Supporting Information

Clickable, photoreactive inhibitors to probe the active site microenvironment of fatty acid amide hydrolase

Susanna M. Saario, Michele K. McKinney, Anna E. Speers, Chu Wang, and Benjamin F. Cravatt

Synthesis of probes 5a-d:

Scheme S1. Synthesis of carbamate benzophenone probes 5a-d. DCC = N,N'-dicyclohexylcarbodiimide, DMAP = 4-dimethylaminopyridine, HOBt = hydroxybenzotriazole, DMF = dimethylformamide, TFA-DCM = trifluoroacetic acid – dichloromethane, Et_3N = triethylamine.

General methods

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO), and used without further purification. All reactions were carried out under a nitrogen atmosphere with dry solvents using anhydrous conditions, unless otherwise noted. Dry solvents were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and flash chromatography was performed using ICN silica gel (particle size 0.032 - 0.063 mm). ¹H NMR and ¹³C NMR spectra were recorded on Bruker AV-400 (400 MHz) and Bruker DRX-500 (500 MHz) spectrometers, respectively, and spectra are reported in parts per million (δ) relative to the residual solvent peak. Mass spectra were acquired with an ESI-TOF (high accuracy) system at the Scripps Center for Mass Spectrometry (La Jolla, CA).

Synthesis of 2a: 4,4'-Diaminobenzophenone (300 mg, 1.4 mmol) was dissolved in DMF (2 ml) followed by addition of DCC (700 mg, 3.4 mmol) and DMAP (35 mg, 0.28 mmol). To this mixture was added 1a (8-[Bocamino]octanoic acid) (730 mg, 2.8 mmol) in DMF (2 ml) and the reaction was stirred at rt 16 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% \rightarrow 1.5% \rightarrow 2% methanol:CHCl₃) giving compound 2a (214 mg, 34%) as a yellow solid. R_f 0.74 (25% hexanes:EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.6 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 4.51 (s, 1H), 4.11 (s, 2H), 3.49 (s, 1H), 3.12 (bs, 2H), 2.39 (t, *J* = 7.6 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.57 (bs, 2H), 1.44 (s, 9H), 1.41 – 1.35 (m, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₂₆H₃₅N₃O₄: 454.2700; found 454.2704 [*M* + H]⁺.

Synthesis of 3a: 5-Hexynoic acid (103 mg, 0.92 mmol) was dissolved in DMF (3.5 ml) followed by addition of DCC (190 mg, 0.92 mmol) and DMAP (18 mg, 0.15 mmol). To this mixture was added **2a** (346 mg, 0.76 mmol) and the reaction was stirred at 60°C for 16 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% \rightarrow 1.5% methanol:CHCl₃) giving compound **3a** (74 mg, 18%) as a yellow solid. R_f 0.60 (33% hexanes:EtOAc). ¹H NMR (400 MHz,

CDCl₃): δ 7.80 – 7.63 (m, 8H), 4.53 (s, 1H), 4.12 (s, 1H), 3.49 (s, 1H), 3.12 (bs, 2H), 2.57 (t, *J* = 7.2 Hz, 1H), 2.41 – 2.33 (m, 4H), 2.03 – 1.95 (m, 4H), 1.78 – 1.71 (m, 2H), 1.57 (s, 2H), 1.44 (s, 9H), 1.41 – 1.35 (m, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₂H₄₁N₃O₅: 570.2938; found 570.2939 [*M* + Na]⁺.

Synthesis of 4a: 3a (72 mg, 0.13 mmol) was dissolved in ice-cold mixture of TFA (1.5 ml) and DCM (1.5 ml), the reaction was stirred at rt for 3 h and concentrated. The residue was triturated with ice-cold ether to give 4a (70 mg, 98%) as a yellow solid. ¹H NMR (400 MHz, MeOD): δ 7.76 (s, 8H), 2.93 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.4 Hz, 1H), 2.45 (t, *J* = 7.3 Hz 2H), 2.33 – 2.28 (m, 4H), 1.92 (p, *J* = 7.2 Hz, 2H), 1.76 – 1.65 (m, 4H), 1.45 (s, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₂₇H₃₃N₃O₃: 448.2595; found 448.2587 [*M* + H]⁺.

Synthesis of 5a: **4a** (70 mg, 0.125 mM) was dissolved in DMF (1 ml) followed by addition of Et₃N (21 µl, 0.15 mmol) at 0 °C. To this mixture was added phenyl chloroformate (19 µl, 0.15 mmol) and the reaction was stirred at rt for 1 h. The reaction mixture was diluted with ethyl acetate (30 ml), washed with H₂O and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% methanol:CHCl₃) giving compound **5a** (7.6 mg, 11%) as a white solid. R_f 0.56 (33% hexanes:EtOAc). ¹H NMR (400 MHz, MeOD): δ 7.77 (s, 8H), 7.38 – 7.09 (m, 5H), 3.2 (t, *J* = 6.8 Hz, 2H), 2.58 (t, *J* = 7.4 Hz, 1H), 2.43 (t, *J* = 7.3 Hz, 2H), 2.33 – 2.28 (m, 4H), 1.92 (p, *J* = 7.2 Hz, 2H), 1.76 (bs, 2H), 1.59 (bs, 2H), 1.45 (bs, 6H). ¹³C NMR (500 MHz, MeOD): δ 196.77, 175.17, 174.23, 157.49, 152.90, 144.41, 144.39, 134.21, 132.40, 130.44, 126.37, 122.93, 120.22, 84.25, 70.49, 42.06, 38.20, 36.82, 30.85, 30.34, 30.19, 29.92, 27.80, 26.80, 25.64, 18.78 ppm. HRMS (ESI-TOF high acc): *m/z* calcd for C₃₄H₃₇N₃O₅: 568.2806; found 568.2814 [*M* + H]⁺.

Synthesis of 2b: 4,4'-Diaminobenzophenone (300 mg, 1.41 mmol) was dissolved in DMF (5 ml) followed by addition of DCC (700 mg, 3.4 mmol) and DMAP (35 mg, 0.28 mmol). To this mixture was added **1b** (11-[Boc-amino]undecanoic acid) (852 mg, 2.82 mmol) very slowly and the reaction was stirred at rt for 22 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% \rightarrow 1.5% methanol:CHCl₃) giving compound **2b** (613 mg, 88%) as a yellow solid. R_f 0.71 (25% hexanes:EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.7 Hz, 2H), 7.69 (d, *J* = 8.7 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 2H), 6.67 (d, *J* = 8.8 Hz, 2H), 4.50 (s, 1H), 4.12 (s, 2H), 3.49 (s, 1H), 3.10 (bs, 2H), 2.37 (t, *J* = 8 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.58 (bs, 2H), 1.44 (s, 9H), 1.36 – 1.28 (m, 12H). HRMS (ESI-TOF high acc): *m/z* calcd for C₂₉H₄₁N₃O₄: 496.3170; found 496.3154 [*M* + H]⁺.

Synthesis of 3b: 5-Hexynoic acid (68 mg, 0.61 mmol) was dissolved in DMF (2 ml) followed by addition of DCC (150 mg, 0.73 mmol) and DMAP (15 mg, 0.12 mmol). To this mixture was added **2b** (300 mg, 0.61 mmol) and the reaction was stirred at 60°C for 24 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% methanol:CHCl₃) giving compound **3b** (118 mg, 34%) as a yellow solid. R_f 0.60 (33% hexanes:EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.63 (m, 8H), 4.53 (s, 1H), 4.14 (s, 1H), 3.5 (s, 1H)3.11 (bs, 2H), 2.58 (t, *J* = 7.2 Hz, 1H), 2.41 – 2.33 (m, 4H), 2.03 – 1.95 (m, 4H), 1.78 – 1.71 (m, 2H), 1.57 (s, 2H), 1.45 (s, 9H), 1.36 – 1.28 (m, 12H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₅H₄₇N₃O₅: 590.3588; found 590.3593 [*M* + H]⁺.

Synthesis of 4b: **3b** (115 mg, 0.195 mmol) was dissolved in ice-cold mixture of TFA (1.6 ml) and DCM (1.6 ml), the reaction was stirred at rt for 3 h and concentrated. The residue was triturated with ice-cold ether to give **4b** (117 mg, 100%) as a yellow solid. ¹H NMR (400 MHz, MeOD): δ 7.76 (s, 8H), 2.92 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.4 Hz, 1H), 2.43 (t, *J* = 7.6 Hz, 2H), 2.33 – 2.29 (m, 4H), 1.92 (p, *J* = 7.2 Hz, 2H), 1.76 – 1.62 (m, 4H), 1.38 (s, 12H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₀H₃₉N₃O₃: 490.3064; found 490.3064 [*M* + H]⁺.

Synthesis of 5b: **4b** (117 mg, 0.194 mM) was dissolved in DMF (0.8 ml) followed by addition of Et₃N (32 µl, 0.233 mM) at 0 °C. To this mixture was added phenyl chloroformate (29 µl, 0.233 nM) and the reaction was stirred at rt for 1 h. The reaction mixture was diluted with ethyl acetate (25 ml), washed with H₂O and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% → 1% methanol:CHCl₃) giving compound **5b** (38 mg, 32%) as a white solid. R_f 0.7 (33% hexanes:EtOAc). ¹H NMR (400 MHz, MeOD): δ 7.76 (s, 8H), 7.38 – 7.08 (m, 5H), 3.18 (t, *J* = 6.8 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 1H), 2.43 (t, *J* = 7.4 Hz, 2H), 2.33 – 2.30 (m, 4H), 1.92 (p, *J* = 7.2 Hz, 2H), 1.73 (bs, 2H), 1.57 (bs, 2H), 1.37 (bs, 12H). ¹³C NMR (500 MHz, MeOD): δ 196.79, 175.22, 174.24, 157.44, 152.91, 144.42, 144.38, 132.40, 130.45, 130.44, 126.36, 122.92, 120.23, 84.26, 70.47, 42.13, 38.20, 36.82, 30.90, 30.72, 30.64, 30.54, 30.48, 30.43, 27.98, 26.90, 25.64, 18.78 ppm. HRMS (ESI-TOF high acc): *m*/*z* calcd for C₃₇H₄₃N₃O₅: 610.3275; found 610.3265 [*M* + H]⁺.

Synthesis of 1c: Boc-8-Aminocaprylic acid (2.7 g, 10.4 mmol) and N-hydroxysuccinimide (1.2 g, 10.4 mmol) were dissolved in DCM (55 ml). To this mixture was added DCC (3.2 g, 15.5 mmol) and the reaction mixture was stirred at rt for 16 h. The reaction was filtered and the filtrate was diluted with DCM, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated giving Boc-8-Aminocaprylic acid N-hydroxysuccinimide ester (3.5 g, 94%) as a light pink solid. R_f 0.55 (50% hexanes:EtOAc) ¹H NMR (400 MHz, CDCl₃): δ 4.51 (s, 1H), 3.10 (bs, 2H), 2.84 (s, 4H), 2.60 (t, *J* = 7.4 Hz, 2H), 1.93 – 1.90 (m, 2H), 1.78 - 1.70 (m, 2H), 1.44 (s, 9H), 1.34 – 1.27 (m, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₁₇H₂₈N₂O₆: 357.2020; found 357.2011 [*M* + H]⁺.

To a mixture of Boc-8-Aminocaprylic acid N-hydroxysuccinimide ester (1.35 g, 3.79 mmol) and 5-aminovaleric acid (440 mg, 3.79 mmol) in DMF (20 ml) was added Et₃N (1.58 ml, 11.4 mmol) and reaction was stirred at rt for 16 h. The reaction mixture was diluted with EtOAc (70 ml), washed with 5% aqueous HCl, dried over Na₂SO₄ and concentrated. Recrystallization from 50% hexanes:EtOAc gave compound **1c** (668 mg, 49%) as a white solid. R_f 0.2 (25% hexanes:EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 5.76 (s, 1H), 4.65 (s, 1H), 3.45 (s, 1H), 3.28 (bs, 2H), 3.11 – 3.08 (m, 2H), 2.37 (t, *J* = 6.3 Hz, 2H), 2.18 (m, 2H), 1.76 – 1.56 (m, 8H), 1.44 (s, 9H), 1.42 – 1.26 (m, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₁₈H₃₄N₂O₅: 359.2540; found 359.2542 [*M* + H]⁺.

Synthesis of 2c: 4,4'-Diaminobenzophenone (178 mg, 0.837 mmol) was added to stirred mixture of SS-084 (300 mg, 0.837 mmmol), DCC (170 mg, 0.873 mmol) and HOBt (113 mg, 0.837 mmol) in DMF (3 ml) and the reaction was stirred at rt for 72 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated giving compound **2c** (449 mg, 97%) as a yellow solid. R_f 0.13 (17% hexanes:EtOAc). ¹H NMR (400 MHz, MeOD): δ 7.78 – 7.53 (m, 6H), 6.68 (d, *J* = 8.6 Hz, 2H), 3.26 – 3.21 (m, 2H), 3.02 – 2.99 (m, 2H), 2.45 (t, *J* = 7.4 Hz, 2H), 2.19 (t, *J* = 7.5 Hz, 2H), 1.78 – 1.65 (m, 2H), 1.63 – 1.56 (m, 6H), 1.43 (s, 9H), 1.33 (s, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₁H₄₄N₄O₅: 553.3384; found 553.3388 [*M* + H]⁺.

Synthesis of 3c: 5-Hexynoic acid (90 mg, 0.80 mmol) was dissolved in DMF (2 ml) followed by addition of DCC (166 mg, 0.80 mmol) and HOBt (11 mg, 0.80 mmol). To this mixture was added **2c** (445 mg, 0.80 mmol) in DMF (1ml) and the reaction was stirred at 60°C for 48 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% \rightarrow 2% methanol:CHCl₃) giving compound **3c** (219 mg, 42%) as a yellow solid. R_f 0.42 (15% methanol:CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.77 – 7.64 (m, 8H), 6.0 (s, 1H), 4.65 (bs, 1H), 4.18 (s, 1H), 3.49 (s, 1H), 3.35 – 3.30 (m, 2H), 3.10 (bs, 2H), 2.57 (t, *J* = 7.3 Hz, 1H), 2.48 – 2.44 (m, 2H), 2.33 (td, *J* = 2.6, 4.2 Hz, 2H), 2.21 – 2.17 (m, 2H), 2.01 – 1.93 (m, 4H), 1.74 – 1.54 (m, 8H), 1.43 (s, 9H), 1.29 (s, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₇H₅₀N₄O₆: 647.3803; found 647.3802 [*M* + H]⁺.

Synthesis of 4c: **3c** (218 mg, 0.337 mmol) was dissolved in ice-cold mixture of TFA (1.5 ml) and DCM (1.5 ml), the reaction was stirred at rt for 3 h and concentrated. The residue was triturated with ice-cold ether to give **4c** (202 mg, 91%) as a yellow solid. ¹H NMR (400 MHz, MeOD): δ 7.75 (s, 8H), 3.23 (t, *J* = 6.8 Hz, 2H), 2.92 – 2.87 (m, 2H), 2.89 (t, *J* = 7.8 Hz, 2H), 2.57 (t, *J* = 7.4 Hz, 1H), 2.47 – 2.43 (m, 2H), 2.32 – 2.28 (m, 4H), 2.21 – 2.16 (m, 2H), 1.91 (p, *J* = 7.1 Hz, 2H), 1.77 – 1.70 (m, 2H), 1.65 – 1.55 (m, 6), 1.37 (s, 6H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₂H₄₂N₄O₄: 547.3279; found 547.3279 [*M* + H]⁺.

Synthesis of 5c: 4c (200 mg, 0.30 mM) was dissolved in DMF (2 ml) followed by addition of Et₃N (84 µl, 0.60 mmol) at 0 °C. To this mixture was added phenyl chloroformate (46 µl, 0.36 mmol) and the reaction was stirred at rt for 1 h. The reaction mixture was diluted with ethyl acetate (30 ml), washed with H₂O and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% \rightarrow 2% methanol:CHCl₃) giving compound **5c** (32 mg, 16%) as a white solid. R_f 0.48 (15% methanol:CHCl₃). ¹H NMR (400 MHz, MeOD): δ 7.76 (s, 8H), 7.45 – 7.07 (m, 5H), 3.23 (t, *J* = 6.8 Hz, 2H), 3.16 (t, *J* = 7.0 Hz, 2H), 2.57 (t, *J* = 7.4 Hz, 1H), 2.45 (t, *J* = 7.3 Hz, 2H), 2.34 – 2.27 (m, 4H), 2.22 – 2.17 (m, 2H), 1.91 (p, *J* = 7.2 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.67 – 1.53 (m, 6), 1.43 – 1.30 (m, 6H). ¹³C NMR (500 MHz, MeOD): δ 196.76, 176.48, 174.74, 174.23, 157.42, 152.89, 144.48, 144.38, 134.21, 132.40, 130.44, 126.37, 122.93, 120.22, 84.26, 70.49, 42.08, 40.02, 37.65, 37.25, 36.82, 30.84, 30.29, 30.16, 30.10, 27.83, 27.12, 25.66, 24.11, 18.78 ppm. HRMS (ESI-TOF high acc): *m/z* calcd for C₃₉H₄₆N₄O₆: 667.3490; found 667.3495 [*M* + H]⁺.

Synthesis of 1d: To a mixture of boc-8-Aminocaprylic acid N-hydroxysuccinimide ester (1.35 g, 3.79 mmol) and 8-aminocaprylic acid (600 mg, 3.79 mmol) in DMF (20 ml) was added Et_3N (1.58 ml, 11.4 mmol) and reaction was stirred at rt for 16 h. The reaction mixture was diluted with EtOAc (70 ml), washed with 5%

aqueous HCl, dried over Na₂SO₄ and concentrated. Recrystallization from 50% hexanes:EtOAc gave compound **1d** (700 mg, 46%) as a white solid. R_f 0.36 (33% hexanes:EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 5.52 (s, 1H), 4.58 (s, 1H), 3.45 (s, 1H), 3.27 – 3.22 (m, 2H), 3.09 (bs, 2H), 2.33 (t, *J* = 7.1 Hz, 2H), 2.16 (m, 2H), 1.72 – 1.56 (m, 8H), 1.44 (s, 9H), 1.38 – 1.24 (m, 12H). HRMS (ESI-TOF high acc): *m*/*z* calcd for C₂₁H₄₀N₂O₅: 401.3010; found 401.3020 [*M* + H]⁺.

Synthesis of 2d: 4,4'-Diaminobenzophenone (369 mg, 1.74 mmol) was added to stirred mixture of **1d** (697 mg, 1.74 mmol), DCC (359 mg, 1.74 mmol) and HOBt (235 mg, 1.74 mmol) in DMF (4 ml) and the reaction was stirred at rt for 72 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated giving compound **2d** (720 mg, 70%) as a yellow solid. R_f 0.23 (17% hexanes:EtOAc). ¹H NMR (400 MHz, MeOD): δ 7.76 – 7.54 (m, 6H), 6.70 (d, *J* = 8.6 Hz, 2H), 3.20 – 3.15 (m, 2H), 3.02 – 3.00 (m, 2H), 2.43 (t, *J* = 7.4 Hz, 2H), 2.17 (t, *J* = 7.4 Hz, 2H), 1.74 – 1.71 (m, 2H), 1.61 – 1.58 (m, 2H), 1.55 – 1.52 (m, 4H), 1.44 (s, 9H), 1.33 (s, 12H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₄H₅₀N₄O₅: 595.3854; found 595.3851 [*M* + H]⁺.

Synthesis of 3d: 5-Hexynoic acid (132 mg, 1.18 mmol) was dissolved in DMF (2 ml) followed by addition of DCC (243 mg, 1.18 mmol) and HOBt (159 mg, 1.18 mmol). To this mixture was added **2d** (700 mg, 1.18 mmol) in DMF (1ml) and the reaction was stirred at 60°C for 48 h. The reaction was filtered and the filtrate was diluted with EtOAc, washed with saturated aqueous NaHCO₃, 10 % aqueous citric acid and brine, dried over Na₂SO₄ and concentrated giving compound **3d** (523 mg, 64%) as a light brown solid. R_f 0.62 (15% methanol:CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.64 (m, 8H), 5.65 (s, 1H), 4.61 (s, 1H), 4.11 (s, 1H), 3.49 (s, 1H), 3.28 – 3.24 (m, 2H), 3.08 (bs, 2H), 2.57 (t, *J* = 7.3 Hz, 1H), 2.42 – 2.32 (m, 4H), 2.18 – 2.14 (m, 2H), 2.03 – 1.91 (m, 4H), 1.75 – 1.54 (m, 8H), 1.44 (s, 9H), 1.28 (s, 12H). HRMS (ESI-TOF high acc): *m/z* calcd for C₄₀H₅₆N₄O₆: 689.4272; found 689.4268 [*M* + H]⁺.

Synthesis of 4d: **3d** (523 mg, 0.760 mmol) was dissolved in ice-cold mixture of TFA (1.5 ml) and DCM (1.5 ml), the reaction was stirred at rt for 3 h and concentrated. The residue was triturated with ice-cold ether to give **4d** (533 mg, 100%) as a yellow solid. ¹H NMR (400 MHz, MeOD): δ 7.74 (s, 8H), 3.15 (t, *J* = 7.0 Hz, 2H), 2.92 – 2.87 (m, 2H), 2.55 (t, *J* = 7.4 Hz, 1H), 2.41 (t, *J* = 7.4 Hz, 2H), 2.31 – 2.27 (m, 4H), 2.18 – 2.14 (m, 2H), 1.89 (p, *J* = 7.1 Hz, 2H), 1.72 – 1.68 (m, 2H), 1.65 – 1.56 (m, 4), 1.53 – 1.46 (m, 2), 1.42 – 1.30 (m, 12H). HRMS (ESI-TOF high acc): *m/z* calcd for C₃₅H₄₈N₄O₄: 589.3748; found 589.3752 [*M* + H]⁺.

Synthesis of 5d: **4d** (533 mg, 0.758 mM) was dissolved in DMF (3 ml) followed by addition of Et₃N (211 µl, 1.52 mmol) at 0 °C. To this mixture was added phenyl chloroformate (115 µl, 0.910 mmol) and the reaction was stirred at rt for 1 h. The reaction mixture was diluted with ethyl acetate (30 ml), washed with H₂O and brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (0% \rightarrow 0.5% \rightarrow 1% \rightarrow 2% \rightarrow 3% methanol:CHCl₃) giving compound **5d** (29 mg, 6%) as a white solid. R_f 0.17 (33% hexanes:EtOAc). ¹H NMR (400 MHz, MeOD): δ 7.76 (s, 8H), 7.46 – 7.08 (m, 5H), 3.28 (t, J = 6.8 Hz, 2H), 3.17 (t, J = 6.8 Hz, 2H), 2.57 (t, J = 7.4 Hz, 1H), 2.45 – 2.41 (m, 2H), 2.33 – 2.27 (m, 4H), 2.22 – 2.17 (m, 2H), 1.92 (p, J = 7.0 Hz, 2H), 1.73 (bs, 2H), 1.65 – 1.46 (m, 6), 1.40 – 1.31 (m, 12H). ¹³C NMR (500 MHz, MeOD): δ 196.76, 176.36, 175.13, 174.22, 157.42, 152.89, 144.42, 144.40, 134.22, 132.40, 130.44, 126.37, 122.93, 120.22, 84.26, 70.48, 42.09, 40.40, 38.19, 37.25, 36.82, 30.85, 30.49, 30.33, 30.18, 27.92, 27.85, 27.15, 26.79, 25.62, 18.77 ppm. HRMS (ESI-TOF high acc): *m/z* calcd for C₄₂H₅₂N₄O₆: 709.3959; found 709.3958 [*M* + H]⁺.

Figure S1. LC-MS analysis shows loss of probe-modified FAAH active site peptide following crosslinking for probes **5a-d**. Extracted ion chromatograms correspond to the unmodified (left column) and probe-labeled (right column) active site FAAH peptide before (black) and after (red) crosslinking. Relative peak area of modified peptide after crosslinking is indicated in parenthesis. Absolute scale of each chromatogram shown in upper right corner.

Droho		Peptide			Sequest Search Results											
[Mass Mod]	Treatment	Modification Status	AUC	Ratio ¹	FAAH active site peptide (* = probe modification assigned by Sequest)	ch	#	XCorr	DeltCN	Conf%	ObsM+H ⁺	$CalcM+H^+$	РРМ	ZScore	lon%	
SS-080 (5a) [+473.232]		Unmod	7.52E+08		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	2 3	5 2	6.26 6.71	0.37	100% 100%	2671.350 2671.351	2670.333 2670.333	5.1 5.6	8.7 8.0	48% 36%	
	No Crosslinking	Mod	7.53E+08		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2	7	5.09 6.12	0.54	100% 100%	3143.577 3147.599	3143.565 3143.565	3.7 6.6	9.5 7.5	48% 33%	
	Aftar	Unmod	4.06E+08	13%	K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	4	1 3 1	3.45 6.27 6.36	0.19	100% 100%	3147.597 2671.344 2671.351	3143.565 2670.333	6.1 2.8	4.5 8.6 8.2	24% 48%	
	Arter Crosslinking	Mod	5.22E+07		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2	2	5.07	0.11	100%	3144.590 3143.590	3143.565 3143.565	6.8 7.9	8.9 10.0	42%	
SS-073 (5b) [+515.279]		Unmod	1.54E+09		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	2	4	5.80	0.39	100%	2674.358 2671.348	2670.333 2670.333	4.2 4.4	6.6 8.6	45%	
	NO Crosslinking	Mod	3.03E+08	120/	K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2	4	5.62	0.48	100% 100%	3186.613 3187.645	3185.612 3185.612	-0.6 8.4	8.8 8.4	45% 36%	
	After	Unmod	1.00E+09	1370	K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	4 2 3	4	3.81 5.34 3.33	0.29	100% 100% 99%	2670.353 2671.355	2670.333 2670.333	7.3 7.3 7	8.0 4.5	24% 38% 23%	
	Crosslinking	Mod	2.62E+07		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2 3	7 3	5.44 6.32	0.49 0.50	100% 100%	3186.648 3186.657	3185.612 3185.612	10.1 13.2	9.3 9.2	43% 33%	
SS-090 (5c) [+572.300]	No	Unmod	1.85E+09		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	2	4	5.10 5.63	0.52	100% 100%	2670.334 2672.326	2670.333 2670.333	0.3	9.2 7.7	43% 32%	
	Crosslinking	Mod	5.74E+08	9%	K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2 3 4	6 4 1	4.95 6.40 2.86	0.56 0.42 0.09	100% 100% 100%	3243.638 3245.645 3243.632	3242.633 3242.633 3242.633	0.6 0.7 -1.3	8.6 7.8 3.4	43% 31% 22%	
	After	Unmod	2.13E+09		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	2	4	6.50 4.82	0.49	100% 100%	2671.330 2671.341	2670.333 2670.333	-2.3 1.7	9.0 8.5	50% 30%	
	Crosslinking	Mod	5.80E+07		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2 3	3 1	5.19 4.12	0.54 0.36	100% 100%	3243.632 3242.639	3242.633 3242.633	-1.3 1.9	9.2 6.0	42% 25%	
SS-093 (5d) [+614.347]	No	Unmod	4.92E+09		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	2 3	21 3	6.57 6.45	0.50 0.51	100% 100%	2671.330 2671.332	2670.333 2670.333	-2.4 -1.5	9.4 9.0	48% 38%	
	Crosslinking	Mod	3.80E+08	3%	K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2	3	5.04 6.49	0.48	100% 100%	3285.685 3285.689	3284.680 3284.680	0.5	8.8 7.3	42%	
	After	Unmod	3.81E+09		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGSIR.F	2 3	16 2	6.34 5.13	0.50 0.48	100% 100%	2671.340 2672.339	2670.333 2670.333	1.5 -0.3	9.0 8.0	48% 33%	
	Crosslinking	Mod	9.10E+06		K.SPGGSSGGEGALIGSGGSPLGLGTDIGGS*IR.F	2	1	4.63 3.46	0.44	100% 100%	3286.687 3288.691	3284.680 3284.680	0.1 -0.8	7.8	38% 19%	

Table S1. MS1 and MS2 analysis of FAAH active site peptide in crosslinked and noncrosslinked samples.

 $\label{eq:result} \begin{tabular}{l} $$ $^{1}Ratio = (AUC_{mod}/AUC_{unmod})_{Crosslinked}/(AUC_{mod}/AUC_{unmod})_{NonCrosslinked} \end{tabular}$