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1. Appendix to Section 2 

1.1 Note 

All the quantities and notations used in this document are the same as those defined in the main 

text. This document cites the following references (which are also cited in the main text): 

(A1) M. Cossi and V. Barone, J. Phys. Chem. A, 2000, 104, 10614. 

(A2) G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 114110. 

(A3) F. Lipparini, G. Scalmani, B. Mennucci, E. Cancès, M. Caricato and M. J. Frisch, J. Chem. Phys., 2010, 133, 

014106. 

(A4) S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117. 

(A5) S. Miertuš and J. Tomasi, Chem. Phys., 1982, 65, 239. 

1.2 The proof of eqn (21) 

Using eqns (10), (15), and (18), one can obtain the following equations 
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Using eqns (10), (16), (17), and (19), one can obtain the following equations 
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Subtraction then yields 
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In CPCM, the matrix Ω  satisfies the following equations: 
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Applying eqns (A7) and (A8) to the expression in brackets in eqn (A6), one can prove that the 

right-hand side of eqn (A6) is equivalent to the right-hand side of eqn (A5), thereby proving eqn 

(21).  

In IEF-PCM, the matrices Dε  and  satisfy the following equations according to 

Ref. A1: 
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SΩ =       (A10) 

where ε = ε0 or εopt. The matrices on the right-hand side of these equations do not depend on the 

dielectric constant, and they are defined in Ref. A1; the matrix I is the unit matrix. Applying  

eqn (A9) with ε = ε0 and εopt to the expression in brackets in eqn (A6), one can prove that eqn 

(21) is also valid within the IEF-PCM formalism.  

 Equation (21) is also valid within the latest formulation of IEF-PCM (Refs. A2 and A3) 

where the matrices Dε with ε = ε0 or εopt are defined as 
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where the superscript “T” denotes the transpose, the matrix I is the unit matrix, the matrix S is 

defined by eqn (19) in Ref. A3, , and SS =T ADIR
~~

2
1
π

−=∞ . The matrix A is diagonal, and it 

contains the values of surface element areas. The matrix  is defined by eqn (21) in Ref. A3 

where it is called D. The matrix is defined by eqn (20) in Ref. A3 where it is called D

D
~~

TD
~~ *.  

1.3 The proof of eqn (22)  

One can immediately derive eqn (22) using Partition II and eqn (14), eqn (A3), and eqn (A4). 

Using Partition I and eqn (13), eqn (A1), and eqn (A2), one can obtain the following equation: 
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Using eqns (A7) and (A8) for CPCM, one can modify the expression in brackets as 
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and then show that eqn (A12) becomes eqn (22).  

 Using eqns (A9) and (A10) and the IEF-PCM formalism of Ref. A1, one can obtain the 

following relation for the expression in brackets in eqn (A12): 
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Again, eqn (A12) becomes equivalent to eqn (22). The validity of eqn (22) can also be proven by 

using eqns (A10) and (A11) within the most recent IEF-PCM formalism [see eqns (23–25) and 

eqns (34), (35) in Ref. A3] through the following sequence of equations: 
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1.4 The proof of eqn (31) 

Starting with Partition II’s definition of  PG  [see eqns (28–30) in the main text], one can express 

ω as follows  
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where we used the following notations: 

mmm VVV −=Δ      (A18) 

dyndyndyn
mmm QQQ −=Δ      (A19) 

indyn
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∑∑ Δ=Δ
m
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m
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Note that eqn (A21) is exact within the CPCM formalism and also within the latest IEF-PCM 

formalism (Refs. A2 and A3), whereas it is approximate for the previous versions of IEF-PCM. 

This equation can be expressed in matrix form as follows 

VDVVDVQVQVΔQV 11dyndyndyn
optopt
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1.5 The proof of eqns (32–36) 

To obtain the GB expressions for reaction fields and polarization energy components, we use the 

following relations 
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In the equations above, the index m runs over all surface elements situated at the corresponding 

position rm, the index n or n′ runs over all nuclei situated at rn or rn′, γnn′ is the Coulomb 

integral, qn or qn′ is a partial atomic charge, and ε0 is the static dielectric constant. The physical 

meaning of mQ  in the context of nonequilibrium solvation will be specified later. 

 Equation (32) can be obtained immediately from eqn (5) with mm QQ =  and eqn (12), 

respectively. Equation (34) can be obtained from eqn (5) with 
neq
mm QQ =  defined by eqn (22) as 

follows 
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where we use eqns (A7) and (A8) and the following equations: 
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To prove eqn (35), we begin with eqns (28–30), and with the use of eqns (A3), (A4), 

(A7), (A8), (A29), and (A30) we obtain the following relation: 
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Equation (35) can be obtained from eqn (A32) using eqns (A25–A27).  

 Equation (36) can be obtained from eqn (31) using the following relation: 
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1.6 The proof of eqn (48) 

Omitting the superscript (k), we can express eqn (48) as follows 
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〉ΨΔΦΨ〈−〉ΨΔΦΨ〈+〉ΨΦΨ〈−〉ΨΦΨ〈+〉ΨΨ〈−〉ΨΨ〈=

〉ΨΔΦΨ〈+〉ΨΔΦΨ〈−〉ΨΔΦΨ〈−〉ΨΔΦΨ〈+

〉ΨΦΨ〈−〉ΨΦΨ〈+〉ΨΨ〈−〉ΨΨ〈=

〉ΨΔΦΨ〈+〉ΨΔΦΨ〈−=−−−= ∑

||
2
1||

2
1||||||||

||
2
1||

2
1||||

||||||||

||
2
1||

2
1))((

2
1

00

00

*
VEM

dyndyn*
VEMVEM

HH

HH

QQVV
m

mmmm ωωω

∑∑ −−+−+−=
m

mmmm
m

mmm QQVVQVVEE ))((
2
1)(

2
1 dyndyn

00              (A34) 

which is equivalent to eqn (31). 

1.7 The PCM formalism in more detail 

We have shown that eqn (22) remains valid within both partitions (Partition I and Partition II) 

when one uses the CPCM or IEF-PCM models. Here we show that Partition I and Partition II 

yield identical total reaction fields when one uses the original dielectric formulation of PCM (see 

Refs. A4 and A5).  

The excited-state electronic polarization charge 
el
mQ  on the mth surface element used by 

Partition I satisfies the following equation 
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where ΔSm is the area of the mth surface element situated at rm, and )(n mE r  is the normal 

component of the total electric field due to the solute’s charge density );( Ψrρ  and the solvent’s 

total polarization charges defined by the column vector 
neq

Q ; )(n mE r  is taken at rm on the 

internal side of the solute’s cavity, i.e., in vacuo from the point of view of the dielectric. The 

orientational polarization charge 
or
mQ  is expressed as 
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where mQ  is the total ground-state equilibrium polarization charge computed independently of 

);( Ψrρ  and 
neq

Q . The total polarization charge mQ  satisfies the following equation: 
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where )(n mE r  is the normal component of the total electric field (taken inside the solute’s cavity) 

due to the solute’s charge density );( Ψrρ  and the solvent’s total polarization charges defined by 

the column vector Q . The total nonequilibrium polarization charge in Partition I is 
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The excited-state dynamic polarization charge 
dyn
mQ  used by Partition II satisfies the 

following equation 
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The corresponding inertial charge 
in
mQ  is expressed as 
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The total nonequilibrium polarization charge in Partition II is 
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Keeping the slow polarization charges ( orQ or 
in

Q ) fixed at the their values defined by the 

column vector Q  calculated earlier, we compute the column vectors of fast polarization charges 

(
el

Q or 
dyn

Q ) iteratively using the corresponding equations. At the first iteration, we approximate 

),;(
neq

n Qr ΨmE  with ),;(n Qr ΨmE . The latter is determined using the reaction field )(QΦ  

induced by the ground-state polarization charges defined by the column vector Q  and the 

solute’s charge density );( Ψrρ  corresponding to the excited-state wave function Ψ  evaluated 

using )(QΦ=Φ . Since the definition of ),;(n Qr ΨmE  does not involve partitioning, the quantity 

)(n mE r  remains the same in eqn (A35) and eqn (A39). This leads to the same set of total charges 

neq
Q  in Partition I and Partition II because the right-hand side of eqns (A38) and (A41) is the 

same when )(n mE r  is identical. Using the new total reaction field )(
neq

QΦ , we evaluate Ψ , 

);( Ψrρ , and ),;(
neq

n Qr ΨmE  again. The latter quantity retains the same value in both partitions 

because )(
neq

QΦ  is partition-independent. We repeat the procedure until it converges self-

consistently with respect to 
neq

Q . 

Equations (A38) and (A41) can be rewritten in the matrix form as 
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where the components of the column vector Q  satisfy the following condition 
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In the case of excited-state equilibrium solvation (εopt = ε0), the quantity mQ  simply means the 

total equilibrium (“eq”) excited-state electronic polarization charge, 
eq

mQ . However, in the case of 

excited-state nonequilibrium solvation (εopt ≠ ε0), the quantity mQ defined by eqn (A43) is not 

the same as 
eq

mQ  or 
neq

mQ .  Note that for the ground state we have 
neqeq

QQQ ==  where the 

quantity Q  satisfies eqn (A29). We can express eqns (A35) and (A39) as 
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Using eqn (A42), we can express the partition-independent PCM total excited-state 

reaction field as  
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and we can rewrite the equations for individual components of the polarization free energy PG  

for Partition I as 
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and for Partition II as 
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The polarization free energy PG  in Partition I differs from the one derived in Partition II 

according to the following equation 

 or-el P,
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Although the magnitude of the difference is likely to depend on a particular PCM model and the 

solute’s molecular cavity, one can reasonably expect that it approaches zero. Using eqns (6) and 

(8) from Ref. A1 for CPCM, we can make the following approximation for mV  and mV  

∑
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When applied to eqn (A52), eqn (A53) leads to 0)II()I( PP =−GG .  

Note that in the most recent IEF-PCM formulation (see Refs. A2 and A3) defines the 

reaction field by eqns (8) and (9) in the main text. In this case, eqn (A46) is replaced by 
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where the integral in brackets is taken over the cavity C, and the quantity φm is defined in Refs. 

A2 and A3. Equation (A49) is replaced by 
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where the matrix S is defined in Ref. A2. Equation (53) is replaced by  
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m
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When applied to eqn (A52), eqn (A56) also leads to 0)II()I( PP =−GG . 

The GB expressions of Partition I’s and Partition II’s individual components of the 

nonequilibrium excited-state polarization free energy given by eqns (A47–A51) can be readily 

obtained using eqns (A25–A27) and eqn (A53). The latter equation is used to convert eqn (A49), 

thereby leading to  0)II()I( PP =−GG . 
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2. Description of the VEM(d,RD)/GB method 

Within the VEM(d) approach, we consider only the diagonal (d) elements of the ΔΦ(k) state-

specific reaction field operator in eqn (46). In this case, eqn (46) is replaced by 

[ ] )||(
)(VEM

, ibjaH iiaaabij
k

jbia −Δ−−Δ+= εεεεδδ    (A57) 

where the quantity Δεp (p = a or i) is defined as  

〉Φ〈−〉Φ〈=〉ΔΦ〈=Δ ppp
k

pp
k

pp ψψψψψψε |||||| )()(   (A58) 

using notations adopted in the main text. The quantities εp and ψp (p = a or i) are obtained from 

an equilibrium ground-state SCRF calculation, and they do not depend on k. The VEM excitation 

energy at the kth iteration is calculated by eqn (48) which can be expressed as 

〉ΨΔΦΨ〈−〉ΨΔΦΨ〈+

〉ΨΦ+Ψ〈−〉ΨΦ+Ψ〈=

||
2
1||

2
1

||||

)()()()(

0
)(

0
)()(

VEM

kkkk

kkk HHω
  (A59) 

Within the VEM(d) protocol, the VEM excitation energy can be calculated simply as the 

corresponding eigenvalue of the CIS matrix defined by the following equation 

)||(
2
1

2
1)(VEM(d)

, ibjaH iiaaabij
k

jbia −⎥⎦
⎤

⎢⎣
⎡ Δ−−Δ+= εεεεδδ   (A60) 

where the quantity Δεp (p = a or i) is defined by eqn (A58).  

Within the VEM(d,RD)/GB protocol, the quantity Φ  is calculated by eqn (32), and the 

quantity )(k
Φ  is calculated by eqn (34) using a set of excited-state partial atomic charges )1( −kq  

computed at the previous VEM iteration based on the relaxed density (RD) approach.  
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3. Excitation energies of acetone, acrolein, methanal, and pyridine in water and the 

corresponding gas–water solvatochromic shifts (in cm–1) computed using the hydrogen-

bonding contribution correction (ΔωH) 

3.1 The GBSD/CIS/INDO/S2 method 

protocol ωwater ωgas – ωwater ωwater ωgas – ωwater
 acetone, n → π* (1A2) acrolein, n → π* (1A″) 

GSRF 35673 –2618 33462 –3076 
cGSRF 35314 –2259 33008 –2622 

VEM(f,UD) 35303 –2248 32963 –2577 
IBSF 37271 –4216 35319 –4933 

IESRF 35266 –2211 32859 –2473 
reference 37760 –1785 31746 –1984 

 methanal, n → π* (1A2) pyridine, n → π* (1BB1) 
GSRF 35402 –2057 37243 –2415 
cGSRF 35140 –1794 36980 –2152 

VEM(f,UD) 35131 –1786 36959 –2132 
IBSF 36445 –3100 38010 –3183 

IESRF 35108 –1763 36893 –2066 
reference 33079 –1785 39813 –2490 

 

3.2 The GBAD/TDDFT/M06/MG3S method 

protocol ωwater ωgas – ωwater ωwater ωgas – ωwater
 acetone, n → π* (1A2) acrolein, n → π* (1A″) 

GSRF 38671 –2604 32934 –3317 
VEM(d,RD) 38247 –2180 32057 –2440 

IBSF 40529 –4462 34272 –4655 
IESRF 38408 –2341 32289 –2672 

reference 37760 –1785 31746 –1984 
 methanal, n → π* (1A2) pyridine, n → π* (1BB1) 

GSRF 33833 –1881 40277 –2421 
VEM(d,RD) 33585 –1633 39758 –1902 

IBSF 35030 –3078 41074 –3218 
IESRF 33524 –1572 39782 –1926 

reference 33079 –1785 39813 –2490 
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3.2 The PCM/TDDFT/M06/MG3S method 

protocol ωwater ωgas – ωwater ωwater ωgas – ωwater
 acetone, n → π* (1A2) acrolein, n → π* (1A″) 

GSRF 39289 –3222 33097 –3480 
cGSRF 39061 –2994 32644 –3027 

VEM(f,RD) 38637 –2570 31493 –1876 
VEM(d,RD) 38625 –2558 31373 –1756 
VEM(d,UD) 38530 –2463 31108 –1491 

LR 39224 –3157 33040 –3423 
cLR 38936 –2869 32310 –2693 
IBSF 41020 –4953 34278 –4661 

IBSF a 39229 –3162 32865 –3248 
reference 37760 –1785 31746 –1984 

 methanal, n → π* (1A2) pyridine, n → π* (1BB1) 
GSRF 34598 –2646 41221 –3365 
cGSRF 34281 –2329 40880 –3024 

VEM(f,RD) 33910 –1958 39993 –2137 
VEM(d,RD) 33915 –1963 39994 –2138 
VEM(d,UD) 33832 –1880 39795 –1939 

LR 34481 –2529 41146 –3290 
cLR 34191 –2239 40613 –2757 
IBSF 35360 –3408 41798 –3942 

IBSF a 34491 –2539 41441 –3585 
reference 33079 –1785 39813 –2490 

a This calculation was carried out using the UFF Coulomb radii scaled by the factor of 1.1; all 
the other PCM calculations were carried out using the SMD radii. 
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