Eantioselective Mannich reaction of a highly reactive Horner-Wadsworth-Emmons reagent with imines catalyzed by a bifunctional thiourea

Depeng Zhao,^a Dongxu Yang,^a Yijie Wang,^a Yuan Wang,^a Linqing Wang,^a Lijuan Mao,^a and Rui Wang*^{a,b}

 ^a Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Medicine, State Key Laboratory of Applied Organic Chemistry, and Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, 730000, P. R. China,
^b State Key Laboratory of Chiroscience and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

wangrui@lzu.edu.cn

Table of Contents:

General remarks	S2
Materials	S2
General procedure for the reaction of the HWE reagent with α -amido sulfones	S3-S11
Transformations of the Mannich products	S11-S17
Determination of the absolute configuration of compound 5aa and 5a	S17
Determination of the relative configuration of <i>E</i> -8, <i>Z</i> -8 and 7 by ${}^{1}H{}^{-1}H$ NOESY	S18
References	S19
Copies of HPLC results	S20-S44
Copies of NMR spectra	S45-S126

General remarks

¹H, ¹³C, ³¹P NMR spectra were recorded on Bruker Avance 300. The chemical shifts are reported in ppm relative to internal standard TMS (¹H NMR), to residual signals of the solvents (CHCl₃, 7.26 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR) and to external standard 85% H_3PO_4 (³¹P NMR). IR spectra were recorded on Nicolet NEXUS 670 FT-IR and only major peaks were reported. Optical rotations were measured on a Perkin-Elmer 341 polarimeter at rt. HRMS was measured with an APEX II 47e mass spectrometer. The enantiomeric excess was determined by HPLC analysis.

Materials

The catalyst **3e** was synthesized according to the procedures reported by Yoshiji Takemoto and coworkers by using (1S,2S)-2-Pyrrolidin-1-yl-cyclohexylamine and 3,5-bis(trifluoromethyl)phenyl isothiocyanate.^[1] The substrate **1e** and **1c** were synthesized according to the procedures reported by Shibasaki and co-workers.^[2]

3e yellow solid; ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.09 (brs, 1H), 8.24 (brs, 1H), 8.21 (s, 2H), 7.68 (s, 1H), 4.24 (s, 1H), 3.44 (brs, 1H), 2.81 – 2.51 (m, 4H), 2.12 (d, *J* = 9.3 Hz, 1H), 1.83 (d, *J* = 12.1 Hz, 1H), 1.68 (m, 6H), 1.47 – 1.06 (m, 4H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 178.8, 141.9, 130.4 (q, *J* = 32.6 Hz), 123.3 (q, *J* = 271.1 Hz), 121.2 (m), 115.5 (m), 60.8, 55.5, 47.4, 30.4, 23.9, 23.7, 23.4, 22.5 ppm.

To a stirred solution of dimethyl methylphosphonate (1.06 g, 8.49 mmol) in THF (30 mL) at -78 °C was added BuLi (8.5 mmol, 5.3 mL, 1.6 M in hexane) slowly over 30 min. The mixture was stirred at -65 °C for 90 min, and then carbonyl dipyrrole (1.25 g, 7.76 mmol) in THF (5 mL) was added slowly over 20 min. The mixture was stirred at the same temperature for 1 h, and then was gradually warmed to room temperature over 2 h. The reaction mixture was quenched with sat. aq. NH₄Cl and the aqueous phase was extracted with ethyl acetate. The organic layer was washed with brine,

and dried over Na₂SO₄. After removing the solvent, the residue was purified by silica gel flash column chromatography to give the HWE reagent **3e** in 70% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.34 (brs, 2H), 6.32-6.30 (m, 2H), 3.82-3.74 (m, 6H), 3.09 (d, *J* = 22.2 Hz, 2H) ppm; C¹³ NMR (75 MHz, CDCl₃) δ 162.3, 119.3, 113.4, 52.9, 33.6 (d, *J*_(C-P)= 133 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 21 ppm.

3d ¹H NMR (300 MHz, CDCl₃) δ, 7.35 (brs, 2H), 6.32 (t, *J* = 2.4 Hz, 2H), 4.23-4.13 (m, 4H), 3.46 (d, *J* = 22.2 Hz, 2H) 1.32 (t, *J* = 6.9 Hz, 6H) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 18 ppm.

General procedure for the reaction of the HWE reagent with α -amido sulfones

Catalyst **3e** (21.9 mg, 0.05 mmol, 20 mol %), HWE reagent **1e** (81.3 mg, 0.375 mmol) were dissolved in toluene (4 mL) at 0 °C. Then α -amidosulfones **4** (0.25 mmol) was added followed by addition of an aqueous solution of K₂CO₃ (1.5 M, 0.2 mL). After the stated reaction time, the intermediate product was quickly isolated by column chromatography. Then it was dissolved in THF (2 mL), and a precooled solution of MeONa (2.2 equiv) in MeOH (0.5 mL) was added at -10 °C. After the reaction was stirred 30 min 0 °C, paraformaldehyde (5 equiv) was added, and the mixture was stirred for another 4 hours. The reaction process was monitored by TLC. Upon completion, the reaction was quenched with sat. aq. NaCl and extracted with ethyl acetate and dried over Na₂SO₄. After concentration of the solvents, the residue was purified on a silica gel column to give the corresponding product

5a Colorless oil; 87% yield; 91% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, t_{major} = 16.0 min, t_{minor} = 20.3 min); [α]²⁰_D = +16.0 (*c* = 1.25, CHCl₃); ¹H NMR (300 MHz, CDCl3) δ 7.40-7.31 (m, 6H), 7.30 – 7.24 (m, 4H), 6.38 (s, 1H), 5.93 (s, 1H), 5.87 – 5.65 (m, 2H), 5.13 (s, 2H), 3.66 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 155.5, 139.6, 139.5, 136.3, 128.6, 128.5, 128.1, 127.6, 127.0, 126.4, 67.0,

56.7, 51.9 ppm; **IR** (neat): 3334, 2952, 1723, 1500, 1233, 1042, 700 cm⁻¹; **HRMS** (ESI): C₁₉H₁₉NO₄ [M+H]⁺ calcd: 326.1387, found: 326.1376.

5b Colorless oil; 87% yield; 90% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 11.6 \text{ min}$, $t_{minor} = 15.2 \text{ min}$); $[\alpha]^{20}_{D} = +1.8 (c = 1.14, \text{CHCl}_3)$; ¹**H NMR** (300 MHz, CDCl}_3) δ 7.44 – 7.23 (m, 5H), 7.17 (dd, J = 8.4, 5.5 Hz, 2H), 6.91 (t, J = 8.7 Hz 2H), 6.29 (s, 1H), 5.84 (s, 1H), 5.75 (d, J = 8.2 Hz, 1H), 5.65 (d, J = 8.9 Hz, 1H), 5.05 (s, 2H), 3.59 (s, 3H) ppm; ¹³**C NMR** (75 MHz, CDCl}_3) δ 165.9, 162.1 (d, $J_{C-F} = 244.5 \text{ Hz}$), 155.5, 139.4, 136.2, 135.3 (d, $J_{C-F} = 3.1 \text{ Hz}$), 128.5, 128.2, 128.1, 128.0, 127.2, 115.5 (d, $J_{C-F} = 21 \text{ Hz}$), 67.1, 56.2, 52.0 ppm; **IR** (neat): 3333, 2953, 1722, 1507, 1225, 1043, 837, 699 cm⁻¹; **HRMS** (ESI): C₁₉H₁₈FNO₄ [M+H]⁺ calcd: 344.1293, found: 344.1282.

5c Colorless oil; 87% yield; 91% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 14.9 \text{ min}$, $t_{minor} = 19.3 \text{ min}$); $[\alpha]^{20}{}_{D} = +22$ (*c* = 1.0, CHCl₃); ¹**H NMR** (300 MHz, CDCl₃) δ 7.53 – 7.42 (d, *J* = 8.5 Hz, 2H), 7.42 – 7.27 (m, 5H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.38 (s, 1H), 5.94 (s, 1H), 5.84 (d, *J* = 8.4 Hz, 1H), 5.69 (d, *J* = 9.2 Hz, 1H), 5.13 (s, 2H), 3.68 (s, 3H) ppm; ¹³**C NMR** (75 MHz, CDCl₃) δ 165.84, 155.57, 139.1, 138.7, 136.2, 131.7, 128.6, 128.3, 128.2 (overlapped), 129.1, 127.7, 121.6, 67.2, 56.4, 52.1 ppm; **IR** (neat): 3331, 2920, 2851, 1720, 1511, 1261, 1041, 812, 698 cm⁻¹; **HRMS** (ESI): C₁₉H₁₈BrNO₄ [M+H]⁺ calcd: 404.0492, found: 404.0495.

5d Colorless oil; 86% yield; 86% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 15.3 \text{ min}$, $t_{minor} = 20.1 \text{ min}$); $[\alpha]^{20}{}_{D} = -6.14$ (*c* = 1.14, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42 - 7.31 (m, 5H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 6.38 (s, 1H), 5.92 (s, 1H), 5.84 (d, *J* = 6.14 (c = 1.14) (s, 1H), 5.92 (s, 1H), 5.84 (d, *J* = 6.14 (s, 2H)) (s, 1H), 5.84 (d, *J* = 6.14 (s, 2H)) (s, 1H), 5.84 (s, 1H), 5.84 (s, 2H)) (s, 1H) (s, 2H) (s,

9.2 Hz, 1H), 5.71 (d, J = 9.1 Hz, 1H), 5.13 (s, 2H), 3.67 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 155.5, 139.2, 138.2, 136.2, 133.4, 128.8, 128.6, 128.3, 128.2 (overlapped), 127.8, 127.7, 67.1, 56.3, 52.1 ppm; IR (neat): 3333, 2952, 1721, 1494, 1233, 1043, 819, 698 cm⁻¹; HRMS (ESI): C₁₉H₁₈ClNO₄ [M+H]⁺ calcd: 360.0997, found: 360.0990.

5e Colorless oil; 80% yield; 92% *ee* determined by HPLC on a Chiracel OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 8.0$ min, $t_{minor} = 9.1$ min); $[\alpha]^{20}{}_{D} = -14.6$ (*c* = 0.96, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.22 (m, 5H), 7.21 – 7.00 (m, 4H), 6.32 (s, 1H), 5.86 (s, 1H), 5.81 (d, *J* = 9.0 Hz, 1H), 5.64 (d, *J* = 9.3 Hz, 1H), 5.06 (s, 2H), 3.60 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 155.6, 141.7, 138.9, 136.2, 134.6, 129.9, 128.6, 128.3, 128.2 (overlapped), 128.0, 127.8, 126.5, 124.5, 67.2, 56.4, 52.1 ppm; IR (neat): 3331, 2952, 1719, 1506, 1230, 1042, 697 cm⁻¹; HRMS (ESI): C₁₉H₁₈CINO₄₄ [M+Na]⁺ calcd: 382.0817, found: 382.0830.

5f Colorless oil; 84% yield; 91% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 11.7$ min, $t_{minor} = 17.1$ min); $[\alpha]^{20}{}_{D} = +12.5$ (*c* = 1.20, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.42 – 7.29 (m, 6H), 7.29 – 7.14 (m, 3H), 6.40 (s, 1H), 6.15 (d, *J* = 8.6 Hz, 1H), 5.92 (s, 1H), 5.69 (d, *J* = 8.3 Hz, 1H), 5.11 (s, 2H), 3.67 (s, 3H) ppm; ¹³**C** NMR (75 MHz, CDCl₃) δ 166.0, 155.2, 138.6, 136.9, 136.3, 133.6, 130.1, 129.1, 128.5, 128.2 (multi-shifts overlapped), 127.7, 127.0, 67.1, 53.5, 52.1 ppm; **IR** (neat): 3332, 2952, 1724, 1522, 1237, 1040, 816, 757, 700 cm⁻¹; **HRMS** (ESI): C₁₉H₁₈ClNO₄ [M+Na]⁺ calcd: 382.0817, found: 382.0828.

5g Colorless oil; 79% yield; 88% *ee* determined by HPLC on a Chiralpak AD-H column, (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 14.4 \text{ min}$, $t_{minor} = 19.0 \text{ min}$); $[\alpha]^{20}{}_{D} = +13.8 (c = 1.45, \text{ CHCl}_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.45 - 7.27 (m, 5H), 7.24 - 7.04 (q, *J* = 8.2 Hz, 4H), 6.36 (s, 1H), 5.91 (s, 1H), 5.80 - 5.56 (m, 2H), 5.12 (s, 1H), 5.91 (s, 1H), 5.80 - 5.56 (m, 2H), 5.12 (s, 1H), 5.80 - 5.56 (m, 2H), 5.80 - 5.56

2H), 3.66 (s, 3H), 2.31 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 155.5, 139.7, 137.3, 136.5, 136.3, 129.3, 128.5, 128.2(overlapped), 126.7, 126.3, 67.0, 56.4, 51.9, 21.0 ppm; **IR** (neat): 3336, 2951, 1721, 1508, 1230, 1042, 815, 699 cm⁻¹; **HRMS** (ESI): C₂₀H₂₁NO₄ [M+H]⁺ calcd: 340.1543, found: 340.1537.

5h Colorless oil; 76% yield; 83% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, t_{rmajor} = 22.7 min, t_{minor} = 28.5 min); $[\alpha]^{20}{}_{D}$ = +15.1 (*c* = 1.26, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.46 - 7.27 (m, 5H), 7.19 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.35 (s, 1H), 5.90 (s, 1H), 5.83 - 5.52 (m, 2H), 5.12 (s, 2H), 3.77 (s, 3H), 3.66 (s, 3H) ppm. ¹³**C** NMR (75 MHz, CDCl₃) δ 166.1, 159.0, 155.5, 139.9, 136.3, 131.6, 128.5, 128.2, 127.7, 126.5, 114.0, 67.0, 56.2, 55.2, 52.0 ppm; **IR** (neat): 3340, 2953, 1722, 1511, 1248, 1037, 826, 699 cm⁻¹; **HRMS** (ESI): C₂₀H₂₁NO₅ [M+Na]⁺ calcd: 378.1312, found: 378.1310.

5i Colorless oil; 87% yield; 89% *ee* determined by HPLC on a Chiralpak OJ-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 12.8 \text{ min}$, $t_{minor} = 16.6 \text{ min}$); $[\alpha]^{20}{}_{D} = +11.9 (c = 1.18, \text{CHCl}_3)$; ¹**H NMR** (300 MHz, CDCl₃) δ 7.46 – 7.27 (m, 5H), 7.20 (dd, J = 14.3, 6.6 Hz, 1H), 7.14 – 6.98 (m, 3H), 6.36 (s, 1H), 5.91 (s, 1H), 5.79 (d, J = 8.6 Hz, 1H), 5.71 (d, J = 8.9 Hz, 1H), 5.12 (s, 2H), 3.65 (s, 3H), 2.31 (s, 3H) ppm; ¹³**C NMR** (75 MHz, CDCl₃) δ 166.0, 155.5, 139.6, 139.3, 138.2, 136.3, 128.5, 128.4 (overlapped), 128.3, 128.1, 127.1, 126.8, 123.4, 66.9, 56.6, 51.9, 21.4 ppm; **IR** (neat): 3335, 2952, 1724, 1502, 1237, 1043, 700 cm⁻¹; **HRMS** (ESI): C₂₀H₂₁NO₄ [M+Na]⁺ calcd: 362.1363, found: 362.1355.

5j Colorless oil; 81% yield; 92% *ee* determined by HPLC on a Chiracel OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{rmajor} = 10.3 \text{ min}$, $t_{mino} = 13.7 \text{ min}$); $[\alpha]_{D}^{20} = -24.7 \ (c = 1.30, \text{CHCl}_3)$; ¹**H NMR** (300 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 2H), 7.49 – 7.27 (m, 7H), 6.42 (s, 1H), 6.20 – 5.86 (m, 2H), 5.80 (d, J = 9.2 Hz, 1H), 5.15 (s, 2H), 3.68 (s, 3H) ppm; ¹³**C NMR** (75 MHz, CDCl₃) δ 165.8, 155.7, 143.7, 138.9, 136.1, 130.0 (q, $J_{C-F} = 32.3 \text{ Hz}$), 128.6,

128.3, 128.2, 126.7, 124.0 (q, $J_{C-F} = 270.0 \text{ Hz}$), 125.6 (q, $J_{C-F} = 4.1 \text{ Hz}$), 67.2, 56.7, 52.3 ppm; **IR** (neat): 3331, 2954, 1729, 1503, 1327, 1067, 843, 737, 699, 616 cm⁻¹; **HRMS** (ESI): C₂₀H₁₈F₃NO₄ [M+Na]⁺ calcd: 416.1080, found: 416.1072.

5k Colorless oil; 88% yield; 93% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 26.4 \text{ min}$, $t_{minor} = 35.7 \text{ min}$); $[\alpha]^{20}{}_{D} = -37.0 \ (c = 1.0, \text{CHCl}_3)$; ¹**H NMR** (300 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.53 – 7.27 (m, 7H), 6.42 (s, 1H), 6.01 – 5.95 (m, 2H), 5.77 (d, J = 9.4 Hz, 1H), 5.14 (s, 2H), 3.68 (s, 3H) ppm; ¹³**C NMR** (75 MHz, CDCl₃) δ 165.6, 155.7, 145.1, 138.5, 136.0, 132.4, 128.8, 128.6, 128.3, 128.3, 127.0, 118.6, 111.5, 67.3, 56.8, 52.2 ppm; **IR** (neat): 3341, 2920, 2229, 1721, 1506, 1261, 1043, 818, 699 cm⁻¹; **HRMS** (ESI): C₂₀H₁₈N₂O₄ [M+H]⁺ calcd: 351.1339, found: 351.1334.

5 Colorless oil; 80% yield; 87% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, t_{major} = 14.6 min, t_{minor} = 18.2 min); [α]²⁰_D = +11.8 (*c* = 1.36, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.89 – 7.76 (m, 3H), 7.73 (s, 1H), 7.53 – 7.45 (m, 2H), 7.45 – 7.27 (m, 6H), 6.44 (s, 1H), 6.00 (s, 1H), 5.97 – 5.80 (m, 2H), 5.16 (s, 2H), 3.66 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 155.6, 139.6, 136.9, 136.3, 133.2, 132.8, 128.6, 128.5, 128.2, 128.0, 127.6, 127.3, 126.3, 126.1, 125.1, 124.7, 67.1, 56.8, 52.0 ppm; **IR** (neat): 3333, 2953, 1721, 1504, 1235, 1043, 818, 747, 699, 478 cm⁻¹; **HRMS** (ESI): C₂₃H₂₁NO₄ [M+Na]⁺ calcd: 398.1363, found: 398.1355.

5m Colorless oil; 78% yield; 96% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 22.0$ min, $t_{minor} = 24.1$ min); $[\alpha]^{20}{}_{D} = +10.8$ (c = 1.20, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 6.77 (s, 1H), 6.76 – 6.70 (m, 2H), 6.36 (s, 1H), 5.93 (s, 2H), 5.90 (s, 1H), 5.73 (d, J = 8.7 Hz, 1H), 5.65 (d, J = 8.8 Hz, 1H), 5.12 (s, 2H), 3.68 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 155.4, 147.9, 147.0, 139.6, 136.2, 133.4, 128.5, 128.2, 126.8, 119.7, 108.3, 107.1, 101.1, 67.0, 56.4, 52.0 ppm; **IR** (neat): 3358, 2955, 1716, 1491, 1227, 1039, 816, 699, 531 cm⁻¹; **HRMS** (ESI): C₂₀H₁₉NO₆ [M+Na]⁺ calcd: 392.1115, found: 392.1115.

5n Colorless oil; 72% yield; 84% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 9.7 \text{ min}$, $t_{minor} = 10.6 \text{ min}$); $[\alpha]^{20}{}_{D} = +3.6 (c = 1.38, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl}_3) δ 7.41 – 7.27 (m, 6H), 6.40 (s, 1H), 6.30 (dd, J = 3.2, 1.9 Hz, 1H), 6.18 (d, J = 3.2 Hz, 1H), 5.92 (s, 1H), 5.82 (s, 2H), 5.13 (s, 2H), 3.73 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl}_3) δ 165.8, 155.4, 152.2, 142.2, 137.7, 136.2, 128.6 (overlapped), 128.5, 128.2, 127.7, 110.5, 110.3, 106.8, 67.1, 52.1, 51.3 ppm; IR (neat): 3340, 2953, 1723, 1505, 1234, 1043, 820, 742, 699, 599 cm⁻¹; HRMS (ESI): C₁₇H₁₇NO₅ [M+Na]⁺ calcd: 338.0999, found: 338.1002.

50 Colorless oil; 71% yield; 81% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 11.1$ min, $t_{minor} = 12.5$ min); $[a]^{20}{}_{D} = +4.7$ (c = 0.85, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.50 (m, 6H), 7.27 (s, 1H), 6.30 (s, 1H), 6.29 (s, 1H), 5.88 (s, 1H), 5.82 (d, J = 8.6 Hz, 1H), 5.65 (d, J = 9.1 Hz, 1H), 5.12 (s, 2H), 3.71 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 155.4, 143.4, 139.5, 139.2, 136.2, 128.5, 128.1, 126.7, 125.2, 109.3, 66.9, 52.0, 49.8 ppm. IR (neat): 3340, 2953, 1724, 1504, 1235, 1028, 734 cm⁻¹; HRMS (ESI): C₁₇H₁₇NO₅ [M+H]⁺ calcd: 316.1179, found: 316.1185.

5p Colorless oil; 80% yield; 94% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 11.4$ min, $t_{minor} = 14.2$ min); $[\alpha]^{20}{}_{D} = +1.8$ (*c* = 1.14, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.25 (m, 5H), 7.19 (d, *J* = 4.2 Hz, 1H), 6.93 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.88 (d, *J* = 3.2 Hz, 1H), 6.36 (s, 1H), 6.14 – 5.84 (m, 3H), 5.14 (s, 2H), 3.72 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 155.3, 143.8, 139.1, 136.1, 128.5, 128.2, 128.1, 127.3, 127.0, 125.0, 124.6, 67.1, 53.2, 52.1 ppm; **IR** (neat): 3336, 2952, 1721, 1503, 1223, 1040, 755 cm⁻¹ **HRMS** (ESI): C₁₇H₁₇NO₄S [M+NH₄]⁺ calcd: 349.1217, found: 349.1212.

5q Colorless oil; 85% yield; 86% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 12.7$ min, $t_{minor} = 17.5$ min); $[\alpha]^{20}{}_{D} = +6.3$ (c = 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 7.25 (dd, J = 3.3, 0.9 Hz, 1H), 7.07 (d, J = 3.0 Hz, 1H), 6.97 (dd, J = 5.1, 0.9 Hz, 1H), 6.34 (s, 1H), 5.95 – 5.85 (m, 2H), 5.78 (d, J = 9.0 Hz, 1H), 5.13 (s, 2H), 3.69 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 155.4, 141.0, 139.5, 136.2, 128.5, 128.2, 128.1(overlapped), 126.9, 126.3, 125.5, 121.4, 67.0, 53.3, 52.0 ppm; IR (neat): 3344, 2953, 1721, 1503, 1225, 1043, 736 cm⁻¹; HRMS (ESI): C₁₇H₁₇NO₄S [M+H]⁺ calcd: 332.0951, found: 332.0947.

5r Colorless oil; 65% yield; 63% *ee* determined by HPLC on a Chiracel OJ-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $t_{major} = 19.7$ min, $t_{minor} = 23.0$ min); $[\alpha]^{20}{}_{D} = -2$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.24 (m, 4H), 7.24 – 7.13 (m, 3H), 7.13 – 7.01 (m, 3H), 6.14 (s, 1H), 5.67 (s, 1H), 5.50 (d, *J* = 9.5 Hz, 1H), 5.08 – 4.92 (m, 2H), 4.43 (q, *J* = 7.5 Hz, 1H), 3.66 (s, 3H), 2.65 – 2.44 (m, 2H), 2.00 – 1.82 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 155.6, 141.0, 139.5, 136.3, 128.5, 128.3, 128.3, 128.1, 127.1, 125.9, 66.7, 54.1, 51.9, 36.0, 32.6 ppm; **IR** (neat): 3336, 3029, 2951, 1719, 1522, 1451, 1240, 1045, 699 cm⁻¹; **HRMS** (ESI): C₂₁H₂₃NO₄ [M+Na]⁺ calcd: 376.1519, found: 376.1526.

5s Colorless oil; 69% yield; 70% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 95/5, flow rate = 0.75 mL/min, $t_{major} = 11.8$ min, $t_{minor} = 12.6$ min); $[\alpha]^{20}{}_{D} = +2.1$ (*c* = 0.96, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.28 (m, 5H), 6.20 (s, 1H), 5.74 (s, 1H), 5.50 (d, *J* = 9.2 Hz, 1H), 5.19 – 4.98 (m, 2H), 4.46 (q, *J* = 7.5 Hz, 1H), 3.75 (s, 3H), 1.64 (q, *J* = 7.5 Hz, 2H), 1.44 – 1.19 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 155.6, 139.8, 136.4, 128.4, 128.0, 128.04 (overlapped), 126.6, 66.6, 54.0, 51.8, 36.5, 19.5 13.6 ppm; IR (neat): 3339, 2958, 1729, 1506, 1250, 740, 689 cm⁻¹; HRMS (ESI): C₁₆H₂₁NO₄ [M+Na]⁺ calcd: 314.1363, found: 314.1354.

5t Colorless oil; 57% yield; 57% *ee* determined by HPLC on a Chiralpak AS column (hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $t_{minor} = 5.3 \text{ min}$, $t_{major} = 9.3 \text{ min}$); $[\alpha]^{20}{}_{D} = +2.1(c = 0.96, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl}_3) δ 7.44 – 7.25 (m, 5H), 6.19 (s, 1H), 5.76 (s, 1H), 5.44 (d, J = 9.3 Hz, 1H), 5.20 – 4.96 (m, 2H), 4.54 (q, J = 8.1 Hz, 1H), 3.75 (s, 3H), 1.69 – 1.38 (m, 3H), 0.93 (d, J = 6.3 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl}_3) δ 166.3, 155.6, 140.2, 136.5, 128.4, 128.1, 126.4, 66.6, 52.5, 51.8, 43.6, 25.0, 22.5, 22.2 ppm; IR (neat): 3339, 2956, 1720, 1524, 1229, 1046, 698 cm⁻¹; MS (ESI): C₁₇H₂₃NO₄ [M+H]⁺ calcd: 306.2, found: 306.3.

5aa White solid, mp: 74 - 77 °C; 86% yield; 86% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 95/5, flow rate = 0.75 mL/min, $t_{major} = 17.0 \text{ min}$, $t_{minor} = 20.8 \text{ min}$). $[\alpha]^{20}{}_{D} = +17.5 \ (c = 0.8, \text{ CHCl}_3) \text{ for } 78\% \ ee.$ ¹H NMR (300 MHz, CDCl₃) δ 7.36 - 7.22 (m, 5H), 6.38 (s, 1H), 5.92 (s, 1H), 5.69 (d, J = 8.7 Hz, 1H), 5.50 (d, J = 8.0 Hz, 1H), 3.67 (s, 3H), 1.45 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 154.9, 140.0, 139.8, 128.5, 127.5, 126.5, 79.8, 56.1, 51.9, 28.3 ppm. HRMS (ESI): C₁₆H₂₁NO₄ [M+Na]⁺ calcd: 314.1363, found: 314.1354.

5ab Colorless oil; 89% yield; 86% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 95/5, flow rate = 0.75 mL/min, $t_{major} = 13.7$ min, $t_{minor} = 16.3$ min); $[\alpha]^{20}{}_{D} = +3.5$ (*c* = 0.85, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.18 (m, 2H), 7.07 – 6.92 (t, *J* = 7.5 Hz, 2H), 6.37 (s, 1H), 5.92 (s, 1H), 5.66 (d, *J* = 8.4 Hz, 1H), 5.52 (brs, 1H), 3.68 (s, 3H), 1.45 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 162.1 (d, *J*_{C-F} = 244.5 Hz), 154.9, 139.8, 135.7 (d, *J*_{C-F} = 3.2 Hz), 128.2 (d, *J*_{C-F} = 8.2 Hz), 126.8, 115.4 (d, *J*_{C-F} = 21.0 Hz), 80.0, 55.6, 51.9, 28.3 ppm; **IR** (neat): 3360, 2978, 1721, 1506, 1228, 1164, 838 cm⁻¹; **HRMS** (ESI): C₁₆H₂₀FNO₄ [M+Na]⁺ calcd: 332.1269, found: 332.1260.

5ad Colorless oil; 84% yield; 89% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, $t_{major} = 16.3 \text{ min}$, $t_{minor} = 20.2 \text{ min}$); $[\alpha]^{20}{}_{D} = +2.1 (c = 0.96, \text{CHCl}_3)$; ¹**H NMR** (300 MHz, CDCl}_3) δ 7.29 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.7 Hz, 2H), 6.37 (s, 1H), 5.92 (s, 1H), 5.65 (d, J = 8.5 Hz, 1H), 5.55 (brs, 1H), 3.68 (s, 3H), 1.45 (s, 9H) ppm. ¹³**C NMR** (75 MHz, CDCl}_3) δ 165.9, 154.9, 139.5, 138.5, 133.2, 128.7,127.8, 127.1, 80.0, 55.7, 52.0, 28.3 ppm; **IR** (neat): 3363, 2977, 1717, 1493, 1166, 757 cm⁻¹; **HRMS** (ESI): C₁₆H₂₀ClNO₄ [M+Na]⁺ calcd: 348.0973, found: 348.0983.

5al Colorless oil; 72% yield; 83% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, $t_{major} = 18.1$ min, $t_{minor} = 23.3$ min); $[\alpha]^{20}{}_{D} = +5.7$ (*c* = 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.74 (m, 3H), 7.72 (s, 1H), 7.55 – 7.30 (m, 3H), 6.43 (s, 1H), 5.98 (s, 1H), 5.85 (d, *J* = 8.8 Hz, 1H), 5.58 (d, *J* = 6.7 Hz, 1H), 3.67 (s, 3H), 1.47 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 154.9, 139.9, 137.3, 133.2, 132.7, 128.4, 128.0, 127.6, 126.7, 126.2, 126.0, 125.2, 124.9, 79.9, 56.20, 51.9, 28.4 ppm; **IR** (neat): 3362, 2977, 1717, 1494, 1165, 815 cm⁻¹; **HRMS** (ESI): C₂₀H₂₃NO₄ [M+Na]⁺ calcd: 364.1519, found: 364.1530.

5am Colorless oil; 79% yield; 87% *ee* determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $t_{major} = 12.4$ min, $t_{minor} = 17.5$ min); $[\alpha]^{20}{}_{D} = +11.1(c = 1.08, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 6.78 (s, 1H), 6.76 - 6.65 (m, 2H), 6.35 (s, 1H), 5.93 (s, 2H), 5.89 (s, 1H), 5.59 (d, J = 7.9 Hz, 1H), 5.44 (brs, 1H), 3.69 (s, 3H), 1.45 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 154.8, 147.8, 146.9, 140.0, 133.8, 126.3, 119.8, 108.2, 107.3, 101.1, 79.8, 55.8, 51.9, 28.3 ppm; IR (neat): 3381, 2978, 1719, 1491, 1243, 1166, 1041, 735 cm⁻¹; HRMS (ESI): C₁₇H₂₁NO₆ [M+Na]⁺ calcd: 358.1261, found: 358.1264.

Transformations of the Mannich products

The intermediate product **6** was prepared according the above mentioned general procedure. Then phosphonate **6** (104.5 mg, 0.23 mmol) was dissolved in THF (2 mL), and a precooled solution of MeONa (2.2 equiv, 78 mg, 0.506 mmol) in

MeOH (2 mL) was added at -10 $^{\circ}$ C. After the reaction was stirred 30 min 0 $^{\circ}$ C, the corresponding aldehyde (1.5 equiv) was added. And the reaction was stirred at the same temperature for another 20 hours. The reaction process was monitored by TLC. Upon completion, the reaction was quenched with sat. aq. NaCl and extracted with EA and dried over Na₂SO₄. After concentration of the solvents, the residue was purified on a silica gel column to give the corresponding product.

7 Following the above procedure, the product (72.1 mg, 73% yield), and the corresponding value of *Z*: *E* was 4.5 : 1. White solid, mp: 102-104 °C; $[\alpha]^{20}_{D}$ = -12.8 (*c* = 1.09, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 15.6, 11.1 Hz, 1H), 7.49 (d, *J* = 6.9 Hz, 2H), 7.50 – 7.26 (m, 13H), 6.91 (d, *J* = 11.4, 1H), 6.85 (d, *J* = 15.7, 1H), 5.89 (d, *J* = 9.0 Hz, 1H), 5.77 (d, *J* = 9.3 Hz, 1H), 5.14 (s, 2H), 3.66 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 155.6, 142.3, 141.6, 140.2, 136.3, 128.9, 128.7, 128.5, 128.2, 128.15 (overlapped), 127.4, 127.3 (overlapped), 126.1, 124.9, 67.0, 58.5, 51.5 ppm; **IR** (neat): 3335, 3004, 2952, 1710, 1497, 1228, 1152, 1032, 752, 697 cm⁻¹; **HRMS** (ESI): C₂₇H₂₅NO₄ [M+Na]⁺ calcd: 450.1676, found: 450.1675.

Z-8a Colorless oil; 81% yield, Z : E = 3.5 : 1; $[\alpha]^{20}{}_{D} = 2.8 (c = 1.44, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.21 (m, 15H), 6.97 (s, 1H), 5.97 (d, J = 9.5 Hz, 1H), 5.80 (d, J = 9.0 Hz, 1H), 5.13 (s, 2H), 3.45 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 155.5, 139.0, 136.8, 136.2, 134.9, 132.8, 128.6, 128.4, 128.1, 127.7, 126.5, 67.0 58.8, 51.6 ppm; IR (neat): 3327, 3031, 2951, 1722, 1499, 1229, 1036, 750, 699 cm⁻¹; MS (ESI): C₂₅H₂₃NO₄ [M+NH₄]⁺ calcd: 419.2, found: 419.1.

Z-8aa Colorless oil; 76% yield, Z : E = 6.6 : 1; $[\alpha]^{20}{}_{D} = -53.6 (c = 0.97, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.25 (m, 10H), 6.95 (s, 1H), 5.74 (d, J = 7.8 Hz, 1H), 5.65 (brs, 1H), 3.50 (s, 3H), 1.46 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ

168.5, 154.9, 139.4, 136.2, 135.1, 133.4, 128.6, 128.4, 128.3, 128.1, 127.6, 126.6, 79.8, 58.2, 51.6, 28.3 ppm; **IR** (neat): 3432, 2976, 1714, 1492, 1166, 752, 699 cm⁻¹; **HRMS** (ESI): C₂₂H₂₅NO₄ [M+Na]⁺ calcd: 390.1676, found: 390.1686.

Z-8b Colorless oil; 75% yield, Z : E = 3.8 : 1; $[\alpha]^{20}{}_{D} = -57.8 (c = 0.97, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.29 (m, 12H), 7.09 – 6.92 (m, 3H), 5.97 (d, J = 8.6 Hz, 1H), 5.77 (d, J = 9.0 Hz, 1H), 5.14 (s, 2H), 3.48 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 162.2 (d, $J_{C-F} = 244.5$ Hz), 155.5, 137.1, 136.2, 134.9 (d, $J_{C-F} = 3.0$ Hz), 134.8, 132.5, 128.6 (overlapped), 128.5, 128.2 (m), 115.5 (d, $J_{C-F} = 21.8$ Hz), 67.1, 58.4, 51.7 ppm; **IR** (neat): 3333, 2952, 1719, 1506, 1225, 1038, 752, 698 cm⁻¹; **HRMS** (ESI): C₂₅H₂₂FNO₄ [M+Na]⁺ calcd: 442.1425, found: 442.1422.

Z-8c Colorless oil; 90% yield, Z : E = 2.9 : 1; $[\alpha]^{20}{}_{D} = -52.0$ (c = 0.98, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 8.5 Hz, 2H), 7.39 – 7.27 (m, 8H), 7.28 – 7.17 (m, 4H), 6.99 (s, 1H), 6.04 (d, J = 8.9 Hz, 1H), 5.74 (d, J = 9.1 Hz, 1H), 5.13 (s, 2H), 3.47 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 155.5, 138.2, 137.6, 136.1, 134.7, 132.1, 131.7, 128.6, 128.5, 128.2 (overlapped), 128.1, , 121.6, 67.1, 58.5, 51.7 ppm; IR (neat): 3327, 2955, 1709, 1494, 1226, 1036, 697 cm⁻¹; HRMS (ESI): C₂₅H₂₂BrNO₄ [M+Na]⁺ calcd: 502.0624, found: 502.0611.

Z-8m Colorless oil; 72% yield, Z : E = 3.2 : 1; $[\alpha]^{20}{}_{D} = -23.4$ (c = 0.93, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.13 (m, 10H), 6.96 (s, 1H), 6.68 – 7.13 (m, 3H), 5.94 (s, 2H), 5.87 (d, J = 7.2 Hz, 1H), 5.70 (d, J = 7.9 Hz, 1H), 5.14 (s, 2H), 3.51 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 155.5, 147.9, 147.1, 136.6, 136.2, 134.9, 133.0, 132.8, 128.5¹, 128.5 (overlapped), 128.2, 119.90, 108.3, 107.2, 101.1, 67.1, 58.6, 51.7 ppm; **IR** (neat): 3333, 2951, 1719, 1495, 1235, 1037, 697 cm⁻¹; **HRMS** (ESI): C₂₆H₂₃NO₆ [M+Na]⁺ calcd: 468.1418, found: 468.1408.

Z-8q Colorless oil; 93% yield, Z : E = 4.8 : 1; $[\alpha]^{20}{}_{D} = -34.8 (c = 0.89, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.20 (m, 11H), 7.18 (s, 1H), 7.02 (d, J = 4.7 Hz, 2H), 5.94 (d, J = 8.7 Hz, 1H), 5.81 (d, J = 9.0 Hz, 1H), 5.15 (s, 2H), 3.52 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 155.5, 140.6, 136.9, 136.2, 134.9, 132.4, 128.5, 128.2, 126.44 (overlapped), 126.4, 121.7, 67.0, 55.7, 51.7 ppm; **IR** (neat): 3332, 2951, 1717, 1501, 1226, 1037, 697 cm⁻¹; **HRMS** (ESI): C₂₃H₂₁NO₄S [M+Na]⁺ calcd: 430.1083, found: 430.1072.

Z-8s Colorless oil; 91% yield, *Z* : *E* = 2.0 : 1; [*α*]²⁰_D = -13.7 (*c* = 1.02, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.15 (m, 10H), 6.88 (s, 1H), 5.50 (d, *J* = 9.1 Hz, 1H), 5.24 – 4.90 (m, 2H), 4.49 (q, *J* = 7.8 Hz, 1H), 3.60 (s, 3H), 1.65 (q, *J* = 7.5 Hz, 2H), 1.39 – 1.60 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 155.6, 136.4, 135.5, 135.2, 133.4, 128.4, 128.2, 128.1, 128.0, 127.9, 66.6, 55.9, 51.5, 36.2, 19.3, 13.6 ppm; **IR** (neat): 3334, 2957, 1723, 1504, 1219, 750, 697 cm⁻¹; **MS** (ESI): C₂₂H₂₅NO₄ [M+H]⁺ calcd: 368.2, found: 368.0.

To the intermediate product **6a** (104.5 mg, 0.23 mmol) in THF (2 mL) was added a precooled solution of MeONa (1.1 equiv, 39 mg, 0.25 mmol) in MeOH (2 mL) at -10 °C. And the reaction was allowed to gradually warm to 0 °C. After 12 hours at this temperature, the reaction was then quenched with sat. aq. NaCl and extracted with EtOAc. The combined extract was dried over Na₂SO₄ and concentrated. The residue was purified on a silica gel column to give the methyl ester **9a** (96.8 mg, quantitative). The diastereomeric ratio was determined to be 51:49 by ³¹P NMR spectroscopy analyses of the crude mixture. ¹H NMR [signals of both diastereoisomers] (300 MHz, CDCl₃) δ 7.50 – 7.05 (m, 10H), 6.73 (d, *J* = 9.2 Hz, 0.47H), 6.45 (brs, 0.42H), 5.57 – 5.25 (m, 1H), 5.23 – 4.92 (m, 2H), 3.84 – 3.34 (m, 10H). ¹³C NMR [signals of both diastereoisomers] (75 MHz, CDCl₃) δ 168.30, 167.11 (d, *J* = 4.3 Hz), 155.4, 155.3, 139.84 (d, *J* = 12.3 Hz), 136.4 (d, *J* = 5.0 Hz), 128.6, 128.5 128.4, 128.3, 128.1, 128.0, 127.9⁵, 127.9, 127.7, 126.6, 126.0, 66.8, 66.7, 53.7 (d, *J* = 7.0 Hz), 53.6 (d, *J* = 6.0 Hz), 53.4 (d, *J* = 6.8 Hz), 53.1 (d, *J* = 6.3 Hz), 52.7 (d, *J* = 8.8 Hz), 52.4 (d, *J* = 4.5 Hz), 51.1(d, *J* = 130.3 Hz), 50.3 (d, *J* = 130.3 Hz), ³¹P NMR (121 MHz, CDCl₃) δ 22.0 (s, 0.49P), 20.1 (s, 0.51P). **HRMS** (ESI): C₂₀H₂₄NO₇P [M+NH₄]⁺ calcd:

444.1183, found: 444.1193.

Then methyl ester **9a** was dissolved in THF and $P[N(i-Bu)CH_2CH_2]_3N$ was added (1.5 equiv, 118 mg, 0.345 mmol) under an argon atmosphere at rt. Then benzaldehyde (1.5 equiv, 33 *u*L, 0.34 mmol) was added, and the reaction was stirred for 24 hours at the same temperature. Then the mixture was purified by silica gel column to give the product.

E-8a Colorless oil; 64% yield, E : Z = 4.5 : 1; $[\alpha]^{20}{}_{D} = -39 (c = 1.05, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (s, 1H), 7.49 (d, J = 6.9 Hz, 2H), 7.38 – 7.21 (m, 13H), 6.40 (m, 2H), 5.21 – 5.09 (m, 2H), 3.71 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 155.9, 142.2, 140.3, 136.4, 134.1, 130.6, 129.3, 129.1, 128.8, 128.5, 128.4, 128.1, 128.1 (overlapped), 128.07, 125.6, 66.9, 52.0, 51.4 ppm; **IR** (neat): 3327, 3061, 2951, 1723, 1498, 1230, 699 cm⁻¹; **HRMS** (ESI): C₂₅H₂₃NO₄ [M+NH₄]⁺ calcd: 419.1965, found: 419.1967.

E-8aa Colorless oil; 72% yield, E : Z = 3.2 : 1; $[\alpha]^{20}{}_{D} = -67.1$ (c = 0.97, CHCl₃); ¹H NMR [some signals show multiple resonances for the presence of two rotamers] (300 MHz, CDCl₃) δ 7.95 (s, 1H), 7.55 – 7.14 (m, 10H), 6.32 (d, J = 10.2 Hz, 0.8H), 6.23 – 6.09 (m, 1H), 5.75 (d, J = 10.2 Hz, 0.2H), 3.73 (s, 2.3H), 3.69 (s, 0.7H), 1.48 (s, 7.1H), 1.22 (s, 2.2H) ppm; ¹³C NMR [some signals show multiple resonances for the presence of two rotamers] (75 MHz, CDCl₃) δ 167.4, 155.3, 141.8, 140.9, 134.1, 130.8, 129.3, 129.2 (overlapped), 128.8, 128.4, 126.9, 125.7/125.5, 79.5, 52.0, 50.7, 28.4/28.0 ppm; **IR** (neat): 3440, 2975, 1711, 1491, 1166, 698 cm⁻¹; **HRMS** (ESI): C₂₂H₂₅NO₄ [M+Na]⁺ calcd: 390.1676, found: 390.1679.

E-8b Colorless oil; 73% yield, E : Z = 5.7 : 1; $[\alpha]^{20}{}_{D} = -28.7 (c = 1.08, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (s, 1H), 7.51 – 7.29 (m, 9H), 7.26 – 7.15 (m, 3H), 6.96 (t, J = 8.6 Hz, 2H), 6.42 (d, J = 9.6 Hz, 1H), 6.34 (d, J = 9.6 Hz, 1H), 5.26 – 4.96 (m, 2H), 3.72 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 161.9 ($J_{C-F} = 243.8$ Hz), 155.8, 142.3, 136.3, 136.1 ($J_{C-F} = 3.0$ Hz), 133.9, 130.4, 129.4, 129.1, 129.0, 128.5, 128.2, 128.1, 127.34 (d, $J_{C-F} = 8.1$ Hz), 115.3 (d, $J_{C-F} = 28.1$ Hz), 67.0, 52.1, 50.9 ppm; **IR** (neat): 3430, 2953, 1715, 1502, 1245, 1038, 761, 698 cm⁻¹; **HRMS** (ESI): $C_{25}H_{22}FNO_4$ [M+Na]⁺ calcd: 442.1425, found: 442.1420.

E-8c Colorless oil; 74% yield, E : Z = 10.4 : 1; $[\alpha]^{20}{}_{D} = -61.1$ (c = 0.95, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.97 (s, 1H), 7.53 – 7.26 (m, 12H), 7.12 (d, J = 9.4 Hz, 2H), 6.39 (d, J = 10.1 Hz, 1H), 6.31 (d, J = 10.0 Hz, 1H), 5.22 – 4.97 (m, 2H), 3.73 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 155.9, 142.6, 139.5, 136.3, 133.9, 131.5, 130.1, 129.5, 129.1, 128.9, 128.5, 128.2, 128.1, 127.5, 121.1, 67.0, 52.2, 51.0 ppm; IR (neat): 3326, 2951, 1717, 1492, 1245, 1037, 697 cm⁻¹; HRMS (ESI): C₂₅H₂₂BrNO₄ [M+Na]⁺ calcd: 502.0624, found: 502.0614.

E-8m Colorless oil; 83% yield, *E* : *Z* = 6.0 : 1; [*α*]²⁰_D = -40.8 (*c* = 0.98, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (S, 1H), 7.53 - 7.42 (m, 2H), 7.42 - 7.19 (m, 8H), 6.82 - 6.64 (m, 3H), 6.39 (d, *J* = 10.0 Hz, 1H), 6.27 (d, *J* = 10.0 Hz, 1H), 5.91 (s, 2H), 5.23 - 4.94 (m, 2H), 3.74 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 155.8 147.9, 146.6, 142.1, 136.3, 134.3, 133.9, 130.5, 129.3, 129.1, 128.8, 128.5, 128.12, 128.07, 118.8, 108.1, 106.5, 101.0, 66.9, 52.1, 51.2 ppm; **IR** (neat): 3426, 2955, 1715, 1494, 1244, 1037, 758, 698 cm⁻¹; **HRMS** (ESI): C₂₆H₂₃NO₆ [M+Na]⁺ calcd: 468.1418, found: 468.1422.

E-8q Colorless oil; 74% yield, E : Z = 8.8 : 1; $[\alpha]^{20}{}_{D} = -44.1$ (c = 1.02, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.92 (s, 1H), 7.50 – 7.27 (m, 9H), 7.24 (dd, J = 5.2, 2.8 Hz, 2H), 7.11 – 6.99 (m, 1H), 6.93 (d, J = 6.0 Hz, 1H), 6.46 (d, J = 10.0 Hz, 1H), 6.32 (d, J = 9.9 Hz, 1H), 5.23 – 4.96 (m, 2H), 3.75 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 155.7, 142.0, 141.8, 136.4, 133.9, 130.5, 129.3, 129.1, 128.8, 128.5, 128.1, 128.0, 126.2, 126.1, 120.7, 66.8, 52.1, 48.8 ppm; IR (neat): 3425, 2951, 1717, 1498, 1221, 1037, 696 cm⁻¹; HRMS (ESI): C₂₃H₂₁NO₄S [M+Na]⁺ calcd: 430.1083, found: 430.1071.

E-8s Colorless oil; 77% yield, *E* : *Z* = 4.7 : 1; [α]²⁰_D = +59.8 (*c* = 1.02, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.75 (s, 1H), 7.56 – 7.04 (m, 10H), 5.91 (d, *J* = 10.0 Hz, 1H), 5.20 – 4.99 (m, 3H), 3.80 (s, 3H), 1.88 – 1.70 (m, 1H), 1.68 – 1.48 (m, 1H), 1.35 – 1.08 (m, 2H), 0.78 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 167.4, 155.7, 141.0, 136.5, 134.4, 131.8, 129.0, 128.7, 128.6, 128.4, 127.9, 127.8, 66.5, 51.9, 48.6, 37.2, 19.4, 13.6 ppm; **IR** (neat): 3435, 2957, 1719, 1501, 1250, 1082, 776, 699 cm⁻¹; **MS** (ESI): C₂₂H₂₅NO₄ [M+H]⁺ calcd: 368.2, found: 368.1.

Determination of the absolute configuration of compound 5aa and 5a.

The absolute configuration of compound **5aa** was determined to be *S* by comparison of the optical rotation $[[\alpha]^{20}_{D} = +17.5 \ (c = 0.8, \text{CHCl}_3, 78\% \text{ ee})]$ with a literature value $[[\alpha]^{20}_{D} = +21 \ (c = 0.68, \text{CHCl}_3)$ for the *S*-isomer (91% *ee*)].³ In order to determine the absolute configuration of compound **5a**, **5aa** was converted to **5a**. The resulting product **5a** in this transformation has a accordant value $[[\alpha]^{20}_{D} = +10.6 \ (c = 1.03, \text{CHCl}_3), 78\% \text{ ee}]$ to our previous result $[[\alpha]^{20}_{D} = +16.0 \ (c = 1.25, \text{CHCl}_3), 91\% \text{ ee}]$. So the absolute configuration of compound **5a** in our experiments was determined to be S.

To a solution of **5aa** (97 mg, 0.33 mmol) in EA (1.5 mL) was added concentrated HCl (0.28 mL) at 0 °C. And the mixture was stirred at rt for 2 h. Then the reaction was diluted with water and the aqueous phase was washed with ether. The aqueous phase was then neutralized with NH₃·H₂O and extracted with EA. The organic phase was dried over NaSO₄ and evaporated under reduced pressure. The residue was then dissolved in CH₂Cl₂, and pyridine (27 μ L, 0.33 mmol) and Cbz-Cl (97 μ L, 0.33 mmol) were added at 0 °C. And the reaction was stirred overnight at rt. Then solvent was then evaporated under reduced pressure. The residue was purified by column chromatography and **5a** was obtained in 63% yield (61.5 mg).

Determination of the relative configuration of E-8, Z-8 and 7 by ¹H-¹H NOESY

S18

References

- [1] T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672–12673.
- [2] N. Yamagiwa, H. Qin, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 13419–13427.
- [3] C. Cassani, L. Bernardi, F. Fini, A. Ricci, Angew. Chem. Int. Ed., 2009, 48, 5694 5697.

Copies of HPLC results

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 85/15, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	16.011	3969118	95.87	171573
2	20.382	171006	4.13	6391

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	11.629	4285773	50.04	239695
2	15.153	4278429	49.96	180704

Name	Retention Time	Area	% Area	Height
1	11.598	6383457	94.99	351612
2	15.181	336737	5.01	15982

5c

Name	Retention Time	Area	% Area	Height
1	15.142	3895406	49.85	182734
2	19.658	3918491	50.15	136472

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

5d

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

5e

HPLC using an OD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	8.028	7688916	96.04	542736
2	9.167	316819	3.96	18285

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1 11.750	7249977	95.22	424011	11.749
2 17.163	364191	4.78	13850	17.173

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	14.456	7019815	93.89	331516
2	19.037	456470	6.11	17225

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	22.730	10417780	91.41	297937
2	28.512	979352	8.59	23263

HPLC using an OJ-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	12.838	33249911	94.57	710374
2	16.637	1908606	5.43	27714

HPLC using an OD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	10.311	8846796	95.89	639964
2	13.705	379119	4.11	19040

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	26.372	61682719	96.28	1398023
2	35.752	2385530	3.72	43433

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	14.620	16681524	93.41	362295
2	18.215	1177426	6.59	21674

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	22.016	11106099	97.88	318175
2	24.112	240957	2.12	7206

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	9.785	8526490	50.34	604288
2	10.719	8412600	49.66	546545

Name	Retention Time	Area	% Area	Height
1	9.722	4067597	91.76	295378
2	10.633	365365	8.24	25791

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	11.073	5200100	90.55	260417
2	12.495	542865	9.45	26987

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	11.428	13820894	96.85	689960
2	14.173	450198	3.15	19726

HPLC using an AD-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

	Name	Retention Time	Area	% Area	Height
1		12.797	16458367	50.01	588887
2		18.461	16448977	49.99	355226

Name	Retention Time	Area	% Area	Height
1	12.668	13365625	92.88	485954
2	17.532	1024105	7.12	28531

HPLC using an OJ-H (*n*-Hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min)

2 23.557 12673913 50.06 163285	93531	19	49.94	393	126456	20.481	1
	63285	16	50.06	913	126739	23.557	2

Name	Retention Time	Area	% Area	Height
1	19.707	62532916	81.70	940014
2	22.978	14011251	18.30	208346

HPLC using an OD-H (*n*-Hexane/*i*PrOH = 95/5, flow rate 0.75 mL/min)

Name	Retention Time	Area	% Area	Height
1	11.935	7194102	50.54	405207
2	12.810	7039630	49.46	362363

Name	Retention Time	Area	% Area	Height
1	11.802	1740720	15.05	105165
2	12.603	9822470	84.95	489487

HPLC using an AS (*n*-Hexane/*i*PrOH = 90/10, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	5.321	13313258	21.37	562599
2	9.300	48983471	78.63	763405

HPLC using an AD (*n*-Hexane/*i*PrOH = 95/5, flow rate 0.75 mL/min)

Name	Retention Time	Area	% Area	Height
1	17.011	40050653	50.05	1011877
2	20.864	39969933	49.95	796547

Name	Retention Time	Area	% Area	Height
1	16.963	31431189	92.99	813506
2	20.808	2368506	7.01	53579

HPLC using an AD (*n*-Hexane/*i*PrOH = 95/5, flow rate 0.8 mL/min)

Name	Retention Time	Area	% Area	Height
1	13.472	5874253	50.15	343613
2	15.950	5838007	49.85	280491

Name	Retention Time	Area	% Area	Height
1	13.709	14595671	92.96	823303
2	16.344	1105863	7.04	56612

HPLC using an AD (*n*-Hexane/*i*PrOH = 95/5, flow rate 0.8 mL/min)

HPLC using an AD (*n*-Hexane/*i*PrOH = 95/5, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	14.458	17866060	49.95	841907
2	18.246	17901610	50.05	667220

Name	Retention Time	Area	% Area	Height
1	14.725	11910436	91.25	556903
2	18.555	1142800	8.75	42806

5am

HPLC using an AD (*n*-Hexane/*i*PrOH = 90/10, flow rate 1.0 mL/min)

Name	Retention Time	Area	% Area	Height
1	12.391	9562876	93.63	536781
2	17.482	650734	6.37	26001

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

000.0-----

5a

£99°£ ——

ZEI.2 -----

826.2 ——

L6.99 ——

82.	9 <i>L</i>	
00.	LL	\rightarrow
2₽.	LL	/

25.951 25.5521 25.55

zs·ssτ ——

96[.]597 ——

HHZ sec usec KHZ	sec dB MHz	Hz Hz
101007 4 2010107 11.47 5 mm PABBO BB- 5 pped 249 249 249 249 249 249 249 249 249 249	0.0300000 0.0300000 1 13C 9.70 29.38907051 75.4752953	CHANNEL £2 ==== waltzi6 0.00 17.00 17.00 9.17820644 0.23054613 0.23054613 0.23054613 0.23054613 75.4677506 75.4677506 1.00 1.00
NAME EXFNO PROCNO PDate Date PULREC PULREC PULREC SOLVENT NS SOLVENT SOLVENT NS SOLVENT NS SOLVENT SOLVENT SOLVENT NS SOLVENT NS SOLVENT SOLV	D11 TD0 ====== NUC1 P1 PL1 PL1W SF01	==== CPDPRG2 PCC2 PCC2 PCD2 PLL3 PLL3 PLL3 PLL3 PLL3W PLL13W PLL3W PLL3W PLL3W SSF02

00.22 -----56.16

90.76 —

24.77.42 77.00

82°SII 25°SII 22°22 10°821 27°821 61°821 62°521 62°521 62°521 62°521 62°521 62°521 62°521 62°521 62°521 80°991 80°991 80°991

9.75.

0EI.2 -----

mdd

0.0

0.5

1.0

1.5

5d

875.378 5.129 5.269 5.826 5.866 5.86

zζð.ε—

3

3

52.12	
€₽.∂∂	

8T.73-----

29.97 20.77 20.77

SS . #2T ES . 92T 82 . 22T 00 . 82T 92 . 82T 28 . 82T 28 . 82T 48 . 62T 95 . #ET 27 . 9ET 46 . 8ET #2 . T#T 85 . SST

6*L*.291 ——

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

000.0-----

5f

₽८9.६——

60T'S-----

676.8	
707.2	
657.2	_
598.2	
961.9 —	_
S9T'9	
868.8	-

τς.εετ-----

86°59T —

S58

299`ε —___ τ*LL*`ε —___

5h

07T'S -----

60L'S —

868.3-

058.9 -----

058.9 ••850 2.208 7.208 7.349

<i>L</i> 6'τς —	
S2.23 —	
ST.92	

86.99	

£9.97 –	
50' <i>LL</i>	
LT.LL-	

5h

00.411-----

247-251 27-721 2

6⊅.SSI	
20.021	

0τ.99τ ——

ττε·σ____

£39.£——

121.2 ——

669'S 82L'S 82L'S 208'S 606'S

1.048 1.079 1.079 1.101 1.

τ∠9`ε ——

₽£I.2 ——

927.2 708.2 896.2

907.9----

∠S£.7 √ 06£.7 √ 81₽.7 ←

TSS'L 8/5'L

5j

LL'S9T ——

mdd

200

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

<u>Γ</u>σ

190

000.0-----

627.ε----

0ετ.ε----

SI8.	5	$\overline{}$
529.	5	\sim
9LT.	9	$\neg $
787.	9	\sim
262.	9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
τοε.	9	\rightarrow
908.	9	-//
212.	9	_/_
οζε.	9	_

088.7 2380

000.0-----

z69·ε ——

- S6'TS ∠T'₱S
- 82.99 ——
- 89'9L 0T'LL ES'LL

5r

₽८°SST ——

62.991 —

000.0-----

0.881 0.902 0.903 0.930 1.334 1.334 1.334 1.3455 1.3455 1.3455 1.3455 1.34555 1.3455555555

67*L*.E ——

874.478 744.478 5.028 5.729 5.729 5.729 5.729 5.069 5.729 5.069 5.724

L6T'9 -----

τς**·**9ε ——

8*L*•TS *L*6•ES

65.99 -----

24.50 27.00 77.00

5s

58.051 29.38.45 29.38.45 29.38.45

59°55T —

LZ.881 -----

110601 2 20110601 10.22 2010601 10.225930 55536 55536 55536 55536 55536 55538 18028:846 Hz 0.225098 Hz 1.8175818 sec 27,733 usec 27,733 usec 27,733 usec 20000000 sec 20000000 sec 2000000000000 sec 2000000000000000000000000000000000000	<pre>c CHANNEL f1 ===================================</pre>	9.17820644 W 0.23084613 W 0.23094613 W 0.230954613 W 300.1312005 MHz 75.4677525 MHz 75.4677525 MHz 1.00 Hz
NAME EXTRO EXTRO DALE DILE TIME PROBHD PROBHD PROBHD PROBHD FIDRS SCLVENT SCLVENT SCLVENT TIDLES SCLVENT TIDLES TIDLES TID DI TID TID TID TID TID TID TID TID	NUC1 PL1 PL1 PL1 SF1 SF01 SF01 SF01 CPD2 PL2 PL2 PL2 PL12 PL12 PL12	PL2W PL12W SFL12W SFO2 SF SSF SSB SSB SSB SSB SSB SSB SSB SSB

24.77.42

158.39 128.06 128.45 SÞ.981 -----6T.0PI -----

09'SST ——

τε•99τ ——

mdd

	1	
h	ah	
υ	av	

с С	2	• •	G T G T	T T	_	>	>
8 7 8 8 8	L 2 2 2 2 2 2 2	• • • • • •	35 35 35 35 35 35 35 35 35 35 35 35 35 3	ת ת ת ת ת			1 Y Y

 ςτ	₽S	98.	
 9 T.	09	sþ.	
 9 T	89	τL・	
 9 T	99	00.	

000.0-----

05Þ.1----

6*L*9·E ——

5ad

CI

Ο

₽*L*E.8 ——

110515 5 5 20110516 0.23 8pect 2020513 0.23 29p930 65536 65536 65536 65536 65536 65536 101 18028.946 Hz 101 27733 usec 27.733 usec 27.733 usec 27.733 usec 0.03000000 sec 0.03000000 sec 0.03000000 sec	1 CHANNEL fl ======= 9.70 usec 29.38907051 W 75.4752933 MHz	CHANNEL f2 ======= waltz16 waltz16 80.00 usec 1.00 dB 17.00 dB 17.00 dB 9.17820644 W	0.23054613 W 0.23054613 W 300.1312005 MHz 75.4677518 MHz 75.4677518 MHz 1.00 Hz 1.400 Hz 1.400 Hz
NAME EXPNO EXPNO Date Time FINSTRUM FROBHD FROBHD TILFROG TILLFROG TILLFROG SCLVENT SCLVENT AQ DS AQ DI DI DI DI DI DI DI	TD0 ======= P1 P11 P11W SF01	======================================	PL12W PL12W SICSS SI SS SSB VDW VDW VDW VDW VDW VDW VD VD VD VD VD VD VD VD VD VD VD VD VD

∠6'TS —— 0∠'SS ——

85'9L 00'LL 66'6L

b1.721 b3.721 b3.821 b

∠8.₽21 ——

000.0-----

∠₽₽°Т ——

289**.**E ——

692°L-----

0

NH O ₹ II

5am

 \cap

O ∬

NH O

5am

28.82----

26.57 29.77 29.77 29.77 29.77 29.77 29.77 29.77 29.77 29.77 20.77

- 90.101 —
- 72.701
- £8.611 -----
- T2.921 ——
- £8.551 ——
- το.ομι -----
- 14.741
- 18.421 —

80'99T —

bpm

0

20

40

60

80

100

120

140

160

180

67.82 -----

L6.99 —

29.97 00.77 82.97

Z-8a

ZS'SST ——

28.891 ——

000.0-----

8.5

659.5-----

₽₽T.2 ——

25.163 92.52 92.85 92.85 92.85 92.85 92.85 92.85 92.85 92.25 92.25 92.25 25.25

τς.82 —

00.79 —

05[.]997 ——

E-8a

85·9*L* 00·*LL* εψ·*LL*

E-8a

₽Z.7at ——

mdd

000.0-----

E-8b

£60'S

000.0-----

Z-8c

6 \$ 0.25 6 \$ 0.

τετ•ς ——

mdd

10

000.0--

000.0

Z-8m

ετς·ε ——

⊺₽ްS ——

₱89 · S IIL · S 958 · S 088 · S 686 · S

000.0-----

92.761 ——

=

