL) was added. The vessel was removed from the glove box, and then heated to 80 °C for 3 h. After cooling the reaction vessel to 23 °C and concentrating under reduced pressure, the crude residue was loaded onto a silica gel column (2.5 x 10 cm) and purified by flash chromatography (9:1 Hexanes: EtOAc) to yield aminated product SI-7 (73.4 mg, 90% yield) as a white solid. R_f 0.29 (9:1 Hexanes:EtOAc). Spectral data match those previously reported.²

Any modifications of the conditions shown in this representative procedure are specified in the following schemes, which depict all of the results shown in Tables 1, 2, and 3.

SI-9 (Table 1, entry 1). Purification by flash chromatography (9:1 Hexanes:EtOAc) afforded aminated product **SI-9** (91% yield) as a white solid. R_f 0.38 (9:1 Hexanes:EtOAc). Spectral data match those previously reported.³

² Barker, T. J.; Jarvo, E. R. J. Am. Chem. Soc. 2009, 131, 15598–15599.

³ Desmarets, C.; Champagne, B.; Walcarius, A.; Bellouard, C.; Omar-Amrani, R.; Ahajji, A.; Fort, Y.; Schneider, R. *J. Org. Chem.* **2006**, *71*, 1351–1361.

SI-11 (Table 1, entry 2). Purification by flash chromatography (9:1 Hexanes:EtOAc) afforded aminated product **SI-11** (92% yield) as a white solid. R_f 0.32 (9:1 Hexanes:EtOAc). Spectral data match those previously reported.⁴

SI-13 (Table 1, entry 4). Purification by flash chromatography (10:1:1 Benzene:Et₂O:CH₂Cl₂) afforded aminated product **SI-13** (74% yield) as a white solid. $R_f 0.18$ (10:1:1 Benzene:Et₂O:CH₂Cl₂). Spectral data match those previously reported.⁵

SI-15 (Table 1, entry 5). Purification by flash chromatography (30:1 Benzene:Et₂O) afforded aminated product **SI-15** (90% yield) as a white solid. $R_f 0.30$ (30:1 Benzene:Et₂O). Spectral data match those previously reported.⁶

⁴ Gao, C.; Yang, L. J. Org. Chem. 2008, 73, 1624–1627.

⁵ Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. **1996**, 61, 1133–1135.

⁶ Guo, D.; Huang, H.; Xu, J.; Jiang, H.; Liu, H. Org. Lett. 2008, 10, 4513–4516.

SI-17 (Table 1, entry 6). Purification by flash chromatography (19:1 Benzene:Et₂O) afforded aminated product **SI-17** (77% yield) as a white solid. R_f 0.53 (19:1 Benzene:Et₂O). Spectral data match those previously reported.⁷

SI-19 (Table 1, entry 7). Purification by flash chromatography (19:1 Benzene:Et₂O) afforded aminated product **SI-19** (80% yield) as a yellow oil. $R_f 0.49$ (19:1 Benzene:Et₂O). Spectral data match those previously reported.⁷

SI-21 (Table 2, entry 1). Purification by flash chromatography (19:1 Hexanes:EtOAc) afforded aminated product **SI-21** (65% yield) as a yellow oil. R_f 0.37 (19:1 Hexanes:EtOAc). Spectral data match those previously reported.⁷

⁷ Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029–3036.

SI-23 (Table 2, entry 2). Purification by flash chromatography (100% Benzene) afforded aminated product **SI-23** (53% yield) as an off-white solid. R_f 0.53 (100% Benzene); ¹H NMR (500 MHz, CDCl₃): δ 7.66 (dd, J = 8.2, 1.2, 2H), 7.42 (t, J = 7.6, 2H), 7.35–7.30 (m, 2H), 7.28 (dd, J = 7.6, 1.6, 1H), 7.12 (td, J = 7.5, 1.1, 1H), 7.05 (dd, J = 8.1, 0.8, 1H), 3.62 (t, J = 4.6, 4H), 2.84 (t, J = 4.6, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 150.1, 141.1, 135.1, 131.7, 128.9, 128.5, 128.3, 127.0, 123.0, 118.1, 67.1, 51.6; IR (film): 2950, 2815, 1593, 1480, 1439, 1221, 1110 cm⁻¹; HRMS-ESI (*m/z*) [M + H]⁺ calcd for C₁₆H₁₇NOH, 240.1388; found, 240.1394.

SI-24 (Table 2, entry 3). Purification by flash chromatography (5:1 Benzene:Hexanes) afforded aminated product **SI-24** (61% yield) as a white solid. R_f 0.31 (100% Benzene); ¹H NMR (500 MHz, CDCl₃): δ 7.50 (d, J = 7.3, 1H), 7.41 (t, J = 7.1, 1H), 7.33 (d, J = 7.9, 1H), 7.22 (t, J = 7.2, 1H), 3.85 (t, J = 4.3, 4H), 2.89 (bs, 4H), 0.31 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 159.5, 138.8, 135.6, 130.5, 125.9, 122.8, 67.4, 54.5, 0.2; IR (film): 2852, 1583, 1473, 1258, 1109 cm⁻¹; HRMS-ESI (*m/z*) [M + H]⁺ calcd for C₁₃H₂₁NOSiH, 236.1471; found, 236.1466.

SI-26 (Table 2, entry 4). Purification by flash chromatography (9:1 Benzene:Et₂O) afforded aminated product SI-26 (55% yield) as a yellow oil. R_f 0.23 (9:1 Benzene:Et₂O). Spectral data match those previously reported.⁸

SI-27 (Table 2, entry 5). Purification by flash chromatography (40:1 Benzene:Et₂O) afforded aminated product **SI-27** (84% yield) as an off-white solid. $R_f 0.22$ (40:1 Benzene:Et₂O). Spectral data match those previously reported.⁹

SI-28 (Table 2, entry 6). Purification by flash chromatography (6:1:1 Benzene:Et₂O:CH₂Cl₂) afforded aminated product **SI-28** (55% yield) as a off-white solid. R_f 0.21 (10:1:1 Benzene:Et₂O:CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): δ 7.25 (d, J = 8.8, 1H), 7.16 (d, J = 2.2, 1H), 7.03–6.97 (m, 2H), 6.41 (d, J = 3.0, 1H), 3.91 (t, J = 4.7, 4H), 3.76 (s, 3H), 3.13 (t, J = 4.7, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 145.9, 132.9, 129.5, 129.2, 115.2, 110.1, 108.0, 100.8, 67.6, 52.4, 33.2; IR (film): 3093, 2968, 1616, 1490, 1231, 1115 cm⁻¹; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₃H₁₆N₂OH, 217.1341; found, 217.1342.

⁸ Li, J.; Cui, M.; Yu, A.; Wu, Y. J. Organomet. Chem. 2007, 692, 3732–3742.

⁹ Fasani, E.; Tilocca, F.; Protti, S.; Merli, D.; Albini, A. Org. Biomol. Chem. 2008, 6, 4634–4642.

SI-30 (Table 2, entry 7). Purification by flash chromatography (2:1 Hexanes:EtOAc) afforded aminated product **SI-30** (78% yield) as a pale yellow oil. $R_f 0.28$ (9:1 Benzene:Et₂O). Spectral data match those previously reported.¹⁰

SI-31 (Table 3, entry 1). Purification by flash chromatography (50:1 Hexanes:EtOAc) afforded aminated product **SI-31** (96% yield) as a clear oil. $R_f 0.29$ (50:1 Hexanes:EtOAc). Spectral data match those previously reported.¹¹

SI-32 (Table 3, entry 2). Purification by flash chromatography (50:1 Hexanes:Et₂O) afforded aminated product **SI-32** (91% yield) as a white solid. $R_f 0.28$ (50:1 Hexanes:Et₂O). Spectral data match those previously reported.¹²

¹⁰ Wagaw, S.; Buchwald, S. L. J. Org. Chem. **1996**, 61, 7240–7241.

¹¹ Shimasaki, T.; Tobisu, M.; Chatani, N. Angew. Chem. Int. Ed. 2010, 49, 2929–2932.

¹² Brenner, E.; Schneider, R.; Fort, Y. *Tetrahedron* **1999**, *55*, 12829–12842.

SI-33 (Table 3, entry 3). Purification by flash chromatography (50:1 Hexanes:Et₂O) afforded aminated product **SI-33** (86% yield) as a clear oil. R_f 0.32 (50:1 Hexanes:Et₂O); ¹H NMR (300 MHz, CDCl₃): δ 7.42 (d, J = 9.0, 2H), 6.66 (d, J = 8.7, 2H), 3.35 (t, J = 7.3, 2H), 2.97 (s, 3H), 1.62–1.52 (m, 2H), 1.35 (sextet, J = 7.2, 2H), 0.95 (t, J = 7.4, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 151.4, 126.6 (q, J = 3.8), 125.4 (q, J = 268.3), 117.0 (q, J = 32.0), 110.9, 52.9, 38.4, 28.9, 20.4, 14.0; ¹⁹F NMR (300 MHz, CDCl₃): δ -60.8; IR (film): 2960, 2933, 2876, 1616, 1533, 1322, 1197, 1100, 1068 cm⁻¹; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₂H₁₆F₃H, 232.1313; found 232.1307.

SI-34 (Table 3, entry 4). Purification by flash chromatography (4:1 Hexanes:CH₂Cl₂) afforded aminated product **SI-34** (84% yield) as a yellow solid. $R_f 0.28$ (4:1 Hexanes:CH₂Cl₂). Spectral data match those previously reported.⁷

SI-35 (Table 3, entry 5). Purification by flash chromatography (100:1 Hexanes:Et₂O) afforded aminated product **SI-35** (70% yield) as a yellow oil. $R_f 0.12$ (100:1 Hexanes:Et₂O). Spectral data match those previously reported.⁷

SI-36 (Table 3, entry 6). Purification by flash chromatography (20:1 Hexanes:Et₂O) afforded aminated product **SI-36** (92% yield) as a clear oil. R_f 0.41 (20:1 Hexanes:Et₂O). Spectral data match those previously reported.⁷

SI-37 (Table 3, entry 7). Purification by flash chromatography (8:1 Hexanes:EtOAc) afforded aminated product **SI-37** (94% yield) as a white solid. $R_f 0.30$ (8:1 Hexanes:EtOAc). Spectral data match those previously reported.¹¹

SI-38 (Table 3, entry 8). Purification by flash chromatography (300:150:1 Hexanes:CH₂Cl₂:Et₃N) afforded aminated product **SI-38** (93% yield) as a white solid. $R_f 0.30$ (2:1 Hexanes:CH₂Cl₂); ¹H NMR (500 MHz, C₆D₆): δ 7.94 (d, J = 6.7, 1H), 7.74 (d, J = 1.7, 1H), 7.39 (t, J = 7.6, 1H), 7.21–7.16 (m, 4H), 7.07 (d, J = 8.2, 1H), 6.95 (d, J = 8.5, 1H), 6.91 (d, J = 8.4, 2H), 6.82, (td, J = 7.4, 0.8, 1H), 5.15 (s, 1H), 3.69 (q, J = 7.2, 2H), 0.92 (t, J = 7.3, 3H); ¹³C NMR (125 MHz, C₆D₆): δ 147.0, 140.9, 137.0, 134.9, 129.7, 126.0, 124.2, 123.3, 121.9, 121.0, 119.4, 119.1, 115.6, 114.4, 109.2, 108.8, 37.4, 13.6; IR (film): 3383, 3048, 2974, 1598, 1504, 1489, 1470, 1299, 1229, 1150 cm⁻¹; HRMS-ESI (*m/z*) [M + H]⁺ calcd for C₂₀H₁₈N₂H, 287.1548; found 287.1551.

C. Experiments Involving Carbamate and Sulfamate Substrates

Carbamate Sulfamate 14. To a round bottom flask containing NaH (0.308 g, 25.9 mmol, 1.2 equiv, 60% dispersion in oil) was added a solution of hydroquinone (**SI-39**) (3.0 g, 27.3 mmol, 1 equiv) in DME (60 mL) via cannula transfer. A solution of dimethylsulfamoyl chloride (2.76 mL, 25.9 mmol, 1.2 equiv) in DME (60 mL) was then added immediately via cannula transfer. The reaction was allowed to stir for 12 h and the reaction was quenched with deionized H₂O (20 mL). The volatiles were removed under reduced pressure, and then Et₂O (50 mL) and H₂O (20 mL) were added. The layers were separated and the organic phase was washed with H₂O (3 x 30 mL). The combined aqueous layers were extracted with Et₂O (3 x 50 mL). The combined organic layers were then washed with brine (20 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (7:1:1 Benzene:CH₂Cl₂:Et₂O) to yield sulfamate **SI-40** as a white solid (1.77 g, 32% yield).

To a round bottom flask containing NaH (0.560 g, 14.0 mmol, 1.2 equiv, 60% dispersion in oil) was added a solution of **SI-40** (2.53 g, 11.7 mmol, 1 equiv) in DME (23 mL). A solution of diethylcarbamoyl chloride (1.45 mL, 11.0 mmol, 0.95 equiv) in DME (23 mL) was then added dropwise to the reaction vessel. After stirring for 12 h, the reaction mixture was quenched with deionized H₂O (9 mL). The solvent was removed under reduced pressure and then Et₂O (22 mL) was added. The organic layer was washed with H₂O (3 x 9 mL). The combined aqueous layers were back-extracted with Et₂O (3 x 22 mL). The combined organic layers were washed with brine (9 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (1:1 Hexanes:EtOAc) to yield carbamate sulfamate **14** as a white solid (3.39 g, 92% yield). R_f 0.54 (7:1:1 Benzene:Et₂O:CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): δ 7.27 (d, *J* = 8.5, 2H), 7.14 (d, *J* = 9, 2H), 3.41 (m, 4H), 2.69 (s, 6H), 1.25 (t, *J* = 7, 3H), 1.20 (t, *J* = 7, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.9, 149.9, 147.1, 123.1, 122.7, 42.5, 42.1, 38.9, 14.4, 13.5; IR (film): 2983, 2939, 1721, 1474, 1357, 1273, 1156 cm⁻¹; HRMS-ESI (*m*/*z*) [M + Na]⁺ calcd for C₁₃H₂₀N₂O₅SNa, 339.0991; found 339.0988.

Bromide 15. To a solution of carbamate **14** (280.7 mg, 0.887 mmol, 1.0 equiv) and TMEDA (0.145 mL, 0.976 mmol, 1.1 equiv) in THF (4.4 mL) at –93 °C was added *s*-BuLi (0.720 mL, 0.976 mmol, 1.1 equiv) dropwise. After stirring for 45 min, 1,2-dibromotetrafluoroethane (0.148 mL, 1.242 mmol, 1.4 equiv) was added dropwise and the reaction was allowed to warm to 23 °C over 15 min. The reaction mixture was quenched with saturated aqueous NH₄Cl (3 mL) and stirred at 23 °C for 60 min. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 3 mL). The combined organic layers were washed with brine (1 x 5 mL), dried by passage over a plug of silica gel, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (3:1:1 Hexanes:CH₂Cl₂:Et₂O) to yield brominated product **15** (272.0 mg, 78% yield) as an off-white solid. R_f 0.17 (3:1:1 Hexanes:CH₂Cl₂:Et₂O); ¹H NMR (500 MHz, CDCl₃): δ 7.54 (t, *J* = 1.5, 1H), 7.26 (d, *J* = 1.5, 2H), 3.50 (q, *J* = 7.0, 2H), 3.40 (q, *J* = 7.0, 2H), 2.99 (s, 6H), 1.31 (t, *J* = 7.0, 3H), 1.23 (t, *J* = 7.0, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 152.9, 147.6, 147.3, 126.5, 124.8, 121.7, 116.9, 42.6, 42.3, 38.9, 14.4, 13.4; IR (film): 2977, 1724, 1592, 1472, 1372, 1148 cm⁻¹; HRMS-ESI (*m/z*) [M + Na]⁺ calcd for C₁₃H₁₉BrN₂O₅SNa, 417.0096; found 417.0107.

Oxazolidinone 16. A 1 mL vial was charged with K_2CO_3 (55.7 mg, 0.404 mmol, 2 equiv) and a magnetic stir bar. The vial and contents were flame-dried under reduced pressure, and then allowed to cool under N₂. Bromide **15** (80.0 mg, 0.202 mmol, 1 equiv) and 2-oxazolidinone (17.6 mg, 0.202 mmol, 1 equiv) were added. The vial was then evacuated and backfilled with N₂ three times and brought into a glove box. CuCl (2.0 mg, 0.020 mmol, 10 mol%) was added and the reaction vessel was removed from the glove box and placed under an atmosphere of N₂. (±)-trans-1,2-diaminocyclohexane (4.8 μ L, 0.040mmol, 20 mol%) was then added, followed by anhydrous dioxane (110 μ L). The

reaction vessel was shielded from light, sealed with a Teflon-coated cap, and heated to 110 °C. After 13 h, the reaction was allowed to cool to 23 °C. The residue was diluted in EtOAc (1 mL) and filtered over a pad of celite (EtOAc eluent, 7 mL). Concentration under reduced pressure afforded the crude product, which was further purified by flash chromatography (1:1 Benzene:EtOAc) to yield oxazolidinone **16** as a yellow oil (51.9 mg, 64% yield). R_f 0.28 (1:1 Benzene:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.32 (dd, *J* = 2.0, 1.0, 1H), 7.23 (d, *J* = 2.0, 2H), 4.44 (t, *J* = 8.0, 2H), 3.98 (t, *J* = 7.8, 2H), 3.44 (q, *J* = 7.2, 2H), 3.36 (q, *J* = 7.0, 2H), 2.96 (s, 6H), 1.23 (t, *J* = 7.0, 3H), 1.19 (t, *J* = 7.3, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 153.2, 147.2, 145.4, 131.1, 124.9, 121.9, 120.7, 62.8, 47.2, 42.5, 42.2, 38.9, 14.2, 13.4; IR (film): 2977, 1753, 1717, 1611, 1504, 1367, 1146 cm⁻¹; HRMS-ESI (*m/z*) [M + Na]⁺ calcd for C₁₆H₂₃N₃O₇SNa, 424.1154; found 424.1150.

Biaryl 17. A 20 mL scintillation vial was charged with a magnetic stir bar, K_3PO_4 (1 mL, 2 M aqueous) and toluene (1.7 mL), and the resulting biphasic mixture was sparged with N₂ for 1 h. To the solution were added bromide **15** (150 mg, 0.379 mmol, 1 equiv), phenylboronic acid (56 mg, 0.455 mmol, 1.2 equiv) and Pd(PPh₃)₄ (66 mg, 0.057 mmol, 15 mol%). The resulting mixture was sparged with N₂ for 10 min. The vial was sealed with a Teflon-coated screw-cap and heated at 90 °C for 14 h. After cooling to 23 °C, dichloromethane (10 mL) and Na₂SO₄ were added and the mixture was allowed to stand for 30 min. The crude mixture was then filtered over silica gel and concentrated under reduced pressure. The crude residue was purified by flash chromatography (3:1:1 Hexanes:CH₂Cl₂:Et₂O) to yield biaryl **17** as a yellow oil (140 mg, 94% yield). R_f 0.22 3:1:1 Hexanes:CH₂Cl₂:Et₂O); ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.22 (m, 8H), 3.23 (m, 4H), 2.99 (s, 6H), 1.04 (t, *J* = 6.8, 3H), 0.99 (t, *J* = 6.8, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.8, 147.2, 146.9, 137.0, 136.7, 129.1, 128.3, 127.8, 124.6, 123.8, 121.5, 42.2, 41.8, 38.9, 14.0, 13.2; IR (film): 2976, 1714, 1471, 1367, 1141 cm⁻¹; HRMS-ESI (*m/z*) [M + Na]⁺ calcd for C₁₉H₂₄N₂O₅SNa, 415.1304; found 415.1297.

Sulfamate 18. To a 4 mL vial charged with anhydrous lithium chloride (53.6 mg, 1.265 mmol, 5 equiv) was added a solution of bromide 15 (100.0 mg, 0.253 mmol, 1 equiv) in N.Ndimethylformamide (2.5 mL) that had been rigorously sparged with N₂, all in a glove box. Next, PdCl₂(PPh₃)₂ (4.2 mg, 0.006 mmol, 2.5 mol%) was added and the mixture was stirred until a vellow solution formed. To this solution was added neat tetramethyltin (87.7 µL, 0.633 mmol, 2.5 equiv) dropwise. The reaction vial was sealed, removed from the glove box, and heated to 100 °C for 16 h. The reaction was allowed to cool to 23 °C and was then quenched by the addition of H₂O (2.5 mL). The aqueous layer was extracted with EtOAc (5 x 6 mL). The combined organic layers were washed with brine (2 x 15 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude oil was redissolved in EtOAc (5 mL) and then washed sequentially with aqueous 1 M KF (3 x 5 mL). saturated aqueous NH₄Cl (1 x 5 mL), and H₂O (1 x 5 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure to yield sulfamate 18 as a white solid (62.1 mg, 74% yield). $R_f 0.39$ (5:1 Benzene:Et₂O); ¹H NMR (500 MHz, CDCl₃): δ 7.14 (bs, 1H), 7.10–7.05 (m, 2H), 3.45 (q, J = 7.0, 2H, 3.37 (q, J = 6.5, 2H), 2.94 (s, 6H), 2.21 (s, 3H), 1.26 (t, J = 6.5, 3H), 1.19 (t, J = 6.8, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.7, 148.4, 147.0, 132.4, 124.0, 123.3, 119.9, 42.4, 42.0, 38.8, 16.5, 14.3. 13.4; IR (film): 2976, 1714, 1416, 1367, 1273, 1134 cm⁻¹; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₁₄H₂₂N₂O₅SNa, 353.1147; found 353.1142.

Amine 19. A 4 mL reaction vial was charged with $Pd(OAc)_2$ (5.7 mg, 0.025 mmol, 10 mol%), BINAP (17.4 mg, 0.028 mmol, 11 mol%), anhydrous powdered NaO*t*Bu (34.0 mg, 0.354 mmol, 1.4 equiv), bromide 15 (100.0 mg, 0.253 mmol, 1 equiv), morpholine (26.6 μ L, 0.304 mmol, 1.2 equiv) and a

magnetic stir bar, all in a glove box. Subsequently, toluene (1.0 mL) that had been rigorously sparged with N₂, was added. The vessel was sealed under an atmosphere of argon, and then heated to 80 °C for 16 h. After cooling to 23 °C, the crude mixture was diluted with Et₂O, filtered over a plug of celite with additional Et₂O (10 mL), and concentrated under reduced pressure. The crude residue was purified by flash chromatography (1:1 Benzene:Et₂O) to furnish aminated product **19** (72.1 mg, 71% yield) as a yellow oil. R_f 0.33 (1:1 Benzene:Et₂O); ¹H NMR (500 MHz, CDCl₃): δ 7.06 (d, *J* = 8.0, 1H), 6.96–6.92 (m, 2H), 3.79 (t, *J* = 4.8, 4H), 3.45 (q, *J* = 7.0, 2H), 3.38 (q, *J* = 7.0, 2H), 3.00 (t, *J* = 4.5, 4H), 2.95 (s, 6H), 1.25 (t, *J* = 7.0, 3H), 1.21 (t, *J* = 7.0, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.6, 147.8, 145.9, 143.5, 124.5, 116.2, 113.7, 67.2, 51.6, 42.3, 41.8, 38.9, 14.4, 13.5; IR (film): 2972, 1716, 1608, 1584, 1498, 1413, 1367, 1139 cm⁻¹; HRMS-ESI (*m/z*) [M + Na]⁺ calcd for C₁₇H₂₇N₃O₆SNa, 424.1518; found 424.1508.

Carbamate 20. A 4 mL vial containing K₃PO₄ (0.324 g, 1.53 mmol, 7.2 equiv) was flame-dried and cooled to 23 °C. The Ni(PCy₃)₂Cl₂ (25.3 mg, 0.042 mmol, 20 mol%), boronic acid (0.161 g, 1.06 mmol, 5 equiv) and sulfamate **18** (70 mg, 0.212 mmol, 1 equiv) were added to the vial. Toluene (0.7 mL) was added, and the resulting mixture was stirred at 23 °C for 1 h. The reaction was then heated at 130 °C for 8 h. The reaction was then cooled to 23 °C and purified by flash chromatography (9:1 Benzene:CH₂Cl₂ \rightarrow 8:1:1 Hexanes:EtOAc:CH₂Cl₂) to produce carbamate **20** (34.7 mg, 52% yield) as a white solid, along with recovered sulfamate **18** (13.3 mg, 19% yield). R_f 0.24 (8:1:1 Hexanes:EtOAc:CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): δ 7.48 (d, *J* = 9, 2H), 7.37 (s, 1H), 7.35 (d, *J* = 9.6, 1H), 7.10 (d, *J* = 8.4, 1H) 6.95 (d, *J* = 8.4, 2H), 3.85 (s, 3H), 3.49 (m, 2H), 3.41 (m, 2H), 2.27 (s, 3H), 1.25 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 159.1, 154.1, 149.2, 138.2, 133.5, 130.7, 129.4, 128.2, 125.2, 122.5, 114.2, 55.4, 42.4, 42.0, 16.6, 14.4, 13.5; IR (film): 2973, 2931, 1711, 1608, 1416, 1213, 1153 cm⁻¹; HRMS-ESI (*m/z*) [M + Na]⁺ calcd for C₁₉H₂₃NO₃Na, 336.1576; found 336.1567.

Amine 21. A 4 mL vial was charged with carbamate 20 (45.5 mg, 0.145 mmol, 1 equiv), Ni(cod)₂ (4.1 mg, 0.015 mmol, 10 mol%), SIPr•HCl (12.8 mg, 0.03 mmol, 20 mol%), anhydrous powdered NaOtBu (30.6 mg, 0.319 mmol, 2.2 equiv), and a magnetic stir bar, all in a glove box. Subsequently, morpholine (30.5 µL, 0.348 mmol, 2.4 equiv) and dioxane (0.73 mL) were added. The vessel was sealed and removed from the glove box, and then heated to 80 °C for 3 h. After cooling the reaction vessel to 23 °C, the reaction mixture was filtered over a pad of silica, washed with EtOAc (10 mL) and evaporated to dryness. The crude residue was dissolved in CH_2Cl_2 (0.5 mL), and the resulting solution was layered with benzene (0.1 mL) and hexanes (1.5 mL). The hexane and benzene layers mixed upon standing, and the resulting mixture was placed in a freezer (ca. -10 °C) overnight. After 12 h, the crystals that were formed were collected by filtration and washed with cold hexanes (4 mL) to yield amine 21 (27.8 mg, 68% yield) as a yellow solid. $R_f 0.39$ (8:1:1 Hexanes:EtOAc:CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): δ 7.49 (d, J = 7.8, 2H), 7.39 (s, 1H), 7.36 (d, J = 7.8, 1H), 7.07 (d, J = 7.8, 1H) 6.96 (d, J = 7.8, 2H), 3.87 (bs, 4H), 3.85 (bs, 3H), 2.95 (bs, 4H), 2.37 (bs, 3H); ¹³C NMR (125 MHz, CDCl₃): 8 158.9, 150.3, 136.0, 133.7, 133.0, 130.0, 128.0, 125.0, 119.3, 114.3, 67.6, 55.5, 52.4, 18.2; IR (film): 2990, 2963, 2854, 2836, 1718, 1605, 1581, 1496, 1224, 1116, 1023 cm⁻¹; HRMS-ESI (*m/z*) $[M + H]^+$ calcd for C₁₈H₂₁NO₂H, 284.1650; found 284.1648.

D. Key Optimization Studies

Computational Methods

N,N-dimethyl phenylcarbamate and dimethyl amine are used as representatives of experimental substrates. *N,N'*-bis(2,6-dimethylphenyl)4,5-dihydroimidazol-2-ylidene is used as model for the experimental ligand, *N,N'*-bis(2,6-diisopropylphenyl)4,5-dihydroimidazol-2-ylidene (SIPr). Geometry optimizations and frequency calculations were performed using B3LYP and a mixed basis set employing SDD for metal and 6-31G(d) for other atoms. Single point energies were calculated with B3LYP and a mixed basis set of SDD for metal and 6-311+G(2d,p) basis set for other atoms. Energies reported are Gibbs free energies in solution, which involve zero-point vibrational energy corrections, thermal corrections to Gibbs free energy at 298 K, and solvation free energy corrections computed by singlet point CPCM calculations with B3LYP/SDD–6-311+G(2d,p) on gas-phase optimized geometries. In CPCM calculations, 1,4-dioxane was used as solvent. The molecular cavities were built up using the United Atom Topological Model (UAHF). Vibrational frequencies were calculated for all optimized structures to confirm the nature of the stationary points. All calculations were performed using Gaussian 09 package.

A. Complete Reference of Gaussian 09

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.

B. Single Point Calculations using Other DFT Methods and Basis Sets

We performed single point calculations for the energy profiles shown in Figures 2 in the manuscript using other DFT methods and basis sets. The geometries were optimized using B3LYP and a mixed basis set of SDD for metal and 6-31G(d) for other atoms. Different DFT methods (B3LYP, B3P86, B3PW91) and basis sets (6-31G(d), 6-311+G(2d,p)) were used to calculate the single point energies and solvation energy corrections for all species (shown in Figure S1 and Table S1).

Figure S1. Energy diagrams of nickel-catalyzed amination between *N*,*N*-dimethylphenylcarbamate and dimethylamine calculated using different DFT methods and basis sets (Energies are Gibbs free energies in kcal/mol).

	5	TS6	7	8	TS9	10	11	TS12	13	5
B3LYP /6-31G*/CPCM	0.0	6.5	-31.7	-26.4	-20.7	-27.7	-35.5	-11.9	-26.2	-21.6
B3LYP /6-311+G(2d,p)/CPCM	0.0	5.7	-32.5	-18.4	-14.7	-23.2	-36.2	-13.1	-26.2	-19.4
B3P86 /6-31G*/CPCM	0.0	9.9	-26.6	-25.0	-19.1	-23.8	-31.8	-11.2	-24.6	-24.6
B3P86 /6-311+G(2d,p)/CPCM	0.0	9.4	-27.5	-17.7	-13.7	-19.7	-31.8	-11.6	-23.8	-23.0
B3PW91 /6-31G*/CPCM	0.0	9.5	-26.1	-20.8	-15.8	-22.0	-32.0	-10.8	-24.5	-24.4
B3PW91 /6-311+G(2d,p)/CPCM	0.0	9.0	-27.0	-13.4	-10.4	-17.8	-32.1	-11.3	-23.8	-22.8

Table S1. Energies of nickel-catalyzed amination between *N*,*N*-dimethyl phenylcarbamate and dimethylamine calculated using different DFT methods and basis sets (Energies are Gibbs free energies in kcal/mol).

C. The Cartesian coordinates (Å), and Gibbs free energies at 298K for the optimized structures.

For transition state structures, one imaginary frequency was observed and given below. For all minimum structures, no imaginary frequencies were observed.

5

Total SCF energy:	-1572.50113709 a.u.
Enthalpy at 298K:	-1571.908190 a.u.
Gibbs free energy at 298K:	-1572.014494 a.u.
Free energy in solution at 298K:	-1572.458643 a.u.

ATOM	Х	Y	Z
С	-0.41142000	1.91417000	1.53913500
С	1.36290900	1.90276200	3.21553400
С	-0.34955500	0.18778100	3.29867800
С	-0.96022300	0.70565600	2.11292100
Н	-0.82116900	-0.65607900	3.79884900
С	0.78955400	0.75491200	3.82842700
Н	1.24276900	0.34141700	4.72575200
Н	-1.99320100	0.43162600	1.90213400
С	0.76238300	2.49168300	2.12454600
0	-1.30555300	2.88485100	0.90518900
С	-1.28374900	2.85234600	-0.43397100
0	-0.64872200	1.99267700	-1.07397200
Н	1.15635000	3.41149500	1.69846600
Н	2.26775500	2.34008300	3.63061600
Ni	-0.05263000	0.48757700	0.31068100
Ν	-2.01780300	3.82997300	-1.02560300
С	-2.76058200	4.83706800	-0.28136100
Н	-3.83666900	4.74226800	-0.47975500

Н	-2.58251500	4.71639100	0.78455100
Н	-2.44192300	5.84153500	-0.58927000
С	-2.11353900	3.88690400	-2.47556300
Н	-1.51984200	3.08153800	-2.90424900
Н	-3.15899000	3.77869000	-2.79366700
Н	-1.73884400	4.85079700	-2.84407900
С	0.40258700	-1.19786900	-0.38592500
Ν	-0.40520000	-2.28207800	-0.57864200
Ν	1.64334200	-1.57458500	-0.81013800
С	0.26193900	-3.42676000	-1.22639800
С	-1.81633400	-2.29835100	-0.33880200
С	1.73366000	-2.97584900	-1.25828500
С	2.80724400	-0.74023700	-0.76200500
Н	0.11600700	-4.34818300	-0.65202800
С	-2.29648900	-2.89450700	0.84315700
С	-2.69477000	-1.75941500	-1.29883900
Н	2.17445100	-3.03963700	-2.25957100
С	3.11754200	0.05914000	-1.87859700
С	3.63140400	-0.76363700	0.37936500
С	-3.67951500	-2.94280900	1.05274700
С	-1.34203400	-3.44511200	1.87614600
С	-4.07132900	-1.82782800	-1.05132000
С	-2.17594400	-1.09540700	-2.55220700
С	4.28327100	0.83278700	-1.83989400
С	2.19888300	0.11189400	-3.07641200
С	4.78987000	0.02180900	0.37648300
С	3.25895600	-1.57730400	1.59599600
С	-4.56316200	-2.41502300	0.11295900

Н	-4.06191000	-3.39558600	1.96442800
Н	-1.88344600	-3.76286400	2.77290500
Н	-0.78777100	-4.31586100	1.50226200
Н	-0.60267700	-2.69112600	2.16593600
Н	-4.76108300	-1.41626900	-1.78446600
Н	-1.43403100	-1.71486600	-3.06915400
Н	-2.99525000	-0.89857800	-3.25148600
Н	-1.68797200	-0.14281800	-2.31428400
С	5.11731200	0.81232100	-0.72365600
Н	4.53383500	1.45638700	-2.69471100
Н	2.63333000	0.72839000	-3.86989000
Н	2.00644700	-0.88420800	-3.49321800
Н	1.22808600	0.54038100	-2.80150400
Н	5.43468600	0.01563600	1.25191600
Н	2.32052900	-1.21522300	2.03122800
Н	3.12156100	-2.63939200	1.35918400
Н	4.03932800	-1.50626800	2.36025300
Н	-5.63496400	-2.46119500	0.28809400
Н	6.02127700	1.41590200	-0.70932200
Н	-0.14612200	-3.59282000	-2.23246800
Н	2.36419500	-3.56385400	-0.57873200

TS6

Total SCF energy:	-1572.48623239 a.u.
Enthalpy at 298K:	-1571.894822 a.u.
Gibbs free energy at 298K:	-1572.000684 a.u.
Free energy in solution at 298K:	-1572.449576 a.u.

Imaginary frequency:

-194.54 cm⁻¹

ATOM	Х	Y	Z
С	-0.12043700	1.77464900	1.67640100
С	1.26056900	2.19695900	3.61631800
С	-0.57945300	0.63003600	3.79176800
С	-0.91030600	0.86527400	2.43475600
Н	-1.20510300	-0.03327100	4.38652400
С	0.49865700	1.27720400	4.37283100
Н	0.74818100	1.09999700	5.41573100
Н	-1.85157000	0.48556800	2.04185000
С	0.94530300	2.47470000	2.29733300
0	-1.07140700	3.10013900	0.62737000
С	-0.85726400	2.83253300	-0.60327400
0	-0.33887000	1.73576700	-1.03050600
Н	1.52136400	3.19686400	1.72573600
Н	2.11048400	2.69546200	4.07817000
Ni	0.01019700	0.48424400	0.43212300
С	0.25028700	-1.25728000	-0.39694400
Ν	-0.70811100	-2.17445900	-0.66715200
Ν	1.42305000	-1.76630600	-0.83825400
С	-0.20727400	-3.38309100	-1.35458800
С	1.30543400	-3.10384000	-1.45552100
Н	-0.68346400	-3.49120100	-2.33603800
Н	-0.43329000	-4.28330900	-0.77241200
Н	1.66361500	-3.08266800	-2.49089600
Н	1.90846700	-3.83735700	-0.90809000
Ν	-1.19085900	3.78784000	-1.53427400

С	-1.91513400	4.98533000	-1.14279900
Н	-1.51117700	5.85319700	-1.67937100
Н	-2.98729900	4.90570200	-1.38090400
Н	-1.80221900	5.13595100	-0.07099000
С	-1.12780100	3.50534600	-2.95675900
Н	-0.44104300	2.67965100	-3.13224600
Н	-2.11615600	3.23979200	-3.36451000
Н	-0.76952300	4.39386700	-3.49147200
С	-2.10205600	-2.01870200	-0.36474400
С	-2.60278300	-2.55157000	0.83863800
С	-2.93826200	-1.36663000	-1.29043900
С	-3.97201800	-2.42539200	1.10037700
С	-4.30172600	-1.26236500	-0.98928900
С	-4.81720000	-1.78806400	0.19356900
Н	-4.37326300	-2.82826700	2.02700100
Н	-4.96083000	-0.75963400	-1.69257100
Н	-5.87831200	-1.69871900	0.41073200
С	2.69333100	-1.10583900	-0.73859300
С	3.10981200	-0.26133800	-1.78435300
С	3.50210100	-1.34687900	0.38756000
С	4.37362700	0.33301500	-1.68861500
С	4.75837800	-0.73274700	0.44363100
С	5.19435000	0.09775500	-0.58728900
Н	4.71085200	0.98958200	-2.48681900
Н	5.39385600	-0.90548900	1.30858000
Н	6.17343200	0.56616500	-0.52978400
С	2.20615700	0.03743700	-2.95696400
Н	1.82552600	-0.87538200	-3.43087500

Н	1.33803000	0.62335000	-2.63238400
Н	2.74283400	0.61030500	-3.71975300
С	3.01832800	-2.21246800	1.52715400
Н	2.11328500	-1.79166200	1.98031000
Н	2.77474200	-3.23154600	1.20156000
Н	3.78312000	-2.28782100	2.30598600
С	-2.38167300	-0.75594500	-2.55442200
Н	-1.74183200	0.10270800	-2.31803900
Н	-1.77369600	-1.46873200	-3.12439300
Н	-3.19236000	-0.41354200	-3.20547400
С	-1.68656700	-3.20909600	1.84383500
Н	-1.15349400	-4.06931800	1.42048800
Н	-0.92822900	-2.50348200	2.20232700
Н	-2.25507200	-3.56631200	2.70795000

7

Total SCF energy:	-1572.55602277 a.u.
Enthalpy at 298K:	-1571.894822 a.u.
Gibbs free energy at 298K:	-1572.065526 a.u.
Free energy in solution at 298K:	-1572.510379 a.u.

ATOM	Х	Y	Z
Ni	0.12795100	0.64169300	0.52753200
С	-0.10170700	-0.88518000	-0.54790800
С	-0.99135300	-2.38729000	-2.13656400
С	0.35171400	-2.93531600	-1.62950300
Н	-1.81278500	-3.09651800	-2.00801000
Н	0.23858800	-3.86534400	-1.05977300

Ν	0.82620100	-1.85203100	-0.74034300
Ν	-1.19064900	-1.19082600	-1.28997700
Н	1.07219100	-3.11649700	-2.43225500
Н	-0.95807200	-2.09293400	-3.19291600
С	-1.11658800	0.09956900	1.85787900
С	-1.79684400	1.14094700	2.52191100
С	-1.38352300	-1.20797100	2.30086300
С	-2.68754600	0.88692600	3.56904200
Н	-1.61417200	2.17060400	2.22903300
С	-2.25810900	-1.47029600	3.36341000
Н	-0.90603400	-2.05228100	1.81270900
С	-2.91876600	-0.42104400	4.00158200
Н	-3.19546000	1.71763600	4.05578700
Н	-2.42533400	-2.49712300	3.68481400
Н	-3.60275100	-0.61810400	4.82386600
0	0.61706400	2.36438200	1.34744500
С	1.39645400	2.59490100	0.35613000
0	1.45507400	1.70759000	-0.57451400
Ν	2.13008300	3.73935100	0.28961200
С	2.09150600	4.71487400	1.36505500
Н	3.07983500	4.81269200	1.83566800
Н	1.79645200	5.69968200	0.97837200
Н	1.36958700	4.39001200	2.11279000
С	3.03127000	3.99417200	-0.81805000
Н	2.78995100	4.95367700	-1.29538000
Н	4.07382300	4.03712200	-0.47213300
Н	2.93101200	3.19391700	-1.54973400
С	2.20423200	-1.83852200	-0.31307200

С	3.15782100	-1.24022400	-1.16462800
С	2.58838300	-2.49690700	0.87018000
С	4.50304300	-1.27647300	-0.78360900
С	3.94756100	-2.50737200	1.21117500
С	4.89837700	-1.89787800	0.39894700
Н	5.24547800	-0.81324100	-1.42843900
Н	4.25492200	-3.00785000	2.12590100
Н	5.94825200	-1.91880000	0.67912900
С	-2.32449600	-0.33469800	-1.53087900
С	-3.58524900	-0.70726800	-1.02307000
С	-2.16581800	0.80531600	-2.34582600
С	-4.67961500	0.12096100	-1.29745300
С	-3.28954200	1.60452500	-2.58955900
С	-4.53554600	1.27425500	-2.06402200
Н	-5.65392500	-0.14707500	-0.89726100
Н	-3.17884500	2.49047500	-3.20973300
Н	-5.39616500	1.90753300	-2.26256400
С	2.76230200	-0.55789800	-2.45205400
Н	2.13641900	-1.19510400	-3.08862300
Н	2.20506400	0.35930400	-2.24061400
Н	3.65330600	-0.29304900	-3.03001000
С	1.59815600	-3.17414400	1.78609000
Н	1.13862000	-2.45353200	2.47129900
Н	0.78478700	-3.65846000	1.23691500
Н	2.09805900	-3.93771400	2.39061000
С	-3.78536000	-1.96323300	-0.21009900
Н	-4.78694800	-1.97618300	0.22974500
Н	-3.69160100	-2.86819100	-0.82608000

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Mesganaw et al.: Aryl Carbamate Amination Supporting Information – S33

Н	-3.06039700	-2.03168800	0.60450700
С	-0.84017500	1.17619300	-2.96863300
Н	-0.14819000	1.60618100	-2.23613600
Н	-0.33718900	0.30673000	-3.40789400
Н	-0.99114500	1.90994900	-3.76698100

8

Total SCF energy:	-1617.61569826 a.u.
Enthalpy at 298K:	-1616.892203 a.u.
Gibbs free energy at 298K:	-1617.003548 a.u.
Free energy in solution at 298K:	-1617.459161 a.u.

ATOM	Х	Y	Ζ
Ni	0.27367100	0.23273500	0.85607000
С	0.57760900	-0.00948900	-3.32150100
С	-0.94925500	-0.10216200	-3.22909200
Н	1.02281100	-0.84450100	-3.86991100
Н	-1.33970000	-1.06007200	-3.59216400
С	-0.14393900	-1.58750800	1.26533300
С	0.72561900	-2.69193100	1.19603700
С	-1.40315900	-1.81986800	1.85867600
С	0.36411400	-3.95630200	1.68104800
Н	1.71599800	-2.56841800	0.76395300
С	-1.77193500	-3.07568000	2.35240100
Н	-2.11954200	-1.00325200	1.93850200
С	-0.88874200	-4.15523400	2.26222900
Н	1.06702800	-4.78463700	1.60713000
Н	-2.75181600	-3.21103500	2.80741900

Н	-1.17242800	-5.13405700	2.64175400
Ν	1.16730500	0.41760100	2.67440900
Н	1.28210900	1.42124000	2.51342900
0	0.61150300	2.16516000	0.77827600
С	-0.13047300	3.25950100	1.26408500
С	-1.57764000	2.87528100	1.63919500
С	0.55664800	3.85553100	2.52274000
С	-0.14894100	4.37171900	0.18909900
Н	-2.10593700	2.45345600	0.78086200
Н	-1.58001500	2.11696200	2.43172100
Н	-2.14706700	3.74113400	2.00374400
Н	1.61055800	4.06549800	2.30577700
Н	0.08058700	4.79067600	2.84564100
Н	0.51096300	3.16165700	3.37253300
Н	-0.72546600	5.24883400	0.51211500
Н	0.87477300	4.69895500	-0.02688300
Н	-0.58319000	4.00091300	-0.74371300
С	2.50410600	-0.20269400	2.70240200
Н	2.39927000	-1.28941400	2.74080300
Н	3.04780800	0.06904400	1.79412500
Н	3.07797100	0.13047800	3.58039600
С	0.42766900	0.17510300	3.92237300
Н	-0.51423700	0.72846200	3.90234400
Н	0.19985500	-0.88958100	4.00836500
Н	1.00980300	0.49127500	4.80075900
С	-0.05775100	0.03944600	-1.03351700
N	-1.19379000	0.02551100	-1.77586900
Ν	0.98397100	-0.03952700	-1.90167600

Н	-1.45778900	0.69979300	-3.77245900
Н	0.91694400	0.92266100	-3.78835200
С	-2.55647600	-0.05760800	-1.32168800
С	-3.34331100	1.11042900	-1.30450300
С	-3.11539400	-1.32285300	-1.04264500
С	-4.67459900	1.01130800	-0.88076300
С	-4.45012900	-1.37495100	-0.62426300
С	-5.22139900	-0.21856200	-0.52539100
Н	-5.28429500	1.91071400	-0.84208200
Н	-4.88731800	-2.34079700	-0.38456600
Н	-6.25387300	-0.27975000	-0.19138700
С	2.37796900	-0.20568000	-1.58248100
С	3.19629400	0.92722600	-1.39795700
С	2.91466600	-1.51089700	-1.58302200
С	4.55004100	0.71747900	-1.10132400
С	4.27271700	-1.67106300	-1.28166400
С	5.08335300	-0.56723700	-1.02593800
Н	5.19022600	1.58136300	-0.94150100
Н	4.69444500	-2.67299200	-1.26087600
Н	6.13550100	-0.70746500	-0.79152500
С	2.65092300	2.32541200	-1.52161700
Н	2.15159000	2.47632800	-2.48756800
Н	1.91420900	2.51671200	-0.72813400
Н	3.46149100	3.05824800	-1.45022100
С	2.08783800	-2.71875100	-1.96220800
Н	2.00544100	-2.80979100	-3.05460900
Н	2.55802300	-3.63842700	-1.60080700
Н	1.07629900	-2.67766900	-1.55381700

С	-2.34830900	-2.60655900	-1.25584700
Н	-1.33241300	-2.55447100	-0.86223700
Н	-2.85013800	-3.44054500	-0.75812200
Н	-2.29050300	-2.85058300	-2.32625600
С	-2.81155200	2.43211100	-1.80450900
Н	-3.01199000	2.54536400	-2.87968100
Н	-3.29768600	3.27146200	-1.29823200
Н	-1.73490200	2.52020200	-1.65462900

TS9

Total SCF energy:	-1617.59749836 a.u.
Enthalpy at 298K:	-1616.880462 a.u.
Gibbs free energy at 298K:	-1616.995999 a.u.
Free energy in solution at 298K:	-1617.453272 a.u.
Imaginary frequency:	-915.73 cm ⁻¹

ATOM	Х	Y	Z
Ni	0.06798100	0.25408800	0.74762500
С	0.63890500	-1.24424600	-3.16919900
С	-0.88397600	-1.03503700	-3.18180100
Н	0.92388700	-2.28618200	-3.34539600
Н	-1.43689000	-1.94965900	-3.41565100
С	-0.21754800	-1.39231300	1.60651700
С	0.85086800	-2.22614700	1.97978200
С	-1.51132400	-1.77583200	2.00272600
С	0.63570800	-3.39724700	2.71639800
Н	1.86902800	-1.96248800	1.70368100
С	-1.72832600	-2.94604000	2.73980800
Н	-2.36694900	-1.15775700	1.74128500
---	-------------	-------------	-------------
С	-0.65552100	-3.76391200	3.10008400
Н	1.48387100	-4.02026900	2.99469400
Н	-2.74086300	-3.21392200	3.03634900
Н	-0.82294700	-4.67146800	3.67499200
Ν	0.30201900	1.19808400	2.39771200
Н	0.44824400	2.17268200	1.54043500
0	0.49876100	2.64993400	0.44943900
С	0.44829700	4.07271600	0.43913800
С	-0.89721400	4.55965400	1.01643400
С	1.60718600	4.61565700	1.30148600
С	0.60936500	4.58726500	-1.00175600
Н	-1.73259000	4.17194400	0.42331800
Н	-1.02380600	4.20779600	2.04687100
Н	-0.96153100	5.65540800	1.02372400
Н	2.56571700	4.25127100	0.91536400
Н	1.63109500	5.71302800	1.30738200
Н	1.50852600	4.27415200	2.33879400
Н	0.55896100	5.68292600	-1.03570500
Н	1.57567800	4.28071900	-1.41565600
Н	-0.17968700	4.19266500	-1.64989500
С	1.51082700	0.91243600	3.16627000
Н	1.44547000	-0.04834100	3.69708500
Н	2.37687400	0.87500000	2.49685900
Н	1.69312300	1.70025200	3.91600600
С	-0.86123500	1.35035600	3.26678200
Н	-1.73242300	1.65038800	2.67433000
Н	-1.10972500	0.41590200	3.79009100

Н	-0.68330700	2.12644700	4.02996400
С	-0.04665400	-0.45100500	-1.04400700
Ν	-1.16039400	-0.59680200	-1.79648600
Ν	1.00928600	-0.83117600	-1.79823100
Н	-1.19859600	-0.25906300	-3.88860700
Н	1.16033600	-0.62093000	-3.90316600
С	-2.51744600	-0.35942100	-1.38485600
С	-3.02682300	0.95228400	-1.42000700
С	-3.32540700	-1.46017100	-1.03637900
С	-4.36206600	1.15277400	-1.04954400
С	-4.65621900	-1.21314300	-0.67817600
С	-5.17108100	0.08141800	-0.67691400
Н	-4.76728900	2.16128700	-1.06406500
Н	-5.28948500	-2.05015200	-0.39533900
Н	-6.20555900	0.25463400	-0.39238500
С	2.38129800	-0.92410600	-1.37507900
С	3.19374700	0.22482100	-1.42304100
С	2.89775600	-2.18297900	-1.00543400
С	4.53398800	0.10094000	-1.03592100
С	4.24397600	-2.25882300	-0.62816800
С	5.05574600	-1.12652600	-0.63445800
Н	5.17126600	0.98115900	-1.05964100
Н	4.65327300	-3.21987400	-0.32698600
Н	6.09793200	-1.20330400	-0.33587000
С	2.64772500	1.55623700	-1.87179900
Н	2.10025700	1.47226500	-2.81884900
Н	1.95596600	1.97204600	-1.12838500
Н	3.46336100	2.27132000	-2.02041200

С	2.05084400	-3.43443700	-1.02349200
Н	1.93689200	-3.82951000	-2.04257300
Н	2.51810600	-4.22228200	-0.42534700
Н	1.05280900	-3.25683100	-0.61542500
С	-2.79487300	-2.87468400	-1.04605700
Н	-1.82663000	-2.94501000	-0.54353100
Н	-3.48710800	-3.54672000	-0.53057000
Н	-2.67488800	-3.25695700	-2.06899600
С	-2.16432100	2.11278500	-1.84786400
Н	-1.72871300	1.94801300	-2.84183600
Н	-2.75512400	3.03293700	-1.89413500
Н	-1.33372000	2.27215700	-1.15161300

10

Total SCF energy:	-1617.60755966 a.u.
Enthalpy at 298K:	-1616.886029 a.u.
Gibbs free energy at 298K:	-1617.005198 a.u.
Free energy in solution at 298K:	-1618.06911822 a.u.

ATOM	Х	Y	Ζ
Ni	0.01811400	-0.00789400	0.73710000
С	-1.46147700	-0.65556900	-3.17658300
С	-1.36713800	0.88052500	-3.16521300
Н	-2.47123400	-1.01615700	-3.39540700
Н	-2.33843500	1.36219300	-3.31909900
С	-1.59029000	0.13341800	1.69822200
С	-2.28243500	-1.01246600	2.12834700
С	-2.07867400	1.38458100	2.11371200
С	-3.42461400	-0.91112100	2.93171100

Н	-1.92911400	-2.00112600	1.84335600
С	-3.22052600	1.48756500	2.91712700
Н	-1.56350600	2.29548400	1.81695100
С	-3.90078400	0.33985000	3.32929300
Н	-3.93859100	-1.81591700	3.25153000
Н	-3.57392300	2.46996000	3.22567800
Н	-4.78625800	0.41894100	3.95542100
Ν	1.17413500	-0.09719100	2.13350200
Н	2.67683600	-0.23504700	0.91238700
0	3.27783200	-0.30710800	0.12449300
С	4.65312400	-0.37342700	0.51945100
С	5.04658500	0.91428800	1.26296500
С	4.88367800	-1.60527000	1.41097300
С	5.44908300	-0.50255800	-0.78415700
Н	4.85866200	1.78916500	0.63106600
Н	4.45936000	1.02661400	2.18186100
Н	6.10792300	0.90863500	1.53986100
Н	4.56843900	-2.51488100	0.88824400
Н	5.94115400	-1.71040700	1.68263000
Н	4.30464700	-1.52887400	2.33887100
Н	6.52542300	-0.55634300	-0.58511400
Н	5.15086300	-1.40772100	-1.32444200
Н	5.25904000	0.35947700	-1.43289200
С	1.19092800	-1.29158100	2.97149400
Н	0.40146200	-1.26826600	3.74184000
Н	1.04419900	-2.18898900	2.36180500
Н	2.15529100	-1.39465500	3.49893200
С	1.38718900	1.09362400	2.94908400

Н	1.39258400	1.99087200	2.32173700
Н	0.60298700	1.21668400	3.71523800
Н	2.35419500	1.04547800	3.47984200
С	-0.69728100	0.05232200	-1.04722700
N	-0.85847900	1.16043000	-1.80578100
N	-1.06625400	-1.01121300	-1.79693500
Н	-0.67331400	1.27045600	-3.91768200
Н	-0.77501600	-1.11746700	-3.89558400
С	-0.53896600	2.50409000	-1.40966500
С	0.79324300	2.94986400	-1.51596600
С	-1.57756500	3.35886300	-0.98838500
С	1.07627500	4.27000000	-1.14123800
С	-1.24697200	4.66934000	-0.62523100
С	0.06967100	5.12150900	-0.69230700
Н	2.09963600	4.62969600	-1.21338800
Н	-2.03451600	5.33789500	-0.28689200
Н	0.30894000	6.14207900	-0.40521400
С	-0.99116200	-2.38922300	-1.39660400
С	0.23987500	-3.06784700	-1.48814900
С	-2.17161400	-3.04149900	-0.98705900
С	0.27405000	-4.41787500	-1.11416800
С	-2.08872500	-4.39051100	-0.62448000
С	-0.87514200	-5.07377200	-0.68007600
Н	1.21622100	-4.95670700	-1.17542600
Н	-2.98806800	-4.90533900	-0.29620600
Н	-0.82803900	-6.12141700	-0.39474800
С	1.49768200	-2.38825500	-1.97666400
Н	1.30501400	-1.74316600	-2.84115900

Н	1.96557600	-1.76118100	-1.20737300
Н	2.23639000	-3.13746700	-2.28018100
С	-3.49628900	-2.31717300	-0.93158500
Н	-3.84949900	-2.03336400	-1.93170800
Н	-4.26429000	-2.95690400	-0.48661100
Н	-3.42836600	-1.40563600	-0.33036400
С	-3.01369900	2.89355000	-0.92818300
Н	-3.10563500	1.93495300	-0.41006300
Н	-3.63036200	3.62276000	-0.39452900
Н	-3.44513200	2.77789800	-1.93167800
С	1.89909200	2.05525700	-2.02481900
Н	1.57534300	1.45447900	-2.88222800
Н	2.75429700	2.65914900	-2.34595100
Н	2.26039500	1.35487600	-1.26127800

11

Total SCF energy:	-1383.92420628 a.u.
Enthalpy at 298K:	-1383.349281 a.u.
Gibbs free energy at 298K:	-1383.451204 a.u.
Free energy in solution at 298K:	-1383.82905792 a.u.

Cartesian coordinates

ATOM	Х	Y	Ζ
Ni	-0.00651200	0.32201300	1.11357500
С	-0.75425200	-2.29259400	-2.09268600
С	0.78083500	-2.36467000	-2.01544700
Н	-1.23527300	-3.26116800	-1.92012100
Н	1.14046100	-3.34407100	-1.67621900
С	-0.00458600	1.95291700	0.16508500

С	-1.20620000	2.61324000	-0.15162300
С	1.19795100	2.61813900	-0.13850700
С	-1.20690400	3.87909100	-0.74934800
Н	-2.16075200	2.14219700	0.07476900
С	1.19996100	3.88403300	-0.73671100
Н	2.15210200	2.15168100	0.09927500
С	-0.00320600	4.52125400	-1.04668700
Н	-2.15371800	4.36587400	-0.97751400
Н	2.14722700	4.37441600	-0.95500500
Н	-0.00271400	5.50534800	-1.50935100
С	0.00387800	-0.81407000	-0.40013500
Ν	-1.08459400	-1.35294800	-1.00105000
Ν	1.09907100	-1.33216300	-1.00751300
Н	-1.10541000	-1.90641800	-3.05552700
Н	1.26406500	-2.14247500	-2.97131200
Ν	-0.01767300	0.65911300	2.86413400
С	-1.21923200	1.05233400	3.58131600
Н	-1.26678700	0.57098100	4.57424300
Н	-1.25903900	2.14372000	3.75062100
Н	-2.11378600	0.76185800	3.02175400
С	1.17190100	1.06156700	3.59595900
Н	1.20083600	2.15315600	3.76611300
Н	1.21145400	0.58017600	4.58922800
Н	2.07552100	0.77888500	3.04701600
С	-2.45148700	-1.09223600	-0.64742600
С	-3.00804500	-1.75180400	0.46637100
С	-3.21936000	-0.22910900	-1.45452200
С	-4.35244000	-1.51288900	0.77443000

С	-4.56118900	-0.02319500	-1.11127500
С	-5.12548800	-0.65557800	-0.00560200
Н	-4.79347700	-2.01209400	1.63352200
Н	-5.16331100	0.64754500	-1.71889200
Н	-6.16807300	-0.48178300	0.24699500
С	2.46354600	-1.07937800	-0.63768300
С	3.23939400	-0.23092400	-1.45228500
С	3.01041000	-1.72844700	0.48654500
С	4.58071400	-0.02798700	-1.10695500
С	4.35518200	-1.49234000	0.79724900
С	5.13620100	-0.64930000	0.00984000
Н	5.18975400	0.63011600	-1.72137600
Н	4.78988900	-1.98307100	1.66446600
Н	6.17892900	-0.47921400	0.26441700
С	2.64762900	0.46793100	-2.65355300
Н	1.78116900	1.07378100	-2.36922000
Н	3.38673500	1.13122900	-3.11285000
Н	2.32055300	-0.23988300	-3.42577900
С	2.18311900	-2.64717000	1.35480800
Н	1.44582300	-2.08260500	1.93878300
Н	1.62858000	-3.38543800	0.76371100
Н	2.82299300	-3.19144400	2.05609300
С	-2.18927100	-2.68801200	1.32359300
Н	-1.44973200	-2.13717100	1.91774600
Н	-2.83440300	-3.23862100	2.01500500
Н	-1.63776200	-3.41937500	0.72113900
С	-2.62754800	0.47447500	-2.65323100
Н	-2.48094100	-0.21074400	-3.49898100

Н	-3.29407100	1.27102100	-2.99707300
Н	-1.66121200	0.92756500	-2.41389500

TS12

Total SCF energy:	-1383.89159731 a.u.
Enthalpy at 298K:	-1383.317527 a.u.
Gibbs free energy at 298K:	-1383.349281 a.u.
Free energy in solution at 298K:	-1383.792104 a.u.
Imaginary frequency:	-386.75 cm ⁻¹

Cartesian coordinates

ATOM	Х	Y	Z
Ni	-0.00109900	0.42569300	0.99488900
С	-0.77285500	-2.85314000	-1.50021200
С	0.76795800	-2.85430100	-1.50007500
Н	-1.19523000	-3.76552100	-1.06242200
Н	1.18888800	-3.76744200	-1.06248000
С	0.00349100	2.21436800	0.27025900
С	-1.20317200	2.74160100	-0.25975400
С	1.21485400	2.73773400	-0.25287500
С	-1.19111200	3.70148900	-1.27155600
Н	-2.15939100	2.37462000	0.10075100
С	1.21158900	3.69772500	-1.26465300
Н	2.16785400	2.36746200	0.11276000
С	0.01249800	4.19377000	-1.78507700
Н	-2.13869900	4.06672900	-1.66376900
Н	2.16255500	4.05998800	-1.65141000
Н	0.01592200	4.94761100	-2.56747400

С	-0.00122400	-1.03168800	-0.17677200
Ν	-1.09240900	-1.68136000	-0.66215900
Ν	1.08912300	-1.68322900	-0.66160100
Н	-1.19369900	-2.74077400	-2.50575200
Н	1.18919100	-2.74223200	-2.50549200
Ν	-0.00240000	1.88059300	2.10566600
С	-1.21022900	2.44382700	2.69724600
Н	-1.19619700	2.28049100	3.78385100
Н	-1.29784000	3.52832100	2.51183200
Н	-2.09863500	1.94849700	2.30130200
С	1.20261600	2.44200000	2.70468900
Н	1.29310800	3.52632100	2.51965400
Н	1.18149900	2.27889300	3.79121200
Н	2.09275200	1.94522300	2.31444800
С	-2.45535100	-1.32936200	-0.38659100
С	-3.07366400	-1.83157800	0.77468500
С	-3.15761300	-0.53358900	-1.31204000
С	-4.41786300	-1.51424800	1.00134500
С	-4.50178500	-0.24306600	-1.04899700
С	-5.12930800	-0.72753500	0.09718100
Н	-4.90738600	-1.89172500	1.89575500
Н	-5.05622200	0.37305500	-1.75252400
Н	-6.17377600	-0.49302800	0.28535500
С	2.45257900	-1.33382600	-0.38507800
С	3.15689000	-0.53907800	-1.30983900
С	3.06908300	-1.83738200	0.77658400
С	4.50139100	-0.25102000	-1.04572000
С	4.41366500	-1.52250700	1.00432000

С	5.12719000	-0.73689100	0.10082700
Н	5.05745500	0.36427400	-1.74869200
Н	4.90186500	-1.90102200	1.89901600
Н	6.17194500	-0.50430000	0.28981900
C	-2.47914700	0.02623300	-2.53979000
Н	-1.66824000	0.70771000	-2.26052900
Н	-2.04785000	-0.75954600	-3.17162900
Н	-3.19336800	0.58571300	-3.15175400
С	-2.30462300	-2.66685000	1.76990600
Н	-1.81371300	-3.52543500	1.29637400
Н	-1.51685200	-2.07273100	2.24964900
Н	-2.96839300	-3.04863400	2.55181000
С	2.48016300	0.02250600	-2.53772400
Н	3.19579300	0.58071300	-3.14919200
Н	2.04747600	-0.76218700	-3.16996500
Н	1.67059100	0.70557300	-2.25849000
С	2.29775800	-2.67154300	1.77095800
Н	1.51117900	-2.07591500	2.25079000
Н	1.80499700	-3.52862100	1.29662300
Н	2.96032600	-3.05542400	2.55285300

13

Total SCF energy:	-1383.91740982 a.u.
Enthalpy at 298K:	-1383.341905 a.u.
Gibbs free energy at 298K:	-1383.437013 a.u.
Free energy in solution at 298K:	-1383.813068 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
Ni	-0.00066800	0.37762900	0.70290000
С	-0.75518700	-3.15373300	-1.29347900
С	0.78662100	-3.15961400	-1.27005700
Н	-1.18458600	-4.03027400	-0.79273000
Н	1.19219300	-4.02007800	-0.72236100
С	-0.01519200	3.07540800	0.58505300
С	-1.23292300	3.53284900	0.04866200
С	1.17841800	3.56747300	0.02576900
С	-1.24993300	4.43044700	-1.01803000
Н	-2.17683800	3.17885500	0.44210100
С	1.14922400	4.46472200	-1.04138400
Н	2.13963400	3.24244900	0.40187200
С	-0.06211100	4.90537200	-1.57422600
Н	-2.20790800	4.75942400	-1.41243100
Н	2.08971800	4.82096200	-1.45390700
Н	-0.08007600	5.60695500	-2.40325400
С	0.00598800	-1.18726600	-0.16772200
Ν	-1.08346500	-1.91682200	-0.56705100
Ν	1.10277000	-1.89876900	-0.58023500
Н	-1.15648900	-3.12769600	-2.31477200
Н	1.22042100	-3.17637500	-2.27761600
Ν	0.00698200	2.12767900	1.68903000
С	-1.18930600	2.20936700	2.56519500
Н	-1.05518000	1.50847000	3.39001100
Н	-1.32029200	3.22856300	2.96241000
Н	-2.08276100	1.90525500	2.02204300

С	1.22853500	2.21967900	2.52765400
Н	1.35783400	3.23763000	2.92892200
Н	1.13012600	1.51042600	3.35025300
Н	2.10849000	1.93247400	1.95390700
С	-2.44561000	-1.53130500	-0.35759400
С	-3.12118800	-1.98932000	0.78993300
С	-3.10043100	-0.75223600	-1.33137900
С	-4.47031000	-1.65303800	0.94922300
С	-4.45054400	-0.43839500	-1.13672300
С	-5.13432700	-0.88616400	-0.00715500
Н	-5.00121100	-1.99673500	1.83396400
Н	-4.96624400	0.16521800	-1.88003100
Н	-6.18391700	-0.63702000	0.12783900
С	2.46129200	-1.50389300	-0.36480500
С	3.11747900	-0.73335600	-1.34448100
С	3.13349900	-1.94409200	0.79217000
С	4.46437300	-0.40853000	-1.14599100
С	4.47967200	-1.59720500	0.95467900
С	5.14422600	-0.83779500	-0.00715400
Н	4.98055000	0.18888400	-1.89388800
Н	5.00740400	-1.92712800	1.84652200
Н	6.19126600	-0.58017700	0.13100500
С	-2.35328600	-0.23043500	-2.53455000
Н	-1.52350400	0.41385000	-2.21950400
Н	-1.92179000	-1.03923600	-3.13705100
Н	-3.01697600	0.35048600	-3.18297900
С	-2.39661300	-2.78938500	1.84499100
Н	-2.01405500	-3.74068200	1.45401000

Н	-1.53424800	-2.22891400	2.22579300
Н	-3.06137800	-3.01914200	2.68391100
С	2.37422200	-0.23332800	-2.55929600
Н	3.03780500	0.34331100	-3.21163200
Н	1.95237700	-1.05384700	-3.15288800
Н	1.53761600	0.40914900	-2.25912300
С	2.40858000	-2.73626900	1.85310900
Н	1.53979900	-2.17726000	2.22151000
Н	2.03570100	-3.69523500	1.47163100
Н	3.07019500	-2.95053000	2.69857400

¹H NMR Spectra

