Electronic Supplementary Information for Tunable, Shape-shifting Capsule for Dicarboxylates

Qi-Qiang Wang, Victor W. Day, and Kristin Bowman-James*

Department of Chemistry, University of Kansas, Lawrence, Kansas 66045

*E-mail: kbjames@ku.edu

Contents

1. Synthesis and characterization of host 1.	S2
2. NMR studies.	S2
3. Figure S1. ChemDraw diagrams of 1 and dicarboxylates showing labeling of protons for NMR data.	S3
4. Table S1. The chemical shift changes between the complexes and the free host, dicarboxylates upon encapsulation.	S4
5. Figure S2. ¹ H NMR spectra of 1 in DMSO- d_6 after adding oxalate.	S5
6. Figure S3. ¹ H NMR spectra of 1 in DMSO- d_6 after adding malonate.	S 6
7. Figure S4. ¹ H NMR spectra of 1 in DMSO- d_6 after adding succinate.	S 7
8. Figure S5. ¹ H NMR spectra of 1 in DMSO- d_6 after adding glutarate.	S 8
9. Figure S6. ¹ H NMR spectra of 1 in DMSO- d_6 after adding adipate.	S 9
10. Figure S7. ¹ H NMR spectra of 1 in DMSO- d_6 after adding pimelate.	S10
11. Figure S8. ¹ H NMR spectra of 1 in DMSO- d_6 after adding suberate.	S11
12. Figure S9. ¹ H NMR spectra of 1 in DMSO- d_6 after adding phthalate.	S12
13. Figure S10. ¹ H NMR spectra of 1 in DMSO- d_6 after adding isophthalate.	S13
14. Figure S11. ¹ H NMR spectra of 1 in DMSO- d_6 after adding terephthalate.	S14
15. Figure S12. ¹ H NMR spectra of 1 in DMSO- d_6 after adding 2,6-naphthalenedicarboxylate.	S15
16. Figure S13. Plot of the chemical shift upon increasing concentration of 4,4'-biphenyldicarboxylate in DMSO- <i>d</i> ₆ .	S16
17. Figure S14. Plot of the chemical shift upon increasing concentration of 4,4'-biphenyldicarboxylate	S17
18. Figure S15. Plot of the <i>NH^a</i> chemical shift upon increasing concentration of acetate and benzoate	S18
19 . Figure S16. Job plot of 1 with acetate in DMSO- d_6 .	S19

20 . Figure S17. ESI-MS (negative) of the terephthalate complex of 1.	S20
21 . Figure S18. ESI-MS (negative) of the succinate complex of 1.	S21
22. Single crystal X-ray diffraction studies.	S22
23. Figure S19. Assembly motif formed by water molecule H-bond links	S24
24. Table S2. Crystal Data and Structure Refinement	S25

Synthesis and characterization of the tricyclic host 1

7.3 g (50 mmol) of tris(2-aminoethyl)amine and 14.6 g (75 mmol) of dimethyl 2, 6-pyridinedicarboxylate were dissolved in 1500 mL methanol and heated at reflux for two weeks. Then the reaction mixture was concentrated to remove the solvent and subjected to column chromatography on basic aluminum oxide (~150 mesh, gradient elution 2% v. CH₃OH in CH₂Cl₂ to 7% v. CH₃OH in CH₂Cl₂) to give 0.45 g (3%) **1** and 1.63 g (10%) of a bicyclic cryptand as white solids after recrystallization in methanol. **1**: $\delta_{\rm H}$ (400 MHz, DMSO-*d*₆) 9.23 (t, *J* = 6.2 Hz, 4H), 8.73 (t, *J* = 5.4 Hz, 8H), 8.03-7.87 (m, 18H), 3.44 (q, *J* = 6.4 Hz, 8H), 3.34 (q, *J* = 5.8 Hz, 16H), 2.78 (t, *J* = 5.8 Hz, 16H), 2.74 (t, *J* = 6.4 Hz, 8H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 164.1, 148.9, 139.4, 139.2, 125.2, 60.0, 58.5, 40.8, 40.0; Exact mass for C₆₆H₇₈N₂₂O₁₂ + H⁺ 1371.6248, found 1371.6219.

NMR studies

¹H NMR spectra were recorded on a Bruker Avance 400 spectrometer at 400 MHz. Each titration was performed by 20 measurements in DMSO- d_6 at room temperature. Aliquots from a stock solution of the nBu_4N^+ salts (20 mM) were gradually added to the initial solution of ligand (2 mM). Up to ten anion equivalents were added during the titrations. All proton signals were referenced to a TMS standard. For fast exchange process, the association constants *K* were calculated by EQNMR. All titration curves fit best in 1:1 binding modes of the ligand to anions. The total concentration of the ligand and anion was 2 mM for Job plot analysis.

S3

		8 con	^{uplex-} δ_{host} (p]	(md		
Dicarboxylates	NH^{a}	$NH^{a^{\prime}}$	$(CH_2)^{b'}$	$(CH_2)^c$	(CH ₂) ^{c²}	ōcomplex- Õdicarboxylate (ppm)
oxalate	[a]	[a]	[a]	[a]	[a]	
malonate	[a]	[a]	[a]	[a]	[a]	[a]
succinate	+1.57	+0.08	[a]	[a]	[a]	I:>+0.7
glutarate	+1.54	+0.24	[a]	-0.11	-0.01	$I: +0.5 \sim +0.6; 2: +0.48$
adipate	+1.59	+0.24	[a]	-0.09	-0.04	$I: +0.27; 2: +0.2 \sim +0.3$
pimelate	+1.53	+0.27	[a]	-0.11	-0.07	<i>I</i> : +0.40; 2: +0.1 ~ +0.2; 3: +0.2 ~ +0.3
suberate	+1.57	+0.28	[a]	-0.12	-0.07	<i>I</i> : +0.34; 2: +0.05 ~ +0.14; 3: +0.04
phthalate	[a]	[a]	[a]	-0.16	-0.03	<i>I</i> : +0.34; 2: +0.02
isophthalate ^[b]	+1.65	+0.11	[a]	[a]	[a]	<i>I</i> : +0.87; 2: +0.25; 3: -0.16
terephthalate	+1.67	-0.03	-0.43	-0.17	-0.12	<i>I</i> : +0.17
2, 6-naphthalene	+1.82	-0.31	-0.19	-0.32	-0.27	I:+0.19; 2:+0.04; 3:-0.81

 $^{[a]}$ The value was not shown due to the peak broadening or illegibility. $^{[b]}$ The average value for the two unequivalent NH^a (+1.80, +1.49)

 $I: \sim +0.3; \quad 2: \sim +0.2$

-0.37

-0.31

-0.19

-0.19

+1.80

4, 4'-biphenyl^[c]

ppm). ^[c] The value was estimated due to the fast exchange process on NMR scale between the host, dicarboxylate and the complex.

S5

 $\mathbf{S7}$

Figure S5.¹H NMR spectra of 1 in DMSO-d₆ after adding glutarate in different ratios (1/glutarate): (a) 1:0, (b) 1:0.5, (c) 1:1, (d) 1:2 and (e) 0:1. "o" and "o" correspond to the signals of the unbound host and dicarboxylate respectively.

Figure S6. ¹H NMR spectra of 1 in DMSO-*d*₆ after adding adipate in different ratios (1/adipate): (a) 1:0, (b) 1:0.5, (c) 1:1, (d) 1:2 and (e) 0:1. "o" and "o" correspond to the signals of the unbound host and dicarboxylate respectively.

Figure S10. ¹H NMR spectra of 1 in DMSO-*d*₆ after adding isophthalate in different ratios (1/isophthalate): (a) 1:0, (b) 1:0.5, (c) 1:1, (d) 1:2 and (e) 0:1. "o" and "a" correspond to the signals of the unbound host and dicarboxylate respectively.

Figure S12. ¹H NMR spectra of 1 in $DMSO-d_6$ after adding 2,6-naphthalenedicarboxylate in different ratios (1/2,6-naphthalenedicarboxylate): (a) 1:0, (b) 1:0.5, (c) 1:1, (d) 1:2 and (e) 0:1. "o" and "a" correspond to the signals of the unbound host and dicarboxylate respectively.

Figure S14. Plot of the chemical shift of one set PyH protons of 1 (2 mM) upon increasing the concentration of 4,4'-biphenyldicarboxylate in DMSO-d6.

Figure S15. Plot of the *NH*^{*a*} chemical shift of 1 (2 mM) upon increasing the concentration of acetate and benzoate in DMSO-*d*₆.

Figure S16. Job plot of 1 with acetate in DMSO- d_{δ} . The total concentration of 1 and acetate was 2 mM.

Single crystal X-ray diffraction studies

Full hemispheres of diffracted intensities (1850 frames with an ω scan width of 0.30°) were measured for specimens of all three compounds using graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) on a Bruker SMART APEX CCD Single Crystal Diffraction System. Frame counting times of 40 seconds (compounds **A** and **B**) or 10 seconds (compound **C**) were used for intensity data collection. X-rays were provided by a fine-focus sealed X-ray tube operated at 50kV and 35mA. Lattice constants were determined with the Bruker SAINT software package using peak centers for 7388(**A**), 5864(**B**) and 5301(**C**) reflections. The crystals of all three compounds used for data collection were either single-domain species. Integrated reflection intensities for all three compounds were produced using the Bruker program SAINT. Each data set was corrected empirically for variable absorption effects using equivalent reflections. The Bruker software package SHELXTL was used to solve each structure using "direct methods" techniques. All stages of weighted full-matrix least-squares refinement were conducted using F₀² data with the SHELXTL Version 6.10 software package.

The final structural model for each compound incorporated anisotropic thermal parameters for all nonhydrogen atoms except one disordered methylene carbon (C2s') for a solvent molecule in **A** and three Cl and one C atom for the minor-occupancy (9%) site of a disordered CHCl₃ molecule in **C**; isotropic thermal parameters were incorporated for those atoms in **A** and **C** as well as all hydrogen atoms that could be located from difference Fouriers or placed at idealized positions in all three structures. Relevant data for the crystallographic studies of **A** - **C** are given in Table S2. The next four paragraphs describe the manner in which disorder was taken into account and the way hydrogen atoms were included in the structural models for these three compounds.

Two disordered ethanol solvent molecules of crystallization are present in **A**. The oxygen site (O1s) for the first of these sites appears to be occupied by a water oxygen atom part of the time and an ethanol oxygen the rest of the time. Disordered solvent carbon atom C1s was therefore assigned an occupancy factor of 0.50. The methylene carbon for the second ethanol molecule of crystallization in **A** is (65%/35%) disordered between two sites (C2s and C2s'). The third ethanol solvent molecule of crystallization in **A** is disordered with alternate (54%/46%) sites for the oxygen (O3s and O3s') and alternate (70%/30%) sites for one of the carbons (C4s and C4s'). The occupancy factor for the oxygen of the third water molecule of crystallization was fixed at 0.50 since it is within 1.399 Å of its inversion-related site. Hydrogen atoms for the first two water molecules were located from a difference Fourier and included in the structural model as individual isotropic atoms whose positional parameters were allowed to vary in least-squares refinement cycles. Hydrogen atoms were not located for the (disordered) third water molecule.

There was no disorder in the structure for \mathbf{B} and all hydrogen atoms were located from a difference Fourier and included in the structural model as individual isotropic atoms whose parameters were allowed to vary in least-squares refinement cycles.

The CHCl₃ molecule in C has two preferred orientations in the crystal. The major orientation is occupied 91% of the time and the minor is occupied 9% of the time. Nonhydrogen

atoms for the minor orientation of this molecule were refined with isotropic thermal parameters and restrained to have bond lengths and angles close to that of the major orientation. Hydrogen atoms for the first water molecule of crystallization were located from a difference Fourier and included in the structural model as individual isotropic atoms whose parameters were allowed to vary in least-squares refinement cycles. The occupancy factor for the oxygen of the second water molecule of crystallization (O2w) was fixed at 0.50 since it is within 1.301 Å of its inversion-related site. Hydrogen atoms were not located for this disordered water molecule.

The remaining hydrogen atoms bonded to carbon in **A** and **C** were included in their structural models as idealized atoms (assuming sp^2 - or sp^3 -hybridization of the carbon atoms and C-H bond lengths of 0.95 – 1.00 Å). Amide hydrogen atoms in **A** and **C** were included in the structural models as idealized atoms (assuming sp^2 - hybridization of the nitrogen atoms and a N-H bond length of 0.88 Å). The isotropic thermal parameters of all hydrogen atoms whose thermal parameters were not refined were fixed at values 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the nitrogen, oxygen or carbon atom to which they are covalently bonded.

Figure S19. Assembly motif formed by water molecule H-bond link to a neighboring host in the succinate complex with 1: dimeric (a), infinite 1D (b) and 2D (c) structures.

	Α	В	С
Empirical formula	$C_{75}H_{86}N_{22}O_{23}$	$C_{114}H_{178}N_{28}O_{22}$	$C_{84}H_{118}C_{16}N_{26}O_{19}$
Formula weight	1663.66	2292.84	2008.74
Temperature	100(2) K	100(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$C2/c - C_{2h}^{6}$ (No. 15)	$P-1 - C_i^1$ (No. 2)	$P-1 - C_i^1$ (No. 2)
a	34.486(3) Å	13.477(4) Å	12.360(3) Å
b	11.340(1) Å	15.019(4) Å	14.699(4) Å
С	24.718(2) Å	17.319(5) Å	15.587(4) Å
а	90°	98.171(5)°	70.114(4)°
β	117.519(2)°	109.671(4)°	82.103(4)°
γ	90°	102.737(5)°	66.078(4)°
Volume	8573.0(11) Å ³	3129(2) Å ³	2434.2(11) Å ³
Z	4	1	1
Density (calculated)	1.289 Mg/m ³	1.217 Mg/m ³	1.370 Mg/m ³
Absorption coefficient	0.098 mm ⁻¹	0.086 mm ⁻¹	0.256 mm ⁻¹
F(000)	3496	1234	1058
Crystal size	0.40 x 0.34 x 0.15 mm ³	0.46 x 0.21 x 0.09 mm ³	0.50 x 0.48 x 0.38 mm ³
Theta range	2.44 to 25.00°	2.32 to 27.50°	2.28 to 27.50°
Index ranges	-40≤ <i>h</i> ≤40, -13≤ <i>k</i> ≤13, -29≤ <i>l</i> ≤29	-17≤ <i>h</i> ≤17, -19≤ <i>k</i> ≤19, -22≤ <i>l</i> ≤22	-16≤ <i>h</i> ≤15, -18≤ <i>k</i> ≤19, -20≤ <i>l</i> ≤20
Reflections collected	34276	28008	21116
Independent reflections	7548 [$R_{int} = 0.057$]	$14109 [R_{int} = 0.043]$	$10954 [R_{int} = 0.035]$
Completeness to θ_{max}	99.9 %	98.0 %	98.0 %
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Max. and min. transmission	1.000 and 0.739	1.000 and 0.770	1.000 and 0.827
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	7548 / 0 / 586	14109 / 0 / 1095	10954 / 6 / 643
Goodness-of-fit on F ²	1.063	1.114	1.063
Final R indices [I>2o(I)]	$R_1 = 0.078, wR_2 = 0.219$	$R_1 = 0.067, wR_2 = 0.153$	$R_1 = 0.067, wR_2 = 0.175$
R indices (all data)	$R_1 = 0.112, wR_2 = 0.237$	$R_1 = 0.076, wR_2 = 0.158$	$R_1 = 0.074, wR_2 = 0.181$
Largest diff. peak and hole	0.67 and -0.39 $e^{-}/\text{\AA}^{3}$	0.56 and -0.43 $e^{-}/\text{\AA}^{3}$	1.21 and -0.74 $e^{-}/\text{Å}^{3}$

Table S2. Crystal Data and Structure Refinement for (A) $1.5EtOH.6H_2O$, (B) $[n-Bu_4N]_2[1(terephthalate)].4CH_3CN.6H_2O$, (C) $[Me_4N]_2[1(succinate)].2CHCl_3.2CH.3H_2O$.