Supporting Information

Controlling Growth of Self-Propagating Molecular Assemblies

Leila Motiei,^a Moran Feller,^a Guennadi Evmenenko,^b Pulak Dutta^b and Milko E. van der Boom*^a

 ^a Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
Fax: +972 8934 4142; Tel: +972 8934 2515; E-mail:milko.vanderboom@weizmann.ac.il
^b Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3113, USA.

Fig. S1 Representative transmission UV/Vis absorption spectra of the 6 SPMAs on glass substrates measured after each deposition step of complex **11** (Scheme 1). The spectra with the lowest absorption intensities are from the template layer (red line; TL, Scheme 2a) and the baseline (black line). (a) SPMA|Pt(PhCN)₂Cl₂, (b) SPMA|(PhCN)₂PtBr₂, (c) SPMA|(PhCN)₂PtI₂, (d) SPMA|(PhCN)₂Pd(SMe₂)₂Cl₂, (e) SPMA|Pd(COD)Cl₂, and (f) SPMA|Pd(PhCN)₂Cl₂. The spectra of the latter SPMA have been included in the main text as Fig. 1a.

Fig. S2 Semicontact AFM images (500 nm × 500 nm scan areas) of (a) SPMA|Pt(PhCN)₂Cl₂ ($R_{rms} = 0.4 \text{ nm}$), (b) SPMA|Pt(PhCN)₂Br₂ ($R_{rms} = 0.5 \text{ nm}$), (c) SPMA|Pt(PhCN)₂I₂ ($R_{rms} = 0.4 \text{ nm}$), and (d) SPMA|Pd(SMe₂)₂Cl₂ ($R_{rms} = 1.1 \text{ nm}$), (e) SPMA|Pd(COD)Cl₂ ($R_{rms} = 1.0 \text{ nm}$), and (f) SPMA|Pd(PhCN)₂Cl₂ ($R_{rms} = 0.4 \text{ nm}$) after 13 deposition steps on silicon substrates. Deposition step 1 is the template layer (TL) (Scheme 2a). The values shown in the vertical scales are in nm. The image of SPMA|Pd(PhCN)₂Cl₂ (f) has been included in the main text as Fig. 2.

Fig. S3 Representative synchrotron X-ray reflectivity (XRR) spectrum of SPMA $|Pd(COD)Cl_2$ on a silicon substrate after 13 deposition steps. Deposition step 1 is the template layer (TL) (Scheme 2a). The red trace is a fit of the experimental data (black dots). For details regarding XRR and data fitting, see: G. Evmenenko, M. E. van der Boom, S. W. Dugan, J. Kmetko, T. J. Marks and P. Dutta, *J. Chem. Phys.*, 2001, **115**, 6722.

Table S1 Slopes derived by linear fitting of the light absorption intensity at $\lambda \approx 465$ nm versus the SPMA thickness (Fig. 5; $R^2 \ge 0.98$).

entry	М	L	Х	Slope (x 10 ⁻⁴)	
1	Pt	PhCN	Cl	6.4	
2	Pt	PhCN	Br	7.1	
3	Pt	PhCN	Ι	6.8	
4	Pd	PhCN	Cl	8.1	
5	Pd	½ COD	Cl	10	
6	Pd	SMe ₂	Cl	9.0	

Table S2 The estimated molecular density of complex **11** for the SPMAs in molecules/ nm^3 . Deposition step 1 is the Template Layer (TL) (Scheme 2a).

Deposition step	Pt(PhCN) ₂ Cl ₂	$Pt(PhCN)_2Br_2$	Pt(PhCN) ₂ I ₂	Pd(PhCN) ₂ Cl ₂	$Pd(SMe)_2Cl_2$	Pd(COD)Cl ₂
1	1.4	1.0	1.4	1.1	1.1	0.6
3	1.3	1.1	1.1	1.0	0.9	0.8
5	1.2	1.0	1.1	1.2	0.9	0.9
7	1.2	1.1	1.1	1.3	1.1	0.9
9	1.1	1.1	1.0	1.1	1.1	1.0
11	1.1	1.1	1.0	1.2	1.2	1.1
13	1.1	1.1	1.1	1.2	1.3	1.2