# Supporting Information for the article

#### Novel [4+2] Cycloaddition Reactions of Alkyne and Enyne Key-Units: Direct Access to Bicyclic Aromatic and Heteroaromatic Products. A Mechanistic Study

Valentine P. Ananikov\*, Evgeniy G. Gordeev

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow, 119991, Russia; E-mail: val@ioc.ac.ru

**Table S1.** Calculated  $\Delta E$ ,  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) at B3LYP/6-311+G(d) level (see Scheme 4 for structures).

| Level                | 1   | <b>2-TS</b> | 3     | 4-TS | 5   | 6-TS | <b>7-TS</b> | 8     | <b>9-TS</b> | 10     |
|----------------------|-----|-------------|-------|------|-----|------|-------------|-------|-------------|--------|
| B3LYP ( $\Delta E$ ) | 0.0 | 31.4        | -16.3 | 33.9 | 4.2 | 17.2 | 8.7         | -11.0 | -7.6        | -100.0 |
| B3LYP ( $\Delta$ H)  | 0.0 | 30.6        | -14.7 | 32.1 | 5.4 | 17.0 | 8.1         | -9.9  | -7.9        | -96.8  |
| B3LYP ( $\Delta G$ ) | 0.0 | 34.5        | -9.7  | 37.5 | 9.9 | 21.8 | 13.4        | -6.6  | -2.8        | -91.4  |

| Level                | 11   | 12-TS | 13    | 14-TS |
|----------------------|------|-------|-------|-------|
| B3LYP ( $\Delta E$ ) | -1.3 | 35.6  | -13.8 | 2.3   |
| B3LYP ( $\Delta$ H)  | -1.2 | 34.9  | -11.9 | 2.5   |
| B3LYP ( $\Delta G$ ) | -1.4 | 39.1  | -7.4  | 7.7   |

**Table S2.** Calculated  $\Delta E$ ,  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) of intermolecular [4+2] cycloaddition reaction between acetylene and vinylacetylene at B3LYP/6-311+G(d) and CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) levels.

| ≡<br>1      | II-TS | <ul><li>✓</li><li>Ⅲ</li></ul> | IV |
|-------------|-------|-------------------------------|----|
| <u></u> + → |       |                               |    |

| Level                | Ι   | II-TS | III   | IV     |
|----------------------|-----|-------|-------|--------|
| B3LYP ( $\Delta E$ ) | 0.0 | 30.6  | -28.3 | -109.8 |
| $CCSD(T) (\Delta E)$ | 0.0 | 29.9  | -32.7 | -108.0 |
| B3LYP ( $\Delta$ H)  | 0.0 | 30.9  | -24.5 | -104.2 |
| B3LYP (ΔG)           | 0.0 | 41.8  | -11.6 | -90.3  |

**Table S3.** Calculated  $\Delta E$ ,  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) of intramolecular [4+2] cycloaddition reaction of non-1-ene-3,8-diyne at B3LYP/6-311+G(d) and CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) levels.





**Figure S1.** Relative stability (in kcal/mol) of nitrogen-containing reagents **15**, **19**, **23**, **26**, **30**, **34**, and **37**: calculated  $\Delta E$  values at CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) level (without parenthesis) and  $\Delta G$  values at B3LYP/6-311+G(d) level (in parenthesis); compound **15** was used as a reference point.



**Figure S2.** Relative stability (in kcal/mol) of cyclic heteroatom-substituted allenes **17**, **21**, **25**, **28**, **32**, **36**, and **39**: calculated  $\Delta E$  values at CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) level (without parenthesis) and  $\Delta G$  values at B3LYP/6-311+G(d) level (in parenthesis); compound **17** was used as a reference point.



**Figure S3.** Relative stability (in kcal/mol) of products **18**, **22**, **29**, **33**, **41**, **42**, and **43**: calculated  $\Delta E$  values at CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) level (without parenthesis) and  $\Delta G$  values at B3LYP/6-311+G(d) level (in parenthesis); compound **18** was used as a reference point.

**Table S4.** Calculated  $\Delta E$ ,  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) at B3LYP/6-311+G(d) level (see Scheme 5 for structures); compound **15** was used as a reference point.

| Level                | 15  | 16-TS | 17    | 18    | 19   | 20-TS | 21    | 22    | 23  | 24-TS | 25    | 18    | 26    | 27-TS | 28    | 29     |
|----------------------|-----|-------|-------|-------|------|-------|-------|-------|-----|-------|-------|-------|-------|-------|-------|--------|
| B3LYP ( $\Delta E$ ) | 0.0 | 33.9  | -7.2  | -96.1 | 11.2 | 41.8  | -7.1  | -90.1 | 8.0 | 37.9  | -18.6 | -96.1 | -36.7 | 8.1   | -19.0 | -97.9  |
| $CCSD(T) (\Delta E)$ | 0.0 | 30.3  | -18.5 | -98.5 | 7.9  | 37.0  | -17.8 | -93.4 | 7.0 | 36.3  | -26.0 | -98.5 | -43.7 | -0.3  | -29.4 | -102.7 |
| B3LYP (ΔH)           | 0.0 | 33.3  | -5.5  | -92.9 | 11.2 | 40.9  | -5.4  | -86.7 | 7.7 | 37.0  | -16.8 | -92.9 | -36.1 | 7.5   | -17.6 | -94.9  |
| B3LYP (ΔG)           | 0.0 | 37.6  | -0.2  | -87.2 | 11.5 | 45.0  | -0.1  | -81.1 | 7.5 | 40.6  | -11.6 | -87.2 | -35.5 | 12.0  | -12.3 | -89.2  |

| Level                | 30    | 31-TS | 32    | 33     | 34   | 35-TS | 36    | 33     | 37   | 38-TS | 39    | 40    | 41    | 42    |
|----------------------|-------|-------|-------|--------|------|-------|-------|--------|------|-------|-------|-------|-------|-------|
| B3LYP ( $\Delta E$ ) | -37.6 | 1.8   | -18.2 | -99.2  | 1.9  | 35.1  | -15.7 | -99.2  | 1.6  | 40.1  | -39.9 | -54.6 | -64.6 | -61.4 |
| $CCSD(T) (\Delta E)$ | -44.3 | -5.3  | -30.4 | -103.9 | -0.8 | 31.2  | -24.2 | -103.9 | -3.7 | 31.6  | -43.9 | -59.8 | -68.0 | -65.4 |
| B3LYP ( $\Delta$ H)  | -37.0 | 1.6   | -16.9 | -96.2  | 1.6  | 33.7  | -14.2 | -96.2  | 1.4  | 39.3  | -37.2 | -51.8 | -62.5 | -59.5 |
| B3LYP (ΔG)           | -36.6 | 6.2   | -11.6 | -90.5  | 1.7  | 37.3  | -9.6  | -90.5  | 1.4  | 44.1  | -32.0 | -46.1 | -57.2 | -54.5 |



**Scheme S1.** Cycloaddition reactions leading to heterocyclic products with calculated  $\Delta E$  values at CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) level (without parenthesis) and  $\Delta G$  values at B3LYP/6-311+G(d) level (in parenthesis); compound **15** was used as a reference point (in kcal/mol). See Scheme 5 for another representation of the energy surface with individual reference points for each reaction.



Scheme S2. Cycloaddition reactions of Z-34 and Z-40 compounds with calculated  $\Delta E$  values at CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) level (without parenthesis) and  $\Delta G$  values at B3LYP/6-311+G(d) level (in parenthesis); the values shown in square brackets are relative to point 15 (in kcal/mol). See Scheme 5 and Scheme S1 for the reactions involving *E*-34 and *E*-37 compounds.



**Figure S4.** B3LYP/6-311+G(d) optimized molecular structures of **I-IV**. Displacement vectors corresponding to imaginary frequency are shown for transition state (see Scheme 1 for structures); imaginary frequency for the transition state: 538.3 i cm<sup>-1</sup> (**II-TS**).



**Figure S5.** B3LYP/6-311+G(d) optimized molecular structures of I-IV. Displacement vectors corresponding to imaginary frequency are shown for transition state (see Scheme 2 for structures); imaginary frequency for the transition state:  $527.2 i \text{ cm}^{-1}$  (II-TS).

## Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011



**Figure S6(a).** B3LYP/6-311+G(d) optimized molecular structures of 15 - 25. Displacement vectors corresponding to imaginary frequency are shown for each transition state (see Scheme 5 for structures).

## Electronic Supplementary Material (ESI) for Chemical Science This journal is C The Royal Society of Chemistry 2011



Figure S6(b). B3LYP/6-311+G(d) optimized molecular structures of 26 - 33. Displacement vectors corresponding to imaginary frequency are shown for each transition state (see Scheme 5 for structures).



**Figure S6(c).** B3LYP/6-311+G(d) optimized molecular structures of 34 - 42. Displacement vectors corresponding to imaginary frequency are shown for each transition state (see Scheme 5 for structures).



**Figure S6(d).** B3LYP/6-311+G(d) optimized molecular structures of **Z-34** – **Z-40**. Displacement vectors corresponding to imaginary frequency are shown for each transition state (see Scheme S2 for structures).

| (a)      |       |       |       |       |          | (b)   |       | (c)   |       |          |       |       |       |       |
|----------|-------|-------|-------|-------|----------|-------|-------|-------|-------|----------|-------|-------|-------|-------|
|          | 15    | 16-TS | 17    | 18    |          | 19    | 20-TS | 21    | 22    |          | 23    | 24-TS | 25    | 18    |
| C1-C2    | 1.209 | 1.255 | 1.329 | 1.395 | C1-C2    | 1.206 | 1.248 | 1.330 | 1.396 | C1-C2    | 1.206 | 1.263 | 1.352 | 1.395 |
| C2-C3    | 1.414 | 1.381 | 1.327 | 1.398 | C2-C3    | 1.421 | 1.383 | 1.328 | 1.398 | C2-C3    | 1.421 | 1.404 | 1.332 | 1.401 |
| C3-C4    | 1.353 | 1.376 | 1.507 | 1.393 | C3-C4    | 1.340 | 1.371 | 1.509 | 1.391 | C3-C4    | 1.341 | 1.357 | 1.512 | 1.385 |
| C4-N5    | 1.372 | 1.386 | 1.468 | 1.402 | C4-C5    | 1.501 | 1.495 | 1.533 | 1.517 | C4-C5    | 1.498 | 1.484 | 1.536 | 1.514 |
| N5-C6    | 1.448 | 1.462 | 1.475 | 1.477 | C5-N6    | 1.465 | 1.468 | 1.470 | 1.481 | C5-C6    | 1.542 | 1.566 | 1.541 | 1.546 |
| C6-C7    | 1.549 | 1.564 | 1.557 | 1.546 | N6-C7    | 1.468 | 1.471 | 1.477 | 1.481 | C6-N7    | 1.464 | 1.463 | 1.464 | 1.477 |
| C7-C8    | 1.458 | 1.464 | 1.509 | 1.514 | C7-C8    | 1.465 | 1.473 | 1.509 | 1.517 | N7-C8    | 1.342 | 1.323 | 1.361 | 1.402 |
| C8-C9    | 1.203 | 1.244 | 1.341 | 1.385 | C8-C9    | 1.202 | 1.241 | 1.342 | 1.391 | C8-C9    | 1.207 | 1.252 | 1.364 | 1.393 |
| C4-C8    | 3.372 | 2.457 | 1.569 | 1.404 | C4-C8    | 3.210 | 2.368 | 1.553 | 1.396 | C4-C8    | 3.343 | 2.873 | 1.550 | 1.404 |
| C1-C9    | 5.842 | 2.041 | 1.494 | 1.401 | C1-C9    | 5.296 | 2.104 | 1.490 | 1.398 | C1-C9    | 5.512 | 1.972 | 1.459 | 1.398 |
| С1-Н     | 1.063 | 1.074 | 1.087 | 1.085 | С1-Н     | 1.064 | 1.072 | 1.086 | 1.086 | С1-Н     | 1.064 | 1.075 | 1.088 | 1.086 |
| С3-Н     | 1.089 | 1.088 | 1.087 | 1.086 | С3-Н     | 1.089 | 1.088 | 1.087 | 1.086 | С3-Н     | 1.089 | 1.091 | 1.088 | 1.087 |
| С4-Н     | 1.085 | 1.083 | 1.101 | -     | С4-Н     | 1.086 | 1.084 | 1.100 | -     | С4-Н     | 1.088 | 1.088 | 1.102 | -     |
| С2-Н     | -     | -     | -     | 1.086 | С2-Н     |       | -     |       | 1.086 | С2-Н     | -     | -     | -     | 1.085 |
| С9-Н     | 1.064 | 1.074 | 1.086 | 1.087 | С9-Н     | 1.064 | 1.072 | 1.086 | 1.086 | С9-Н     | 1.063 | 1.077 | 1.086 | 1.086 |
| C1-C2-C3 | 178.5 | 139.9 | 131.0 | 121.2 | C1-C2-C3 | 178.2 | 139.8 | 130.9 | 120.5 | C1-C2-C3 | 178.2 | 131.9 | 128.2 | 119.9 |
| C2-C3-C4 | 123.1 | 114.4 | 111.1 | 118.3 | C2-C3-C4 | 124.5 | 115.5 | 111.4 | 118.9 | C2-C3-C4 | 124.6 | 121.7 | 112.7 | 119.4 |
| C9-C8-C7 | 178.8 | 166.0 | 131.5 | 131.4 | C9-C8-C7 | 177.8 | 160.4 | 130.2 | 130.5 | C9-C8-N7 | 176.3 | 176.5 | 130.8 | 128.5 |

**Table S5(a).** Optimized geometry parameters of molecular structures 15 - 25 at B3LYP/6-311+G(d) level (bond length in Å, angles in deg); see Sheme 5; for atoms numbering see Figure S6(a).<sup>a</sup>

<sup>a</sup> Imaginary frequencies for the transition states: 456.8 *i* cm<sup>-1</sup> (**16-TS**), 478.0 *i* cm<sup>-1</sup> (**20-TS**), 415.3 *i* cm<sup>-1</sup> (**24-TS**).

|          |       | (d)   |       |       | (e)      |       |              |       |       |  |  |
|----------|-------|-------|-------|-------|----------|-------|--------------|-------|-------|--|--|
|          | 26    | 27-TS | 28    | 29    |          | 30    | <b>31-TS</b> | 32    | 33    |  |  |
| N1-C2    | 1.157 | 1.186 | 1.237 | 1.337 | C1-C2    | 1.206 | 1.265        | 1.324 | 1.394 |  |  |
| C2-C3    | 1.425 | 1.363 | 1.322 | 1.397 | C2-C3    | 1.420 | 1.381        | 1.333 | 1.397 |  |  |
| C3-C4    | 1.339 | 1.424 | 1.532 | 1.390 | C3-C4    | 1.341 | 1.384        | 1.498 | 1.388 |  |  |
| C4-C5    | 1.498 | 1.514 | 1.539 | 1.512 | C4-C5    | 1.500 | 1.501        | 1.534 | 1.510 |  |  |
| C5-C6    | 1.540 | 1.535 | 1.542 | 1.550 | C5-C6    | 1.540 | 1.544        | 1.544 | 1.553 |  |  |
| C6-C7    | 1.544 | 1.538 | 1.550 | 1.550 | C6-C7    | 1.545 | 1.539        | 1.544 | 1.547 |  |  |
| C7-C8    | 1.461 | 1.505 | 1.514 | 1.513 | C7-C8    | 1.462 | 1.487        | 1.510 | 1.511 |  |  |
| C8-C9    | 1.203 | 1.258 | 1.340 | 1.391 | C8-N9    | 1.153 | 1.194        | 1.272 | 1.331 |  |  |
| C4-C8    | 3.181 | 1.893 | 1.557 | 1.398 | C4-C8    | 3.203 | 2.159        | 1.581 | 1.402 |  |  |
| N1-C9    | 4.979 | 2.137 | 1.458 | 1.339 | C1-N9    | 5.141 | 1.856        | 1.461 | 1.341 |  |  |
| С3-Н     | 1.087 | 1.083 | 1.080 | 1.086 | С1-Н     | 1.064 | 1.071        | 1.083 | 1.087 |  |  |
| С4-Н     | 1.088 | 1.089 | 1.101 | _     | С3-Н     | 1.090 | 1.089        | 1.088 | 1.087 |  |  |
| С2-Н     |       | _     | _     | 1.087 | С4-Н     | 1.088 | 1.089        | 1.101 | _     |  |  |
| С9-Н     | 1.064 | 1.067 | 1.082 | 1.088 | С2-Н     | _     | _            | _     | 1.085 |  |  |
| N1-C2-C3 | 178.9 | 151.1 | 142.7 | 124.1 | C1-C2-C3 | 178.2 | 131.7        | 128.2 | 119.1 |  |  |
| C2-C3-C4 | 123.0 | 108.5 | 104.2 | 117.6 | C2-C3-C4 | 124.6 | 117.1        | 110.4 | 117.8 |  |  |
| C9-C8-C7 | 178.5 | 141.2 | 129.8 | 130.4 | N9-C8-C7 | 177.7 | 147.5        | 126.4 | 124.7 |  |  |

**Table S5(b).** Optimized geometry parameters of molecular structures 26 - 33 at B3LYP/6-311+G(d) level (bond length in Å, angles in deg); see Sheme 5; for atoms numbering see Figure S6(b).<sup>a</sup>

<sup>a</sup> Imaginary frequencies for the transition states: 506.1 *i* cm<sup>-1</sup> (**27-TS**), 471.0 *i* cm<sup>-1</sup> (**31-TS**).

**Table S5(c).** Optimized geometry parameters of molecular structures 34 - 42 at B3LYP/6-311+G(d) level (bond length in Å, angles in deg); see Sheme 5; for atoms numbering see Figure S6(c).<sup>a</sup>

|          |       | (f)   |       |       | (g)      |       |              |       |       |       |       |  |
|----------|-------|-------|-------|-------|----------|-------|--------------|-------|-------|-------|-------|--|
|          | 34    | 35-TS | 36    | 33    |          | 37    | <b>38-TS</b> | 39    | 40    | 41    | 42    |  |
| C1-C2    | 1.208 | 1.275 | 1.332 | 1.394 | C1-C2    | 1.205 | 1.297        | 1.418 | 1.385 | 1.348 | 1.345 |  |
| C2-N3    | 1.335 | 1.302 | 1.222 | 1.341 | C2-C3    | 1.436 | 1.392        | 1.392 | 1.422 | 1.510 | 1.512 |  |
| N3-C4    | 1.281 | 1.301 | 1.524 | 1.331 | C3-N4    | 1.274 | 1.312        | 1.370 | 1.365 | 1.457 | 1.462 |  |
| C4-C5    | 1.502 | 1.499 | 1.535 | 1.511 | N4-C5    | 1.458 | 1.449        | 1.482 | 1.485 | 1.455 | 1.400 |  |
| C5-C6    | 1.536 | 1.546 | 1.557 | 1.547 | C5-C6    | 1.529 | 1.540        | 1.535 | 1.533 | 1.503 | 1.339 |  |
| C6-C7    | 1.544 | 1.562 | 1.571 | 1.553 | C6-C7    | 1.542 | 1.565        | 1.545 | 1.544 | 1.343 | 1.515 |  |
| C7-C8    | 1.461 | 1.450 | 1.505 | 1.510 | C7-C8    | 1.461 | 1.446        | 1.506 | 1.505 | 1.456 | 1.518 |  |
| C8-C9    | 1.203 | 1.252 | 1.347 | 1.388 | C8-C9    | 1.204 | 1.272        | 1.382 | 1.372 | 1.361 | 1.353 |  |
| C4-C8    | 3.892 | 3.074 | 1.530 | 1.402 | N4-C8    | 3.771 | 2.599        | 1.354 | 1.371 | 1.390 | 1.394 |  |
| C1-C9    | 5.295 | 1.776 | 1.486 | 1.397 | C1-C9    | 5.402 | 1.613        | 1.403 | 1.406 | 1.447 | 1.453 |  |
| С1-Н     | 1.063 | 1.075 | 1.079 | 1.085 | С1-Н     | 1.065 | 1.083        | 1.091 | 1.087 | 1.086 | 1.086 |  |
| С4-Н     | 1.093 | 1.091 | 1.094 |       | С2-Н     |       | _            |       | 1.087 | 1.085 | 1.085 |  |
| С2-Н     | -     | _     |       | 1.087 | С3-Н     | 1.092 | 1.093        | 1.090 |       | 1.097 | 1.095 |  |
| С9-Н     | 1.064 | 1.080 | 1.087 | 1.087 | С9-Н     | 1.064 | 1.086        | 1.087 | 1.084 | 1.082 | 1.083 |  |
| C1-C2-N3 | 173.5 | 141.6 | 143.6 | 123.8 | C1-C2-C3 | 177.6 | 127.4        | 111.8 | 124.0 | 121.2 | 120.7 |  |
| C2-N3-C4 | 122.8 | 124.0 | 110.0 | 116.3 | C2-C3-N4 | 127.4 | 126.1        | 124.2 | 111.0 | 109.4 | 109.1 |  |
| C9-C8-C7 | 179.1 | 170.1 | 128.6 | 131.1 | C9-C8-C7 | 179.2 | 168.4        | 131.6 | 130.5 | 131.4 | 131.7 |  |

<sup>a</sup> Imaginary frequencies for the transition states: 343.5 i cm<sup>-1</sup> (35-TS), 217.0 i cm<sup>-1</sup> (38-TS).

**Table S5(d).** Optimized geometry parameters of molecular structures **Z-33** – **Z-40** at B3LYP/6-311+G(d) level (bond length in Å, angles in deg); see Sheme S2; for atoms numbering see Figure S6(d).<sup>a</sup>

|          | Z-3   | 3 – <b>Z-3</b> 6 |       |       | Z-37 – Z-40 |              |         |       |             |  |
|----------|-------|------------------|-------|-------|-------------|--------------|---------|-------|-------------|--|
|          | Z-34  | Z-35-TS          | Z-36  | Z-33  |             | <b>Z-3</b> 7 | Z-38-TS | Z-39  | <b>Z-40</b> |  |
| C1-C2    | 1.208 | 1.249            | 1.323 | 1.394 | C1-C2       | 1.204        | 1.254   | 1.391 | 1.385       |  |
| C2-N3    | 1.335 | 1.299            | 1.234 | 1.341 | C2-C3       | 1.429        | 1.411   | 1.374 | 1.423       |  |
| N3-C4    | 1.280 | 1.318            | 1.489 | 1.331 | C3-N4       | 1.271        | 1.287   | 1.365 | 1.365       |  |
| C4-C5    | 1.496 | 1.492            | 1.528 | 1.511 | N4-C5       | 1.450        | 1.447   | 1.471 | 1.485       |  |
| C5-C6    | 1.539 | 1.540            | 1.542 | 1.547 | C5-C6       | 1.535        | 1.544   | 1.532 | 1.533       |  |
| C6-C7    | 1.543 | 1.541            | 1.552 | 1.553 | C6-C7       | 1.546        | 1.541   | 1.544 | 1.544       |  |
| C7-C8    | 1.461 | 1.476            | 1.512 | 1.510 | C7-C8       | 1.460        | 1.462   | 1.507 | 1.505       |  |
| C8-C9    | 1.203 | 1.239            | 1.340 | 1.388 | C8-C9       | 1.203        | 1.240   | 1.374 | 1.372       |  |
| C4-C8    | 3.131 | 2.347            | 1.567 | 1.402 | N4-C8       | 3.200        | 2.404   | 1.372 | 1.371       |  |
| C1-C9    | 4.885 | 2.125            | 1.509 | 1.397 | C1-C9       | 5.462        | 2.004   | 1.422 | 1.406       |  |
| С1-Н     | 1.063 | 1.069            | 1.080 | 1.085 | C1-H        | 1.064        | 1.073   | 1.090 | 1.087       |  |
| С4-Н     | 1.096 | 1.093            | 1.102 | -     | С2-Н        | _            | _       |       | 1.087       |  |
| С2-Н     | _     | _                | _     | 1.087 | С3-Н        | 1.101        | 1.098   | 1.087 |             |  |
| С9-Н     | 1.064 | 1.071            | 1.086 | 1.087 | С9-Н        | 1.064        | 1.073   | 1.087 | 1.087       |  |
| C1-C2-N3 | 174.6 | 144.6            | 143.6 | 123.8 | C1-C2-C3    | 176.3        | 134.0   | 116.0 | 124.0       |  |
| C2-N3-C4 | 121.4 | 113.4            | 105.2 | 116.3 | C2-C3-N4    | 122.6        | 116.5   | 121.0 | 111.1       |  |
| C9-C8-C7 | 178.9 | 160.5            | 131.3 | 131.1 | C9-C8-C7    | 177.5        | 170.1   | 132.6 | 130.5       |  |

<sup>a</sup> Imaginary frequencies for the transition states: 483.6 i cm<sup>-1</sup> (**Z-35-TS**), 465.1 i cm<sup>-1</sup> (**Z-38-TS**).

**Table S6.** Calculated  $\Delta E$ ,  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) at B3LYP/6-311+G(d) and CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) levels (see Scheme 6 for structures).

| Level                | 43  | 44-TS | 45    | 46     | 47  | <b>48-TS</b> | 49    | 50     | 51  | 52-TS | 53    | 54     |
|----------------------|-----|-------|-------|--------|-----|--------------|-------|--------|-----|-------|-------|--------|
| B3LYP ( $\Delta E$ ) | 0.0 | 33.3  | -16.9 | -102.5 | 0.0 | 29.7         | -18.9 | -102.2 | 0.0 | 31.1  | -18.7 | -102.6 |
| $CCSD(T) (\Delta E)$ | 0.0 | 31.3  | -25.8 | -103.9 | 0.0 | 28.1         | -26.4 | -101.2 | 0.0 | 29.3  | -27.4 | -103.1 |
| B3LYP ( $\Delta$ H)  | 0.0 | 32.4  | -14.9 | -99.2  | 0.0 | 28.8         | -17.2 | -99.0  | 0.0 | 30.3  | -16.7 | -99.2  |
| B3LYP (ΔG)           | 0.0 | 36.4  | -9.9  | -93.4  | 0.0 | 32.7         | -12.3 | -94.0  | 0.0 | 34.3  | -11.8 | -93.9  |

| Level                | 55  | 56-TS | 57    | 58     |
|----------------------|-----|-------|-------|--------|
| B3LYP ( $\Delta E$ ) | 0.0 | 31.7  | -17.4 | -101.7 |
| $CCSD(T) (\Delta E)$ | 0.0 | 30.2  | -26.4 | -102.8 |
| B3LYP (ΔH)           | 0.0 | 30.8  | -15.4 | -98.3  |
| B3LYP (ΔG)           | 0.0 | 34.9  | -10.5 | -93.4  |

|               | 43    | 44-TS | 45    | 46    | 47    | 48-TS | 49    | 50    | 51    | 52-TS | 53     | 54    | 55    | 56-TS | 57    | 58    |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|
| C1-C2         | 1.206 | 1.255 | 1.328 | 1.395 | 1.206 | 1.247 | 1.329 | 1.397 | 1.206 | 1.251 | 1.329  | 1.396 | 1.206 | 1.253 | 1.329 | 1.396 |
| C2-C3         | 1.420 | 1.388 | 1.326 | 1.394 | 1.420 | 1.382 | 1.328 | 1.397 | 1.420 | 1.386 | 1.326  | 1.393 | 1.419 | 1.387 | 1.325 | 1.392 |
| C3-C4         | 1.342 | 1.367 | 1.519 | 1.396 | 1.340 | 1.372 | 1.510 | 1.391 | 1.342 | 1.369 | 1.516  | 1.396 | 1.344 | 1.368 | 1.521 | 1.398 |
| C4-C5         | 1.493 | 1.489 | 1.554 | 1.513 | 1.500 | 1.495 | 1.533 | 1.506 | 1.491 | 1.487 | 1.531  | 1.509 | 1.483 | 1.480 | 1.533 | 1.509 |
| C5-P(O/S/Se)6 | 1.891 | 1.891 | 1.894 | 1.885 | 1.427 | 1.429 | 1.429 | 1.434 | 1.847 | 1.844 | 1.839  | 1.847 | 2.003 | 1.995 | 1.984 | 1.988 |
| P(O/S/Se)6-C7 | 1.894 | 1.895 | 1.884 | 1.885 | 1.423 | 1.429 | 1.436 | 1.434 | 1.850 | 1.852 | 1.852  | 1.847 | 2.003 | 2.007 | 1.999 | 1.988 |
| C7-C8         | 1.453 | 1.457 | 1.498 | 1.513 | 1.466 | 1.474 | 1.507 | 1.506 | 1.453 | 1.458 | 1.511  | 1.509 | 1.446 | 1.449 | 1.507 | 1.509 |
| C8-C9         | 1.203 | 1.243 | 1.345 | 1.396 | 1.202 | 1.241 | 1.341 | 1.391 | 1.202 | 1.242 | 1.344  | 1.396 | 1.203 | 1.243 | 1.347 | 1.398 |
| C4-C8         | 3.660 | 2.615 | 1.560 | 1.402 | 3.169 | 2.337 | 1.550 | 1.393 | 3.423 | 2.524 | 1.555  | 1.396 | 3.616 | 2.627 | 1.552 | 1.398 |
| C1-C9         | 5.236 | 1.991 | 1.488 | 1.394 | 5.351 | 2.123 | 1.492 | 1.397 | 5.058 | 2.034 | 1.487  | 1.393 | 5.199 | 1.997 | 1.483 | 1.392 |
| С1-Н          | 1.064 | 1.074 | 1.087 | 1.085 | 1.064 | 1.071 | 1.086 | 1.085 | 1.064 | 1.073 | 1.086  | 1.085 | 1.064 | 1.073 | 1.087 | 1.085 |
| С3-Н          | 1.089 | 1.088 | 1.087 | 1.086 | 1.090 | 1.088 | 1.087 | 1.086 | 1.089 | 1.088 | 1.087  | 1.086 | 1.089 | 1.088 | 1.087 | 1.086 |
| С4-Н          | 1.088 | 1.087 | 1.100 | -     | 1.086 | 1.085 | 1.100 | I     | 1.086 | 1.085 | 1.100  | -     | 1.086 | 1.085 | 1.101 | -     |
| С2-Н          | -     | -     | -     | 1.085 | -     | -     | -     | 1.085 | -     | -     | -      | 1.085 | -     | -     | -     | 1.085 |
| С9-Н          | 1.064 | 1.075 | 1.086 | 1.086 | 1.064 | 1.071 | 1.086 | 1.086 | 1.064 | 1.074 | 1.0868 | 1.086 | 1.064 | 1.075 | 1.087 | 1.086 |
| C1-C2-C3      | 178.2 | 137.8 | 130.6 | 120.1 | 178.3 | 140.3 | 131.2 | 120.5 | 178.2 | 139.3 | 130.8  | 120.1 | 178.1 | 139.1 | 130.5 | 119.9 |
| C2-C3-C4      | 124.4 | 116.8 | 113.2 | 120.0 | 124.6 | 115.3 | 111.2 | 118.7 | 124.4 | 116.1 | 112.2  | 119.8 | 124.5 | 116.6 | 113.3 | 120.3 |
| C9-C8-C7      | 179.2 | 165.3 | 126.7 | 125.0 | 177.4 | 160.0 | 131.0 | 130.6 | 178.5 | 161.5 | 125.6  | 124.3 | 178.7 | 163.0 | 123.9 | 122.3 |

**Table S7.** Optimized geometry parameters of molecular structures 43 - 58 at B3LYP/6-311+G(d) level (bond length in Å, angles in deg); for atoms numbering see Figure S7.<sup>a</sup>

<sup>a</sup> Imaginary frequencies for the transition states: 468.8 *i* cm<sup>-1</sup> (44-TS), 475.0 *i* cm<sup>-1</sup> (48-TS), 473.0 *i* cm<sup>-1</sup> (52-TS), 467.5 *i* cm<sup>-1</sup> (56-TS).

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011



**Figure S7.** B3LYP/6-311+G(d) optimized molecular structures of 43 - 58. Displacement vectors corresponding to imaginary frequency are shown for each transition state (see Scheme 6 for structures).

**Table S8(a).** Calculated  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) constructed from the CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) single point energies and B3LYP/6-311+G(d) frequencies (see Schemes 4 for structures).

|                      | 1   | 2-TS | 3     | 4-TS | 5    | 6-TS | 7-TS | 8    | 9-TS | 10    | 11   | 12-TS | 13    | 14-TS |
|----------------------|-----|------|-------|------|------|------|------|------|------|-------|------|-------|-------|-------|
| $CCSD(T) (\Delta H)$ | 0.0 | 29.1 | -22.2 | 26.2 | -3.5 | 15.0 | 8.7  | -9.4 | -8.4 | -96.7 | -1.4 | 31.9  | -18.0 | 2.0   |
| $CCSD(T) (\Delta G)$ | 0.0 | 32.9 | -17.2 | 31.7 | 1.0  | 19.8 | 14.0 | -6.2 | -3.3 | -91.2 | -1.6 | 36.0  | -13.4 | 7.2   |

**Table S8(b).** Calculated  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) constructed from the CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) single point energies and B3LYP/6-311+G(d) frequencies (see Schemes 5 for structures); compound 15 was used as a reference point.

|                      | 15    | 16-TS | 17    | 18    | 19     | 20-TS | 21    | 22    | 23     | 24-TS | 25    | 18    | 26    | 27-TS | 28    |
|----------------------|-------|-------|-------|-------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
| $CCSD(T) (\Delta H)$ | 0.0   | 29.7  | -16.8 | -95.3 | 7.9    | 36.1  | -16.2 | -90.0 | 6.7    | 35.4  | -24.2 | -95.3 | -43.1 | -0.9  | -28.0 |
| $CCSD(T) (\Delta G)$ | 0.0   | 34.0  | -11.5 | -89.5 | 8.2    | 40.2  | -10.9 | -84.4 | 6.5    | 39.0  | -19.0 | -89.5 | -42.6 | 3.6   | -22.7 |
|                      | 29    | 30    | 31-TS | 32    | 33     | 34    | 35-TS | 36    | 33     | 37    | 38-TS | 39    | 40    | 41    | 42    |
| $CCSD(T) (\Delta H)$ | -99.6 | -43.7 | -5.6  | -29.0 | -100.9 | -1.2  | 29.8  | -22.7 | -100.9 | -3.8  | 30.7  | -41.2 | -56.9 | -66.0 | -63.5 |
| $CCSD(T) (\Delta G)$ | -94.0 | -43.3 | -0.9  | -23.7 | -95.2  | -1.1  | 33.3  | -18.1 | -95.2  | -3.9  | 35.5  | -35.9 | -51.3 | -60.7 | -58.4 |

**Table S8(c).** Calculated  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) constructed from the CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) single point energies and B3LYP/6-311+G(d) frequencies (see Schemes S2 for structures); compound 15 was used as a reference point.

|                      | 15  | Z-34 | Z-35-TS | Z-36  | Z-33   | <b>Z-37</b> | Z-38-TS | Z-39  | Z-40  | 41    | 42    |
|----------------------|-----|------|---------|-------|--------|-------------|---------|-------|-------|-------|-------|
| $CCSD(T) (\Delta H)$ | 0.0 | -1.9 | 23.5    | -28.9 | -100.9 | -0.4        | 28.5    | -41.3 | -56.9 | -66.0 | -63.5 |
| $CCSD(T) (\Delta G)$ | 0.0 | -1.4 | 27.4    | -23.6 | -95.2  | -0.1        | 32.6    | -35.8 | -51.3 | -60.7 | -58.4 |

**Table S8(d).** Calculated  $\Delta H$  and  $\Delta G$  energy surfaces (in kcal/mol) constructed from the CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) single point energies and B3LYP/6-311+G(d) frequencies (see Schemes 6 for structures).

|                      | 43  | 44-TS | 45    | 46     | 47  | <b>48-TS</b> | 49    | 50    |
|----------------------|-----|-------|-------|--------|-----|--------------|-------|-------|
| $CCSD(T) (\Delta H)$ | 0.0 | 30.5  | -23.8 | -100.5 | 0.0 | 27.2         | -24.7 | -98.1 |
| $CCSD(T) (\Delta G)$ | 0.0 | 34.4  | -18.8 | -94.7  | 0.0 | 31.1         | -19.8 | -93.0 |
|                      | 51  | 52-TS | 53    | 54     | 55  | 56-TS        | 57    | 58    |
| CCSD(T)(AH)          | 0.0 | 28.5  | -25.5 | -99 7  | 0.0 | 29.4         | -24 4 | -99.4 |
|                      | 0.0 | 20.0  | 20.0  | ////   | 0.0 |              |       |       |

#### **Details of QTAIM calculations**

Nucleus of nitrogen atom in these molecules is most powerful attractor of electrons, and localization of electrons in nitrogen atom basin should result in decrease of total energy. In molecule **36** the nitrogen atom is surrounded by two carbon atoms, and Bader atomic charges (a.u.) at MP2(full)/6-311++G(d,p) level of theory are: q(N) = -1.101, q(C2) = +0.609, q(C4) = +0.283 (see Figure S6(c) for structures). However, nitrogen atom is able to more electronic charge accumulation, which become evident in molecule **39**, where nitrogen atom is surrounded by three carbon atoms with an additional source of electrons. For compound **39** Bader atomic charges (a.u.) at MP2(full)/6-311++G(d,p) level of theory are: q(N) = -1.206, q(C3) = +0.330, q(C5) = +0.310, q(C8) = +0.405. Thus, lowering of total energy of compound **39** resulted from more effective accumulation of electrons in the nitrogen atom basin. Analysis of atomic energies (E<sub>e</sub>( $\Omega$ )) changes shown, that electronic energy of the nitrogen atom was decreased to the highest degree when transition from **36** to **39** did occur.

Compounds **36** and **39** have different distribution of delocalization indices ( $\delta(A,B)$ ) in sixmembered heterocycle, which may be interpreted in terms of bonds orders.<sup>1</sup> In molecule **36** chemical bonds have different values of  $\delta(A,B)$  (MP2(full)/6-311++G(d,p)):  $\delta(C1,C2) = 1.306$ ,  $\delta(C2,N3) = 1.425$ ,  $\delta(N3,C4) = 0.770$ ,  $\delta(C4,C8) = 0.809$ ,  $\delta(C8,C9) = 1.354$ ,  $\delta(C9,C1) = 0.934$  (see Scheme 5 for atoms numbering). In molecule **39** delocalization indices are distributed more uniformly:  $\delta(C1,C2) = 1.145$ ,  $\delta(C2,N3) = 1.171$ ,  $\delta(N3,C4) = 0.956$ ,  $\delta(C4,C8) = 0.953$ ,  $\delta(C8,C9) = 1.145$ ,  $\delta(C9,C1) = 1.159$ . At the same level of theory  $\delta(A,B)$  values of heterocycle **39** are similar to  $\delta(A,B)$  values of pyridine molecule:  $\delta(N1,C2) = 1.101$ ,  $\delta(C2,C3) = 1.142$ ,  $\delta(C3,C4) = 1.172$ . The  $\delta(A,B)$  values are known to depend on theory level,<sup>2</sup> however, the calculated relative changes of  $\delta(A,B)$  values were conserved at different levels of theory.

QTAIM calculations (Quantum Theory of Atoms in Molecules) were carried out for fully optimized molecular geometries at MP2(full)/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels of theory. Topological parameters of electron density function were calculated by AIMAII Standard software.<sup>3</sup> For all atoms and parameters "Proaim" basin integration method with "Very High" basin quadrature option were used.

<sup>&</sup>lt;sup>1</sup> C.F. Matta, R.J. Boyd, *The quantum theory of atoms in molecules: from solid state to DNA and drug design*, Wiley-VCH Verlag GmbH & Co. KGaA, 2007.

<sup>&</sup>lt;sup>2</sup> For example, at B3LYP/6-311++G(d,p) level the values for molecule **36** are:  $\delta(C1,C2) = 1.580$ ,  $\delta(C2,N3) = 1.740$ ,  $\delta(N3,C4) = 0.889$ ,  $\delta(C4,C8) = 0.961$ ,  $\delta(C8,C9) = 1.666$ ,  $\delta(C9,C1) = 1.079$ ; for molecule **39**:  $\delta(C1,C2) = 1.346$ ,  $\delta(C2,N3) = 1.403$ ,  $\delta(N3,C4) = 1.109$ ,  $\delta(C4,C8) = 1.124$ ,  $\delta(C8,C9)$ 

= 1.360,  $\delta(C9,C1) = 1.373$ ; and for pyridine molecule:  $\delta(N1,C2) = 1.318$ ,  $\delta(C2,C3) = 1.350$ ,

 $\delta(C3,C4) = 1.391.$ 

<sup>3</sup> Keith T.A., AIMAll 10.05.04 Standard, http://aim.tkgristmill.com