Supporting Information

Enantioselective bromination/semipinacol rearrangement for the

synthesis of β -bromoketones containing an all- α -carbon quaternary

center

Hui Li, Fu-Min Zhang, Yong-Qiang Tu,* Qing-Wei Zhang, Zhi-Min Chen, Zhi-Hua Chen, Jian Li

State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou

University, Lanzhou 730000, P R China

E-mail: tuyq@lzu.edu.cn

Context

Experimental details for new compounds	S2-S14
More information about substrate scope	S14-S19
X-Ray Ellipsoid Plots of 2a	S19-S19
Copies of ¹ H and ¹³ C spectra of new compounds	-S20-S67
Copies of HPLC Spectra for Products	S68-S79

Experimental Details

General Information:

All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F254 plates. The silica gel (200-300 meshes) was used for column chromatography, and the distillation range of petroleum was 60-90 °C. CH₃OH and CCl₄ were purified under standard method. NBS was recrystallized with H₂O (23 mL H₂O per 1 g NBS). ¹HNMR and ¹³C NMR spectra were recorded in CDCl₃ solution on Bruker AX-400 MHz instruments and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard. IR spectra were recorded on a Nicolet FT-170SX spectrometer. Mass spectra (MS) were measured on spectrometer by direct inlet at 70 eV and signals were given in m/z with relative intensity (%) in brackets. High-resolution mass spectral analysis (HRMS) data were measured on the Bruker ApexII by means of the ESI tectnique. Enantioselectivities were determined by High performance liquid chromatography (HPLC) analysis employing a Daicel Chiralcel OZ-H, OJ or Chiralpak AD column.

General procedure for the synthesis of allylic alcohols 1:

Compound 1a was prepared as follows:

t-BuLi (1.6 M in pentane, 4.3 mL, 6.9 mmol, 2 equiv) was added slowly to the solution of 2-bromopropene in dry THF (8 mL) under argon at -78 °C during 10 min. The resulting solution was stirred at -78 °C for 0.5 h. The benzophenone (0.629 g, 3.45 mmol, 1 equiv) was added, and the reaction mixture was stirred at -78 °C for 0.5 h then allowed warm to room temperature. When benzophenone was disappeared completely (TLC), water (3 mL) was added. The organic layer was separated and aqueous layer was extracted with Et₂O (2 × 50 mL). The combined organic layer was washed with brine (30 mL), dried over Na₂SO₄ and concentrated under vacuum. Purification of the residue by column chromatography on silica gel (ethyl acetate: petroleum ether = 1:50) to give product compound **1a** as a colorless oil (0.6 g, 78% yield). Compounds **1b-11**

were prepared in the similar methods.

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.36-7.21 (m, 10 H), 5.12 (t, *J* = 1.2 Hz ,1 H), 4.72 (s, 1 H), 2.50 (s, 1 H), 1.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 149.0, 144.8, 127.9, 127.6, 127.2, 115.5, 82.9, 20.0; MS (EI) m/z (%): 224 (M⁺, 8), 209 (36), 183 (66), 120 (27), 105 (100), 77 (32), 40 (77); IR (cm⁻¹): 3474, 3059, 1642, 1447, 1026, 760, 701; HRMS (ESI) calcd for C₁₆H₁₆ONa [M+Na]⁺: 247.1093, found 247.1095.

Prepared according to general procedure with petroleum ether /EtOAc = 50:1 as eluent to afford **1b** as a white amorphous solid (66% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.34-7.21 (m, 10 H), 5.16 (d, *J* = 0.8 Hz, 1 H), 4.82 (d, *J* = 0.8 Hz, 1 H), 2.50 (s, 1 H), 2.07 (q, *J* = 7.4 Hz, 2 H), 1.03 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 154.9, 145.2, 127.8, 127.7, 127.2, 112.8, 83.5, 24.8, 12.6; MS (EI) *m*/*z* (%): 238 (M⁺, 2), 209 (32), 183 (86), 118 (55), 105 (100), 77 (38); IR (cm⁻¹): 3482, 2963, 1639, 1445, 1020, 908, 758, 701; HRMS (ESI) calcd for C₁₇H₁₈ONa [M+Na]⁺: 261.1250, found 261.1252.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **1c** as a colorless oil (70% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.34-7.19 (m, 10 H), 5.15 (d, J = 0.8 Hz, 1 H), 4.79 (s, 1 H), 2.52 (s, 1 H), 2.03 (t, J = 8 Hz, 2 H), 1.51-1.41 (m, 2 H), 0.86 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.4, 145.2, 127.8, 127.7, 127.1, 113.5, 83.5, 34.1, 21.7, 14.1; MS (EI) *m/z* (%): 252 (M⁺, 2), 209 (23), 183 (100), 132 (40), 105 (83), 77 (30); IR (cm⁻¹): 3475, 2959, 1639, 1447, 1019, 761, 701; HRMS (ESI) calcd for C₁₈H₁₉ [M-H₂O+H]⁺: 235.1481, found 235.1486.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **1d** as a colorless oil (54% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.34-7.25 (m, 10 H), 5.16 (s, 1 H), 4.79 (s, 1 H), 2.46 (s, 1 H), 2.06 (t, *J* = 8.0 Hz, 2 H), 1.46-1.39 (m, 2 H), 1.31-1.22 (m, 2 H), 0.84 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.7, 145.3, 127.8, 127.7, 127.2, 113.6, 83.6, 31.8, 30.9, 22.7, 14.0; MS (EI) *m/z* (%): 266 (M⁺, 2), 209 (29), 183 (100), 146 (49), 105 (91), 77 (33); IR (cm⁻¹): 3475, 2956, 1639, 1447, 1021, 906, 762, 701; HRMS (ESI) calcd for C₁₉H₂₂ONa [M+Na]⁺: 289.1563 found 289.1567.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **1e** as a colorless oil (61% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.35-7.25 (m, 10 H), 5.16 (s, 1 H), 4.79 (s, 1 H), 2.46 (s, 1 H), 2.05 (t, *J* = 8 Hz, 2 H), 1.48-1.40 (m, 2 H), 1.28-1.21 (m, 4 H), 0.84 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.7, 145.2, 127.8, 127.7, 127.2, 113.5, 83.6, 32.0, 31.8, 28.3, 22.5, 14.0; MS (EI) *m*/*z* (%): 280 (M⁺, 2), 209 (22), 183 (100), 160 (34), 105 (63), 77 (19), 40 (48); IR (cm⁻¹): 3459, 2926, 1640, 1447, 1021, 700; HRMS (ESI) calcd for C₂₀H₂₃ [M-H₂O+H]⁺:263.1794 found 263.1800.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **1f** as a colorless oil (95% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.23 (d, *J* = 8.0 Hz, 4 H), 7.12 (d, *J* = 8.0 Hz, 4 H), 5.10 (s, 1 H), 4.74 (s, 1 H), 2.38 (s, 1 H), 2.33 (s, 6 H), 1.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 149.3, 142.1, 136.7, 128.5, 127.5, 115.0, 82.7, 21.0, 20.1; MS

(EI) *m/z* (%): 252 (M⁺, 11), 237 (29), 119 (100), 91 (28); IR (cm⁻¹): 3474, 2922, 1644, 1510, 1452, 815; HRMS (ESI) calcd for $C_{18}H_{20}ONa [M+Na]^+$: 275.1406 found 275.1404.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford 1g as a colorless oil (93% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.21-7.17 (m, 4 H), 7.11-7.06 (m, 4 H), 5.11 (s, 1 H), 4.73 (s,1 H), 2.44 (S,1 H), 2.32 (s, 6 H), 1.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 149.1, 144.8, 137.4, 128.1, 127.9, 127.6, 124.8, 115.3, 82.9, 21.6, 20.1; MS (EI) m/z (%): 252 (M⁺, 5), 237 (27), 211 (46), 119 (100), 105 (24), 91 (34), 40 (35); IR (cm⁻¹): 3468, 2921, 1643, 1604, 1485, 1039, 908, 780, 706; HRMS (ESI) calcd for C₁₈H₂₀ONa [M +Na]⁺: 275.1406 found 275.1408.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **1h** as a colorless oil (99% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.29-7.24 (m, 8 H), 5.14 (d, J = 1.2 Hz, 1 H), 4.69 (s, 1 H), 2.49 (s, 1 H), 1.76 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 148.2, 142.9, 133.3, 128.9, 128.1, 116.2, 82.2, 19.8; MS (EI) *m/z* (%): 292 (M⁺, 2), 277 (19), 251 (60), 139 (100), 111 (26); IR (cm⁻¹): 3470, 2974, 1644, 1488, 1094, 1012, 822.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford 1i

as a white amorphous solid (91% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.90-7.49 (m, 14 H), 5.29 (s, 1 H), 4.90 (s, 1 H), 2.76 (s, 1 H), 1.95 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 148.8, 142.1, 132.8, 132.6, 128.3, 127.6, 127.5, 126.4, 126.13, 126.11, 126.0, 116.0, 83.3, 20.1; MS (EI) *m/z* (%): 324 (M⁺, 10), 283 (20), 155 (47), 149 (100), 127 (23), 40 (83); IR (cm⁻¹): 3468, 3056, 1637, 1505, 817, 746; HRMS (ESI) calcd for C₂₄H₂₀ONa [M+Na]⁺: 347.1406, found 347.1399.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **1j** (80% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.32-7.27 (m, 4 H), 7.02-6.96 (m, 4 H), 5.13 (t, *J* = 1.2 Hz, 1 H), 4.69 (s, 1 H), 2.52 (s, 1 H), 1.77 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.0 (d, J = 245 Hz), 148.8, 140.5 (d, J = 4 Hz), 129.3 (d, J = 8 Hz), 115.8, 144.7 (d, J = 22 Hz), 82.2, 19.4; MS (EI) *m*/*z* (%): 260 (M⁺, 3) 245 (23), 219 (58), 123 (100); IR (cm⁻¹): 3470, 2925, 1602, 1506, 1228, 1160, 834; HRMS (ESI) calcd for C₁₆H₁₃F₂ [M-H₂O+H]⁺: 243.0980 found 243.0986.

1k

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **1k** as a colorless oil (99% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 6.96 (s, 4 H), 6.89 (s, 2 H), 5.09 (t, *J* = 1.2 Hz, 1 H), 4.74 (s, 1 H), 2.04 (s, 1 H), 2.27 (s, 12 H), 1.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 149.3, 145.0, 137.1, 128.8, 125.4, 115.1, 82.8, 21.4, 20.2; MS (EI) *m/z* (%): 280 (M⁺, 21), 239 (47), 133 (100), 105 (34); IR (cm⁻¹): 3466, 2918, 1643, 1602, 1450, 854; HRMS (ESI) calcd for C₂₀H₂₄ONa [M+Na]⁺: 303.1719 found 303.1715.

Prepared according to general procedure with petroleum ether/EtOAc = 50:1 as eluent to afford **11** as a white amorphous solid (80% yield). ¹HNMR (400 MHz, CDCl₃, ppm): 7.32-7.21 (m, 10 H) , 5.22-5.17 (m, 1 H), 2.48 (s, 1 H), 1.66 (s, 3 H), 1.64 (d, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 145.4, 140.1, 127.8, 127.7, 127.0, 124.2, 83.8, 14.0, 13.6; MS (EI) *m/z* (%) 238 (M⁺, 7), 183 (34), 134 (50), 105 (100), 77 (28); IR (cm⁻¹): 3483, 3060, 1598, 1445, 1162, 1003, 758, 701; HRMS (ESI) calcd for C₁₇H₁₇ [M –H₂O+H]⁺: 221.1325 found 221.1331.

General Procedure for synthesis of the racemates of β-haloketone products:

The **racemate** products **2a-l** were prepared using NBS in acetonitrile at room temperature.

General Procedure for the asymmetric Synthesis of α-All-Carbon Quaternary β-Bromoketo Compounds:

To a flame-dried round-bottom flask were added CCl₄ (1 mL), NBS (3.6 mg, 0.02 mmol, 0. 2 equiv), catalyst **3b** (3.6 mg, 0.005 mmol, 5 mol%), 3, 4-dimethoxybenzoic acid **4b** (0.9 mg, 0.005 mmol, 5 mol%) and CH₃OH (6.5 μ L , 0.15 mmol, 1.5 equiv). The mixture was stirred for 10 minutes at room temperature and then a solution of substrate (0.1 mmol) and CH₃OH (6.5 μ L, 0.15 mmol 1.5 equiv) in CCl₄ (1 mL) was added. The flask was heated to 50 °C and the additional NBS (18 mg, 0.1 mmol, 1 equiv) was added in five portions (0.02 mmol every 12 hours). After 72 hours, the reaction mixture was directly subjected to column chromatography on silica gel. The products

wre eluted by petroleum ether/ethyl acetate (100:1).

(S)-3-bromo-2-methyl-1,2-diphenylpropan-1-one (2a):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2a** as crystal solid (23.0 mg, 76% yield). Mp: 76-79 °C; ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.44-7.32 (m, 8 H), 7.25-7.21 (m, 2 H), 4.07 (d, *J* = 10.4 Hz, 1 H), 3.78 (d, *J* = 10.4, 1 H), 1.81 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.2, 140.4, 136.1, 132.0, 129.3, 129.2, 128.1, 127.9, 126.4, 54.9, 43.1, 22.8; MS (EI) *m*/*z* (%) 118 (100), 105 (63), 77 (29); IR (cm⁻¹): 2927, 1674, 1248, 969, 700; HRMS (ESI) calcd for C₁₆H₁₅BrONa [M+Na]⁺: 325.0198, found 325.0189, [α]¹⁶_D = +118° (c = 1.0, CHCl₃); Enantiomeric excess is 93% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 9.34 min; major isomer: t_R = 11.22 min.

(S)-2-(bromomethyl)-1,2-diphenylbutan-1-one (2b):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2b** as a colorless oil (25.6 mg, 81% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.40-7.30 (m, 8 H), 7.24-7.18 (m, 2 H), 4.12 (d, *J* = 10.8 Hz, 1 H), 3.93 (dd, *J* = 10.8 Hz, 0.6 Hz, 1 H), 2.57-2.48 (m, 1 H), 2.32-2.24 (m, 1 H), 0.74 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.7, 140.3, 136.4, 132.0, 129.2, 129.0, 128.0, 127.7, 126.8, 58.6, 40.4, 26.0, 7.8; MS (EI) *m/z* (%): 132 (100), 117 (40), 105 (72), 77 (35); IR (cm⁻¹): 2971, 1671, 1447, 1231, 1001, 762, 705, 606; HRMS (ESI) calcd for C₁₇H₁₇BrONa [M+Na]⁺: 339.0355, found 339.0353; [α]²⁴_D = +90° (c = 1.0, CHCl₃); Enantiomeric excess is 91% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 7.31 min; major isomer: t_R = 9.15 min.

(S)-2-(bromomethyl)-1,2-diphenylpentan-1-one (2c):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2c** as a colorless oil (28.4 mg, 86% yield). ¹HNMR (400 MHz, CDCl3, ppm): δ 7.40-7.31 (m, 8 H), 7.24-7.19 (m, 2 H), 4.12 (d, *J* = 10.8 Hz, 1 H) 3.94 (d, *J* = 10.4 Hz, 1 H), 2.45 (td, *J* = 12.8 Hz, 4.4 Hz, 1 H), 2.17 (td, *J* = 12.8 Hz, 4.4 Hz, 1H), 1.30-1.18 (m, 1 H), 1.03-0.89 (m, 1 H), 0.84 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.7, 140.4, 136.4, 132.0, 129.2, 129.0, 128.0, 127.7, 126.8, 58.3, 41.2, 35.4, 16.8, 14.5; MS (EI) *m*/*z* (%): 146 (54), 131 (34), 118 (81), 105 (100), 77 (34); IR (cm⁻¹): 2960, 1670, 1446, 1224, 1009, 698; HRMS (ESI) calcd for C₁₈H₁₉BrONa [M+Na]⁺: 353.0511 found 353.0506; [α]¹⁶_D = +92° (c = 1.0, CHCl₃). Enantiomeric excess is 90% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 4.68 min; major isomer: t_R = 6.02 min.

(S)-2-(bromomethyl)-1,2-diphenylhexan-1-one (2d):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2d** as a colorless oil (26.9 mg, 78% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.42-7.31 (m, 8 H), 7.23-7.19 (m, 2 H), 4.11 (d, *J* = 10.8 Hz, 1 H), 3.94 (dd, *J* = 10.8 Hz, 1 Hz, 1 H), 2.47 (td, *J* = 13.2 Hz, 4 Hz, 1 H), 2.23-2.19 (m, 1 H), 1.29-1.16 (m, 3 H), 0.92-0.86 (m, 1 H), 0.76 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.9, 140.5, 136.5, 132.0, 129.2, 129.0, 128.1, 127.8, 126.9, 58.3, 41.3, 32.8, 25.5, 22.9, 13.7; MS (EI) *m*/*z* (%): 160 (22), 118 (100), 105 (76), 77(28); IR (cm⁻¹): 2958, 1671, 1446, 1255, 1021, 697; HRMS (ESI) calcd for C₁₉H₂₁BrONa [M+Na]⁺: 367.0668 found 367.0658; [α]¹⁶_D = +77° (c = 1.0, CHCl₃). Enantiomeric excess is 91% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 80/20, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 4.27 min; major isomer: t_R = 6.16 min.

(S)-2-(bromomethyl)-1,2-diphenylheptan-1-one (2e):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2e** as a colorless oil (29.7 mg, 83% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.42-7.31 (m, 8 H), 7.24-7.20 (m,2 H), 4.11 (d, *J* = 10.8, 1 H), 3.94 (dd, *J* = 10.8 Hz, 0.8 Hz, 1 H), 2.46 (td, *J* = 13.2 Hz, 4 Hz, 1 H), 2.22-2.14 (m, 1 H), 1.25-1.13 (m, 5 H), 0.96-0.88 (m, 1 H), 0.76 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.9, 140.5, 136.5, 132.0, 129.2, 129.0, 128.1, 127.8, 126.9, 58.3, 41.3, 33.0, 31.9, 22.9, 22.1, 13.8; MS (EI) *m*/*z* (%): 174 (19), 118 (90), 105 (62), 40 (100); IR (cm⁻¹): 2925, 1670, 698; HRMS (ESI) calcd for C₂₀H₂₄BrO [M+H]⁺: 359.1005 found 359.1011; [α]¹⁶_D = +58° (c = 1.0, CHCl₃); Enantiomeric excess is 87% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 99.5/0.5, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 9.99 min; major isomer: t_R = 11.65 min.

(S)-3-bromo-2-methyl-1,2-dip-tolylpropan-1-one (2f):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2f** as a colorless oil (31.1 mg, 94% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.38 (d, *J* = 8.4 Hz, 2 H), 7.22-7.17 (m, 4 H), 7.04 (d, *J* = 8 Hz, 2 H), 4.04 (d, *J* = 10 Hz, 1 H), 3.75 (d, *J* = 10 Hz, 1 H), 2.35 (s, 3 H), 2.30 (s, 3 H), 1.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 200.9, 142.7, 137.7, 137.5, 133.3, 129.8, 129.7, 128.7, 126.2, 54.5, 43.6, 22.9, 21.5, 21.1; MS (EI) *m/z* (%): 132 (100), 119 (53), 117 (15), 91 (24); IR (cm⁻¹): 2924, 1677, 1251, 1021, 972, 823; HRMS (ESI) calcd for C₁₈H₁₉BrONa [M+Na]⁺:353.0511 found 353.0502; [α]¹⁶_D = +125° (c = 1.0, CHCl₃);

Enantiomeric excess is 88% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): minor isomer: $t_R = 7.95$ min; major isomer: $t_R = 9.46$ min.

(S)-3-bromo-2-methyl-1,2-dim-tolylpropan-1-one (2g):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2g** as a colorless oil (31.1 mg, 94% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.37-7.05 (m, 8 H), 4.07 (d, *J* = 10 Hz, 1 H), 3.74 (d, *J* = 10.4 Hz, 1 H), 2.34 (s, 3 H), 2.27 (s, 3 H), 1.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.6, 140.3, 138.8, 138.0, 136.3, 132.7, 129.9, 129.0, 128.7, 127.7, 127.0, 126.4, 123.3, 54.8, 43.1, 22.9, 21.6, 21.3; MS (EI) *m/z* (%) 132 (100), 119 (54), 91 (28); IR (cm⁻¹): 2924, 1679, 1264, 1020, 801; HRMS (ESI) calcd for C₁₈H₂₀BrO [M+H]⁺: 331.0692 found 331.0700; [α]¹⁶_D = +113° (c = 1.0, CHCl₃); Enantiomeric excess is 90% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 6.62 min; major isomer: t_R = 7.25 min.

(S)-3-bromo-1,2-bis(4-chlorophenyl)-2-methylpropan-1-one (2h):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2h** as a colorless oil (23 mg, 62% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.40-7.37 (m, 4 H), 7.26-7.23 (m, 4 H), 3.98 (d, *J* = 10.4 Hz, 1 H), 3.75 (d, *J* = 10.4, 1 H), 1.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 199.6, 138.81, 138.78, 134.1, 133.8, 130.9, 129.5, 128.6, 127.8, 54.5, 42.8, 22.7; MS (EI) *m*/*z* (%): 154 (32) 152 (100), 139 (86), 117 (20), 111 (25), 40 (31); IR (cm⁻¹): 3392, 2923, 1676, 1249, 1094, 1015, 664; [α]¹⁶_D = +39° (c = 1.0, CHCl₃); Enantiomeric excess is 83% determined by HPLC (Chiralpak AD, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min,

254 nm): major isomer: $t_R = 6.29$ min; minor isomer: $t_R = 7.61$ min.

(S)-3-bromo-2-methyl-1,2-di(naphthalen-2-yl)propan-1-one (2i):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2i** as a white amorphous solid (35.4 mg, 88% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 8.06 -7.40 (m, 14 H), 4.25 (d, *J* = 10.4 Hz, 1 H), 3.96 (d, *J* = 10 Hz, 1 H), 2.02 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.1, 138.1, 134.7, 133.42, 133.36, 132.7, 132.1, 131.0, 129.5, 129.1, 128.23, 128.15, 127.8, 127.7, 127.5, 126.6, 126.49, 126.48, 125.5, 125.3, 124.2, 55.2, 43.2, 23.1; MS (EI) *m*/*z* (%): 168 (64), 155 (55), 149 (80), 127 (46), 85 (65), 71 (70), 57 (90), 43 (100); IR (cm⁻¹): 3057, 1674, 1274,1019, 820, 747; HRMS (ESI) calcd for C₂₄H₁₉BrONa [M+Na]⁺: 425.0511 found 425.0501; [α]¹⁶_D = +65° (c = 1.0, CHCl₃). Enantiomeric excess is 84% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): major isomer: t_R = 15.82 min; minor isomer: t_R = 22.37 min.

(S)-3-bromo-1,2-bis(4-fluorophenyl)-2-methylpropan-1-one (2j):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2j** as a colorless oil (32.8 mg, 97% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.51-7.47 (m, 2 H), 7.31-7.27 (m, 2 H), 7.10 (t, *J* = 8.4 Hz, 2 H), 6.94 (t, *J* = 8.4 Hz, 2 H), 4.00 (d, *J* = 10.4 Hz, 1 H), 3.75 (d, *J* = 10.4 Hz, 1 H), 1.81 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 199.4, 164.8 (d, J = 253 Hz), 162.2 (d, J = 247 Hz), 136.0 (d, J = 3 Hz), 132.1 (d, J = 9 Hz), 131.8 (d, J = 3 Hz), 128.1 (d, J = 8Hz), 116.2 (d, J = 22 Hz), 153.3 (d, J = 22 Hz), 54.3, 43.2, 22.8; MS (EI) *m/z* (%) 136 (100), 123 (78), 95 (23); IR (cm⁻¹): 2962, 1674, 1598, 1508, 1237, 1017, 838; HRMS (ESI)

calcd for $C_{16}H_{13}BrF_2ONa [M+Na]^+$: 361.0100 found 361.0106; $[\alpha]^{16}{}_D = +87^\circ$ (c = 1.0, CHCl₃); Enantiomeric excess is 74% determined by HPLC (Chiralpak AD, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): major isomer: $t_R = 9.12$ min; minor isomer: $t_R = 10.32$ min.

(S)-3-bromo-1,2-bis(3,5-dimethylphenyl)-2-methylpropan-1-one (2k):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **2k** as a colorless oil (31.9 mg, 89% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.03 (s, 3 H), 6.97 (s, 1 H), 6.94 (s, 2 H), 4.07 (d, *J* = 10 Hz, 1 H), 3.71 (d, *J* = 10 Hz, 1 H), 2.31 (s, 6 H), 2.20 (s, 6 H), 1.76 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.9, 140.3, 138.6, 137.5, 136.7, 133.5, 129.5, 127.0, 124.0, 54.7, 43.1, 23.0, 21.5, 21.2; MS (EI) *m*/*z* (%): 146 (100), 133 (56), 105 (20), 40 (28); IR (cm⁻¹): 2923, 2854, 1678, 1458, 1036, 804; HRMS (ESI) calcd for C₂₀H₂₃BrONa [M+Na]⁺: 381.0824 found 381.0834; [α]¹⁶_D = +79° (c = 1.0, CHCl₃). Enantiomeric excess is 72% determined by HPLC (Chiralcel OZ-H, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): major isomer: t_R = 4.88 min; minor isomer: t_R = 5.76 min.

(2S)-3-bromo-2-methyl-1,2-diphenylbutan-1-one (2l):

Prepared according to general procedure with petroleum ether/EtOAc = 100:1 as eluent to afford **21** as a colorless oil (20 mg, 63% yield). ¹HNMR (400 MHz, CDCl₃, ppm): δ 7.41-7.21 (m, 10 H), 5.14 (q, *J* = 7.2 Hz, 1 H), 1.84 (s, 3 H), 1.36 (d, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.9, 138.3, 137.8, 131.3, 129.2, 128.5, 128.1, 127.9, 127.1, 58.8, 55.1, 21.0, 18.8; MS (EI) *m*/*z* (%): 132 (100), 117 (69), 105 (44), 77 (22); IR (cm⁻¹): 2927, 1682, 1447, 1247, 964, 702; HRMS (ESI) calcd for C₁₇H₁₇BrONa [M+Na]⁺: 339.0355 found 339.0350; [α]²³_D = +101° (c =

1.0, CHCl₃); Enantiomeric excess is 58% determined by HPLC (Chiralpak AD, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min, 254 nm): major isomer: $t_R = 5.41$ min; minor isomer: $t_R = 6.99$ min

More information about substrate scope:

we have also investigated some substrates bearing a functionalized group or beta-branched alkyl groups. The results are as follows:

1m

5-(methoxymethoxy)-2-methylene-1,1-diphenylpentan-1-ol:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.35-7.24 (m, 10 H), 5.18 (s, 1 H), 4.78 (s, 2H), 4.56 (s, 2 H), 3.50 (t, J = 6 Hz, 2 H), 3.30 (s, 3 H), 2.98 (s, 1 H), 2.17 (t, J = 7.6 Hz, 2 H), 1.80-1.73 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.0, 145.2, 127.8, 127.7, 127.2, 114.4, 96.3, 83.5, 67.4, 55.2, 28.9, 28.8; MS (EI) *m/z* (%): 183 (96), 160 (31), 105 (100), 77 (24).

(S)-2-(bromomethyl)-5-(methoxymethoxy)-1,2-diphenylpentan-1-one:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.42-7.31 (m, 8 H), 7.24-7.20 (m, 2 H), 4.47 (s, 2 H), 4.11 (d, J = 10.8 Hz, 1 H), 7.93 (d, J = 10.8 Hz, 1 H), 3.43 (t, J = 6.4 Hz, 2 H), 3.27 (s, 3 H), 2.54 (td, J = 12.8 Hz, 4.4 Hz, 1 H), 2.30 (td, J = 13.2 Hz, 3.6 Hz, 1 H), 1.53-1.40 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.5, 140.1, 136.4, 132.1, 129.2, 129.1, 128.1, 127.8, 126.8, 96.1, 67.3, 58.1, 55.1, 40.5, 30.2, 23.8; MS (EI) *m/z* (%): 255 (10), 161 (26), 144 (45), 129 (42), 118 (72), 105 (100), 71 (67), 57 (79); Enantiomeric excess is 37% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 70/30, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 5.69 min; major isomer: t_R = 12.65 min.

5-methoxy-2-methylene-1,1-diphenylpentan-1-ol:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.35-7.24 (m, 10 H), 5.16 (s, 1 H), 4.74 (s, 1 H), 3.48 (s, 1 H), 3.38 (t, J = 6.4 Hz, 2 H), 3.29 (s, 3 H), 2.16 (t, J = 7.6 Hz, 2 H), 1.80-1.73 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.1, 145.3, 127.8, 127.7, 127.0, 114.7, 83.4, 72.1, 58.4, 28.9, 28.6; MS (EI) *m/z* (%): 282 (M⁺, 4), 209 (30), 183 (100), 105 (91), 77 (27).

(S)-2-(bromomethyl)-5-methoxy-1,2-diphenylpentan-1-one:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.42-7.31 (m, 8 H), 7.23-7.20 (m, 2 H), 4.11 (d, J = 10.8, 1 H), 3.96 (d, J = 10.8 Hz, 1 H), 3.31-3.26 (m, 2 H), 3.17 (s, 3 H), 2.51 (td, J = 13.6 Hz, 4.4 Hz, 1 H),

2.29 (td, J = 13.2 Hz, 4.4 Hz, 1 H), 1.51-1.36 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.5, 140.2, 136.4, 132.1, 129.2, 129.1, 128.1, 127.8, 126.8, 72.3, 58.2, 58.1, 40.6, 30.0, 23.4; MS (EI) *m*/*z* (%): 149 (19), 144 (31), 118 (100), 105 (73), 77 (260); Enantiomeric excess is 4% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 70/30, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 5.00 min; major isomer: t_R = 7.56 min.

10

2-benzyl-1,1-diphenylprop-2-en-1-ol:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.63-7.11 (m, 15 H), 4.85 (d, J = 0.8 Hz, 1 H), 4.79 (s, 1 H), 3.40 (s, 2H), 2.51 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.4, 144.9, 139.8, 129.5, 128.3, 127.9, 127.7, 127.3, 126.0, 117.0, 83.6, 38.7; MS (EI) *m*/*z* (%): 300 (M⁺, 1), 282 (20), 209 (9), 191 (29), 183 (100), 105 (92), 77 (29).

20

(S)-2-benzyl-3-bromo-1,2-diphenylpropan-1-one:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.46-6.72 (m, 15 H), 3.98 (d, J = 10.4 Hz, 1 H), 3.87 (d, J = 10.4 Hz, 1 H), 3.64 (d, J = 13.6 Hz, 1 H), 3.56 (d, J = 13.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 200.1, 140.0, 136.7, 135.9, 132.1, 130.3, 129.6, 129.1, 128.2, 127.91, 127.87, 126.9, 126.8, 59.4, 40.3, 38.8; MS (EI) *m/z* (%): 299 (4), 194 (100), 179 (37), 149 (27), 116 (40), 105 (88), 77 (37); Enantiomeric excess is 44% determined by HPLC (Chiralcel IC, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): major isomer: t_R = 7.68 min; minor isomer: t_R = 8.25 min.

5-methyl-2-methylene-1,1-diphenylhexan-1-ol:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.34-7.25 (m, 10 H), 5.15 (d, J = 0.8 Hz, 1 H), 4.79 (s, 1 H), 2.47 (s, 1 H), 2.05 (t, J = 8.2 Hz, 2 H), 1.52-1.42 (m, 1 H), 1.35-1.29 (m, 2 H), 0.81 (d, J = 6.4 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.9, 145.2, 127.8, 127.7, 127.2, 113.5, 83.6, 38.0, 29.9, 28.0, 22.6; MS (EI) *m/z* (%): 280 (M⁺, 1), 209 (21), 183 (100), 160 (28), 105 (80), 77 (22).

(S)-2-(bromomethyl)-5-methyl-1,2-diphenylhexan-1-one:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.39-7.31 (m, 8 H), 7.24-7.18 (m, 2 H), 4.09 (d, J = 10.8 Hz, 1 H), 3.94 (dd, J = 10.8 Hz, 1.2 Hz, 1 H), 2.48 (td, J = 13.2 Hz, 4.8 Hz, 1 H), 2.19 (td, J = 13.6 Hz, 3.2 Hz, 1 H), 1.44-1.36 (m, 1 H), 1.17-1.08 (m, 1 H), 0.83-0.74 (m, 1 H), 0.80 (d, J = 6.8 Hz, 3 H), 0.66 (d, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 202.0, 140.4, 136.5, 132.0, 129.2, 129.0, 128.0, 127.7, 126.8, 58.2, 41.3, 32.2, 30.7, 28.1, 22.4, 22.0; MS (EI) *m/z* (%): 174 (12), 118 (100), 105 (66), 77 (21); Enantiomeric excess is 45% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min, 254 nm): minor isomer: t_R = 4.18 min; major isomer: t_R = 8.69 min.

2-(cyclohexylmethyl)-1,1-diphenylprop-2-en-1-ol:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.35-7.25 (m, 10 H), 5.13 (d, J = 0.8 Hz, 1 H), 4.79 (s, 1 H), 2.42 (s, 1 H), 1.96 (d, J = 6.8 Hz, 2 H), 1.75-1.60 (m, 5 H), 1.46-1.36 (m, 1 H), 1.22-1.03 (m, 3 H), 0.83-0.74 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.3, 145.3, 127.8, 127.2, 114.9, 83.6, 40.1, 36.5, 33.4, 26.6, 26.4; MS (EI) *m/z* (%): 306 (M⁺, 2), 209 (15), 186 (21), 183 (100), 105 (58), 77 (16).

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

2q

(S)-3-bromo-2-(cyclohexylmethyl)-1,2-diphenylpropan-1-one:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.40-7.18 (m, 10 H), 4.11 (d, J = 10.4 Hz, 1 H), 4.03 (dd, J = 10.8 Hz, 1.2 Hz, 1 H), 2.46 (dd, J = 14.4 Hz, 5.2 Hz, 1 H), 2.17-2.12 (dd, J = 14.4 Hz, 5.2 Hz, 1 H), 1.61-1.45 (m, 4 H), 1.15-0.93 (m, 6 H), 0.75-0.66 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 202.0, 140.8, 136.7, 131.9, 129.5, 128.9, 128.0, 127.7, 126.8, 58.5, 42.1, 39.9, 35.2, 34.5, 33.7, 26.2, 26.3, 26.0; MS (EI) *m*/*z* (%): 200 (18), 183 (14), 118 (100), 105 (74), 77(21); Enantiomeric excess is 55% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 99/1, flow rate = 1.0 mL/min, 254 nm): major isomer: t_R = 6.91 min; minor isomer: t_R = 7.53 min.

1r

Cyclohexenyldiphenylmethanol:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.33-7.23 (m, 10 H), 5.35 (t, J = 3.6 Hz, 1 H), 2.49 (s, 1 H), 2.09-2.06 (m, 2 H), 1.99-1.98 (m, 2 H), 1.66-1.55 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 145.5, 141.8, 127.8, 127.7, 127.0, 126.6, 83.1, 25.6, 25.3, 22.9, 22.2; MS (EI) *m/z* (%): 264 (M⁺, 21), 246 (11), 183 (35), 105 (100), 77 (28);

((1S,2R)-2-bromo-1-phenylcyclohexyl)(phenyl)methanone:

¹HNMR (400 MHz, CDCl₃, ppm): δ 7.48-7.19 (m, 10 H), 5.30 (s, 1 H), 2.55-2.43 (m, 2 H), 2.38-2.29 (m, 1 H), 2.20-2.16 (m, 1 H), 1.89-1.78 (m, 1 H), 1.59-1.48 (m, 2 H), 1.29-1.19 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 201.6, 138.3, 138.2, 130.8, 128.9, 128.4, 128.2, 127.8, 127.4, 59.5, 57.9, 31.7, 30.7, 21.5, 20.9; MS (EI) *m/z* (%): 158 (100), 143 (27), 130 (24), 105 (21), 77

(19); Enantiomeric excess is 57% determined by HPLC (Chiralcel OJ, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min, 254 nm): minor isomer: $t_R = 11.65$ min; major isomer: $t_R = 17.62$ min.

X-Ray Ellipsoid Plots of 2a

The structure of compound **2a** was corroborated by single-crystal. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: 821778.

88112222222222222222222222 8811222222222	498 101 083 065 046	053 034 016	082 000
ファファマママファファファロシャ・			•••
			\backslash

	14.9	127.82 127.82 127.67	112.77	83.50 77.32 76.68	24.76	
OH						
1b						

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

.

. . . .

1

HH HOODOOOOOOOOOOOOOOOOO

L J

1 1 1

.

0

 ∞

 \sim

4

. .

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

1d					
		I			

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

° ° ∬ 1€	e					
		I	I			

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is C The Royal Society of Chemistry 2011

-149.14

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

	163.19 160.74	148.80	140.48	129.35	115.78 114.82 114.61		82.24 77.32 77.00 76.68						
F OH	~1												
 1j	F												
210 200 190 180 170	160	150	140	<u>_</u> 130	120 110	100 90	80 70	60 5 0) 40	<u> </u>	 20	 0	ppm

	Ţ		I								
1k	OH										
		 		 	 	·····	·····	 	 	 ·····	 ••••••

21.42

OH	OH

ppm

	Br 2b						
	Ph Br 2b						
\circ			 I	I	I	I	

0			
Ph			
Br 2c			

77.32 77.00 76.68

58.33

1

35.40

41.18

1

140.43 136.38 131.99 129.17 128.97 128.97 128.70 126.78

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

-201.70

Оのらもらのする11	\circ \cap \circ \circ	$\nabla Q = \nabla Q$	40
MU - AOO - NOO	лоли	ഗത ത	0 1
00	0077	-	0 0
		• • •	• •
	4 4 M M	$\neg \land \land \neg$	0 0
	\bigvee \bigvee	\backslash /	\ /

ppm

Cl

2h

201.14	138.09 133.472 133.472 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 133.367 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15 128.15	77.32 77.00 76.68	 43.15	23.08		
Br Br 2i						
						iterdagen dagen dagen da
210 200 190 180 1	70 160 150 140 130 120 110 100 9	0 80 70	 40		••••••••••••••••••••••••••••••••••••••	mqq

ppm

Ö		
Br Ph Br 2l		

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

1	9.379 BB	0.3742 7141.31689	289.13147	50.1824
2	11.408 PB	0.4782 7089.40088	225.85631	49.8176

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.336	PP	0.3503	467.24384	20.46967	3.4020
2	11.216	PB	0.4808	1.32671e4	419.63699	96.5980

Peak #	RetTime [min]	Туре	[min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	7.176 9.060	 VV VV	0.3096	 1.52707e4 1.55198e4	749.78503 535.15442	49.5955 50.4045

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.311	BB	0.3340	651.96674	29.48402	4.3045
2	9.150	PB	0.4737	1.44941e4	467.56332	95.6955

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.658	'vv '	0.2666	3.82805e4	2271.85059	46.3521
2	5.985	VB	0.3840	4.43059e4	1807.61450	53.6479

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.623	VP	0.1621	865.98010	80.10591	4.9897
2	5.812	VV	0.2798	1.64894e4	908.40576	95.0103

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	4.245	 BB BD	0.1542	1104.01050	 108.96370 30 68791	 50.5335 49 4665

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.265	PB	0.1453	283.83017	29.76469	4.6849
2	6.162	BB	0.5043	5774.53906	178.08153	95.3151

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.798	MF	0.6634	4748.49316	119.29546	48.8302
2	11.560	FM	1.0663	4975.99951	77.77811	51.1698

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.993	MF	0.6468	207.75777	5.35346	6.5366
2	11.654	FM	1.1537	2970.64233	42.91638	93.4634
Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Peak #	[min]	туре	[min]	[mAU*s]	[mAU]	ALEA %	
 1 2	7.803 9.312	 VV VBA	0.3630 0.4834	2187.21973 2219.12329	91.44924 69.70144	49.6380 50.3620	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.951	BB	0.3897	1140.33850	44.69063	5.8447
2	9.460	BB	0.5186	1.83703e4	543.15387	94.1553

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	6.518	PV	0.2661	1.91171e4	1114.76587	47.4784
2	7.099	VB	0.3300	2.11477e4	971.19739	52.5216

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.618	PV	0.2604	971.72626	57.72239	4.7982
2	7.245	VB	0.3221	1.92800e4	913.88397	95.2018

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Peak #	RetTime	Туре	Width	Area	Height	Area
#	[[[[[]]]]] [] [] [] [] []		[[[[]]]]			°
T	6.299	BB	0.1496	/615.00586	/68.51080	49.9//6
2	7.615	BB	0.1844	7621.82764	633.49261	50.0224

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.285	VB	0.2164	3.36138e4	2444.36108	91.4947
2	7.606	BB	0.1858	3124.71143	257.15173	8.5053

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.301	MM	1.2406	9972.84375	133.97377	51.1814
2	21.813	MM	1.9408	9512.45801	81.69024	48.8186

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.824	MM	1.5821	4.67109e4	492.07779	91.9347
2	22.368	MM	2.4597	4097.87012	27.76657	8.0653

Electronic Supplementary Material (ESI) for Chemical Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	8.857 9.946	VV VB	0.2280	1.71452e4 1.77923e4	1149.85645 1028.76538	49.0739 50.9261

Electronic Supplementary Material (ESI) for Chemical Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	4.791	BV	0.1467	2.26282e4	2429.71118	47.3787
2	5.648	VV	0.1667	2.51321e4	2350.40796	52.6213

Electronic Supplementary Material (ESI) for Chemical Science This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

fear #	[min]	туре	[min]	[mAU*s]	[mAU]	AI Ea %
	5.428	 VV	0.1368	 1.40702e4	1566.41455	49.3283
2	6.956	PV	0.1695	1.44534e4	1282.56238	50.6717

