Ruthenium-Catalyzed Intramolecular Carbocyclization of Alkynes with an sp³ Carbon by an Oxidative Deprotonation Process

Bo-Xiao Tang,^{*b,c*} Ren-Jie Song,^{*a,c*} Cui-Yan Wu,^{*a,b*} Zhi-Qiang Wang,^{*a,b*} Yu Liu,^{*a*} Xiao-Cheng Huang,^{*a,b*} Ye-Xiang Xie,^{*a*} and Jin-Heng Li^{**a*}

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China. Fax: 0086731 8887 2531; Tel: 0086731 8887 2576; E-mail: <u>jhli@hnu.edu.cn</u>
^b Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China
^c These authors contributed equally.

Supporting Information

List of Contents

(A) Typical experimental procedure	S2-S13
(B) Analytical data for 1-4	S13-S28
(C) References	S29
(D) Spectra of 1-4	S30-S95
(E) The intermolecular kinetic isotope effect experiment	S96-97
(F) The X-ray single-crystal diffraction analysis of product 2a	S98-S108

(A) Typical Experimental Procedure

(a) Synthesis of substrates 1 by the known procedure¹

(b) Typical Experimental Procedure for the RuCl₃-Catalyzed Intramolecular Carbocyclization in the Presence of CuCl₂ and O₂:

To a Schlenk tube were added 2-acetamido-*N*-(2-ethynyl)aryl)acetamides **1** (0.3 mmol), RuCl₃ (10 mol %), CuCl₂ (20 mol %), H₂O (6 equiv) and anhydrous THF (3 mL). Then the tube was charged with O₂ (1 atm), and was stirred at 120 $^{\circ}$ C (oil bath temperature) for the indicated time until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in diethyl ether, and washed with brine. The aqueous phase was re-extracted with diethyl ether. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired products **2**, **3** and **4**.

(c) Table S1

It is noted that the reaction can not take place without Ru catalysis (entry 11), and three other Ru ctalysts (RuCl₂(Ph₃P), dichloro(*p*-cymene)ruthenium(II) dimer and Rhodium(III) 2,4-pentanedionate) display less efficiency for the reaction. It was found that water affected the reaction (entries 4, 14 and 15), and the yields were decreased to 36% and 44%, respectively, using 4 equiv or 8 equiv water.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{1 \text{ RuCl}_{2}(10) - \text{ THF} 120 9 \text{ trace trace}}$
$I = RuCl_2(10) = THF = 120 - 9 trace tra$
2° RuCl ₃ (10) CuCl ₂ (100) THF 120 14 trace tra
3 $RuCl_3(10)$ $CuCl_2(40)$ THF 120 55 5
4 $RuCl_3(10)$ $CuCl_2(20)$ THF 120 59 6
5 $RuCl_3(10)$ $CuCl_2(10)$ THF 120 49 trace trace
6^{c} RuCl ₃ (10) CuCl ₂ (20) THF 120 16 trace tra
7 $RuCl_3(10)$ $CuCl_2(20)$ THF 100 40 6
8 RuCl ₃ (10) CuCl ₂ (20) THF 130 55 6
9 — $CuCl_2(20)$ THF 120 0 0
10 $RuCl_3(5)$ $CuCl_2(20)$ THF 120 45 trace trace
11 RuCl ₃ (20) CuCl ₂ (20) THF 120 43 trace tra
12^d RuCl ₃ (10) CuCl ₂ (20) THF 120 65 3
13 RuCl ₂ (Ph ₃ P) (10) CuCl ₂ (20) THF 120 7 trace tra
14^{e} Ru ₂ Cl ₄ (C ₁₀ H ₁₄) ₂ (10) CuCl ₂ (20) THF 120 8 trace trace
15^{f} Ru(C ₅ H ₇ O ₂) ₃ (10) CuCl ₂ (20) THF 120 <5 0
16^{g} RuCl ₃ (10) CuCl ₂ (20) THF 120 41 trace tra
17^{h} RuCl ₃ (10) CuCl ₂ (20) THF 120 49 trace tra
18 $RuCl_3(10)$ $CuBr_2(20)$ THF 100 10 trace trace
19 RuCl ₃ (10) CuI (20) THF 100 8 trace tra
20 RuCl ₃ (10) CuCl (20) THF 100 30 8
21 $\operatorname{RuCl}_3(10)$ oxone (100) THF 100 trace trace trace
22 $\operatorname{RuCl}_{3}(10)$ $\operatorname{CuCl}_{2}(20)$ dioxane 100 20 trace tra
23 $\operatorname{RuCl}_3(10)$ $\operatorname{CuCl}_2(20)$ DMF 100 trace trace trace
24 $\operatorname{RuCl}_{2}(10)$ $\operatorname{CuCl}_{2}(20)$ toluene 100 10 trace trace

Table S1. Cyclization of N-Methyl-2-oxo-N-phenylacetamide (1a)^a

^a Reaction conditions: **1a** (0.3 mmol), H₂O (6 equiv), [Ru], additive, O₂ (1 atm) and THF (3 mL) for 10 h. ^b In argon. ^c Air (1 atm) instead of O₂. ^d diglyme (3 mL) instead of THF. ^e Ru₂Cl₄(C₁₀H₁₄)₂ = dichloro(*p*-cymene)ruthenium(II) dimer. ^f Ru(C₅H₇O₂)₃ = Rhodium(III) 2,4-pentanedionate. ^g H₂O (4 equiv) was added. ^h H₂O (8 equiv) as added.

(d) The ¹⁸O-labeled Experiments Determined by GC-MS Analysis (Figure S1).

Figure S1 The ¹⁸O-labeled Experiments Determined by GC-MS Analysis.

Chemical Formula: C₁₉H₁₆N₂O₃ Molecular Weight: 320.34194

[MS Spectrum]	78.10 77483.20
# of Peaks127	85.10 31661.31
Raw Spectrum 4.125 (scan : 436)	88.10 24941.03
Background No Background	89.10 83533.45
Spectrum	90.10 57712.39
Base Peakm/z 278.10 (Inten :	91.10 12225 5.06
241,828)	102.10 48882.02
m/z Absolute Intensity Relative	103.10 51022.11
Intensity	104.10 30091.24
40.00 95108 39.33	105.10 51870 21.45
41.05 39181.62	106.05 40601.68
42.05 42951.78	116.10 50122.07
43.05 50568 20.91	117.15 93833.88
44.05 44781.85	118.15 10699 4.42
50.05 27891.15	128.10 30961.28
51.05 13375 5.53	130.15 30501.26
55.10 26961.11	143.10 38061.57
57.10 68012.81	146.05 85853.55
58.05 62572.59	159.05 52132.16
63.05 34661.43	165.10 42441.75
65.10 25201.04	173.10 15054 6.23
69.05 28311.17	174.10 25101.04
71.10 47791.98	175.10 25771.07
75.05 33731.39	190.05 30121.25
76.05 65742.72	201.05 12030 4.97
77.05 90628 37.48	204.00 46701.93

205.00	6532	2.70
206.05	4784	1.98
215.05	16833	6.96
216.10	2891	1.20
218.10	4728	1.96
219.05	6025	2.49
220.05	2987	1.24
233.10	9704	4.01
234.05	17944	7.42
235.00	4446	1.84
248.10	5403	2.23
249.10	42526	17.59
250.10	15483	6.40
251.10	2654	1.10
261.05	4494	1.86
262.05	3456	1.43
263.05	3326	1.38
277.05	207248	85.70
278.10 2	241828	100.00
279.10	40158	16.61
280.05	4399	1.82
291.10	1483	0.61
<u>320.10</u>	47028	<i>19.45</i>
321.10	9800	4.05
<u>322.10</u>	1688	0.70

Chemical Formula: C₁₉H₁₆N₂O₂¹⁸O Molecular Weight: 322

102.10	61872.77	165.05	45892.06	229.00	13160.59
103.10	65162.92	166.05	13190.59	231.05	25441.14
104.10	32751.47	171.05	22981.03	232.00	18600.83
105.10	43608 19.53	172.10	12680.57	233.05	13288 5.95
106.15	36621.64	173.05	15896 7.12	234.05	20631 9.24
107.10	17419 7.80	174.10	26441.18	235.00	48332.16
108.15	13890.62	175.10	25521.14	236.05	31331.40
113.15	10260.46	176.00	14120.63	245.00	10960.49
114.10	28461.27	177.10	19500.87	247.00	30861.38
115.15	31211.40	178.05	21180.95	248.05	70373.15
116.15	69953.13	179.10	16840.75	249.05	59561 26.68
117.15	10785 4.83	180.00	16240.73	250.10	22212 9.95
118.15	13878 6.22	190.05	32881.47	251.10	49742.23
119.10	16520.74	191.00	16200.73	252.10	12970.58
127.20	12140.54	192.05	10100.45	261.05	53982.42
128.10	34701.55	193.05	14280.64	262.05	36641.64
129.10	26031.17	194.10	21100.95	263.05	29521.32
130.10	32721.47	200.00	11370.51	264.10	13740.62
131.10	13290.60	201.00	89454.01	276.05	22951.03
132.10	11180.50	202.00	22160.99	277.05	214608 96.12
139.05	11720.52	203.05	51632.31	278.05	223263 100.00
142.05	14060.63	204.10	54922.46	279.05	114488 51.28
143.10	48562.18	205.05	83463.74	280.05	91516 40.99
144.10	20110.90	206.05	48002.15	281.05	15329 6.87
145.10	19050.85	207.05	23701.06	282.05	23441.05
146.10	12539 5.62	215.05	14146 6.34	291.10	14380.64
147.10	19120.86	216.05	31461.41	320.05	<u>30237 13.54</u>
149.05	14390.64	217.05	65672.94	321.05	63222.83
151.05	22241.00	218.00	56332.52	<u>322.05</u>	<u>35724 16.00</u>
152.05	18840.84	219.05	74793.35	323.10	83313.73
158.05	13850.62	220.05	35511.59	324.05	2670 1.20
163.05	17150.77	221.05	22891.03		
164.10	17800.80	222.05	14300.64		

Chemical Formula: C₁₉H₁₈N₂O₃ Molecular Weight: 322

%					
50.0 40		159			
	105	175			
	0.6 118 ¹³⁰	160 148 169	199 217 234	263 264	322
50 1	00	150	200	250	300
[MS Spectrum]	40.00	87729 5	58.47	58.10	63634.24
# of Peaks357	41.05	36342.42		59.10	17611.17
Raw Spectrum 21.750 (scan : 2131)	42.05	45843.06		70.10	18641.24
Background No Background	43.05	33495 2	22.32	71.10	43822.92
Spectrum	44.00	48493.23		76.10	19761.32
Base Peakm/z 234.10 (Inten :	51.10	58413.89		77.05	36750 24.49
31,051)	55.10	30542.04		78.10	37772.52
m/z Absolute Intensity Relative	56.10	17901.19		89.10	45613.04
Intensity	57.10	75055.00		90.05	17501.17

91.10	36752.45	149.05	23291.55	234.10	88435.89
105.10	51163 34.10	158.10	30252.02	235.05	33692.25
106.10	52913.53	159.10	150040 100.00	263.05	79615.31
117.10	26761.78	160.05	21594 14.39	264.10	16081.07
118.10	37902.53	161.10	19311.29	322.10	3163 2.11
120.10	17231.15	174.10	31342.09	323.30	480 0.39
130.10	72654.84	175.10	57192 38.12	<u>324.30</u>	<i>4 0.00</i>
131.10	68464.56	176.10	67314.49		
132.10	36172.41	199.10	63954.26		
148.05	30902.06	217.10	57073.80		

Chemical Formula: C₁₉H₁₈N₂O₂¹⁸O Molecular Weight: 324

	%		:					
	12.5	43 //	105	159 175	234			
	1					2.22		
	10.0	44						
	7.5	5,1	130					
	3			176		265		
	5.0	57 71 89	110		206 217	278		
	2.5	55	108 118 132	² 148	220	180	292	
			97 408	146 165	190 ²⁰⁰ 214 236		289 306 3	22
	0.0 -1, , , 	500 750				250.0 275.0	300.0 3	11 125 0
[MS Spec	etrum]	20.0 72.0	66.05	13780 50	200.0 220.0	100 15	1063039	
# of Peak	s191		67.10	25450.93		101.15	3595131	
Raw Snec	$r_{\rm trum} 6.20$	8 (scan · 686)	68.10	13100.48		102.15	60312.20	
Backgrou	nd No F	Background	69.10	59852.18		102.19	82513.01	
Spectrum		Juekground	70.10	34601.26		105.10	72562.65	
Base Peal	m/z 159 1	0 (Inten ·	71.10	12564	4 58	105.10	89403	32 59
274 312	XIII/2 107.1	o (men :	72.10	31471.15	1.50	106.15	96973 54	
m/z Abs	olute Inten	sity Relative	73.05	23270.85		107.10	50782	18 51
Intensity		sity itelative	74 10	2222.0.81		108.10	4577167	10.01
40.05	35131 28		75.05	46481.69		109.10	19150.70	
41 10	9531347		76.10	67792.47		110 10	14280 52	
42.10	10980	4 00	77.10	112203	40.90	111 20	22480.82	
43.10	56296	20.52	78.10	10753	3.92	112.25	12440.45	
44.05	25104	9.15	79.10	35081.28	• ~ _	113.20	20110.73	
45.05	13705	5.00	81.10	24680.90		114.15	22830.83	
46.10	25550.93		82.10	23280.85		115.15	40001.46	,
50.05	44461.62		83.15	42831.56		116.15	37601.37	
51.10	19972	7.28	84.15	13160.48		117.15	80862.95	
52.10	27401.00		85.15	51391.87		118.10	92403.37	
53.10	16780.61		86.15	12800.47		119.15	18770.68	
54.10	12110.44		87.05	29861.09		120.10	39791.45	
55.10	81712.98		88.10	27080.99		121.15	15840.58	
56.10	29001.06		89.10	13339	4.86	122.15	12310.45	
57.10	11691	4.26	90.10	52301.91		123.20	13260.48	
58.10	23850.87		91.10	10532	3.84	124.15	12550.46	
59.10	10619	3.87	92.05	17450.64		125.20	16110.59	r.
60.05	70362.56		93.10	30351.11		126.10	14380.52	
61.05	2003 0.73		95.25	21110.77		127.20	21610.79	
62.00	17550.64		96.15	17530.64		128.15	64612.36	
63.05	53131.94		97.15	36451.33		129.10	37481.37	
64.05	18200.66		98.20	16940.62		130.15	19426	7.08
65.10	42921.56		99.15	28311.03		131.15	15800	5.76

132.15	84003.06	178.10	48621.77	231.05	26390.96
133.15	56522.06	179.10	35021.28	232.05	21640.79
134.15	13830.50	180.05	15090.55	233.10	29841.09
135.10	10670.39	184.05	10220.37	234.05	56470 20.59
139.10	21870.80	185.10	15440.56	235.05	17177 6.26
140.10	11660.43	190.00	19400.71	236.05	44641.63
141.20	13100.48	191.05	19250.70	237.10	13840.50
142.10	10320.38	192.10	15660.57	246.10	34761.27
143.10	21480.78	193.05	12950.47	247.00	13580.50
144.10	14440.53	194.05	17660.64	248.05	44381.62
145.10	22250.81	195.05	10710.39	249.10	41131.50
146.10	39631.44	199.10	11518 4.20	250.10	21420.78
147.10	33231.21	200.10	42061.53	251.10	16880.62
148.10	70282.56	201.05	25370.92	261.10	23440.85
149.05	30851.12	202.05	16340.60	262.05	63362.31
150.10	16110.59	203.10	22090.81	263.05	27076 9.87
151.10	20400.74	204.05	74722.72	264.05	10025 3.65
152.10	25610.93	205.10	45421.66	265.10	16209 5.91
153.10	11340.41	206.05	12494 4.55	266.10	35821.31
155.20	11440.42	207.05	65192.38	276.10	13100.48
158.10	10504 3.83	208.05	20220.74	277.05	84653.09
159.10	274312 100.00	209.10	14410.53	278.05	10034 3.66
160.10	42129 15.36	210.05	13850.50	279.05	66192.41
161.05	40201.47	211.05	13290.48	280.05	53081.94
162.10	11500.42	214.05	25110.92	281.05	13840.50
163.10	17230.63	215.10	10920.40	289.10	16270.59
164.10	18190.66	216.05	17080.62	291.10	14440.53
165.10	38351.40	217.10	11025 4.02	292.10	69742.54
166.10	14190.52	218.05	57582.10	293.10	20140.73
167.10	14960.55	219.05	39631.44	306.10	12430.45
173.10	16880.62	220.05	69072.52	308.10	10160.37
174.10	72592.65	221.05	26790.98	<u>322.10</u>	<u>31531.15</u>
175.10	111784 40.75	222.05	15220.55	323.10	12560.46
176.05	15069 5.49	223.10	25360.92	<u>324.05</u>	28731.05
177.10	33681.23	224.10	1003 0.37		
			N O		
		Chem	vical Formula: Cu-HusNOs		
		N	lolecular Weight: 263		

115.15 27553.56	178.15 10931.41	236.20 24383.15
117.70 32194.16	206.15 27943.61	246.10 62528.08
128.10 30433.93	207.10 857211.08	247.15 13011.68
129.20 18512.39	208.10 16062.08	248.10 26603.44
130.15 45305.85	209.05 792 1.02	262.10 15321 19.80
131.65 26183.38	218.15 21532.78	<u>263.15 58669 75.83</u>
158.10 10761 13.91	219.15 20292.62	264.15 11736 15.17
159.15 13451.74	220.10 13471.74	<u>265.10 1176 1.52</u>
163.15 867 1.12	234.15 77370 100.00	
165.15 18392.38	235.15 22014 28.45	

Chemical Formula: C₁₇H₁₃NO¹⁸O Molecular Weight: 265

[MS Spectrum]	54.00	56 0.18	86.10	171 0.55
# of Peaks357	55.00	334 1.08	87.00	580 1.87
Raw Spectrum 21.750 (scan : 2131)	56.00	164 0.53	88.10	844 2.72
Background No Background	57.00	214 0.69	89.10	343811.07
Spectrum	58.00	304 0.98	90.10	387 1.25
Base Peakm/z 234.10 (Inten :	61.00	155 0.50	91.10	401 1.29
31,051)	62.10	744 2.40	92.10	35 0.11
m/z Absolute Intensity Relative	63.05	16275.24	94.10	65 0.21
Intensity	64.00	264 0.85	95.10	185 0.60
30.00 68 0.22	65.00	310 1.00	96.20	686 2.21
31.10 72 0.23	66.00	219 0.71	97.20	320 1.03
32.05 933030.05	68.00	91 0.29	98.20	121 0.39
34.10 40 0.13	69.00	420 1.35	99.20	70 0.23
37.10 9 0.03	70.00	100 0.32	101.10	15044.84
38.10 163 0.52	71.00	200 0.64	102.15	15114.87
39.10 11643.75	72.00	59 0.19	103.15	24968.04
40.00 11453.69	73.10	814 2.62	104.05	672 2.16
41.00 323 1.04	74.00	704 2.27	105.10	17806 57.34
42.00 323 1.04	75.05	20546.61	106.10	15935.13
43.10 14404.64	76.10	14464.66	107.10	10656 34.32
44.05 946 3.05	77.10	28809 92.78	108.10	10003.22
45.10 236 0.76	78.10	22967.39	109.10	243 0.78
46.10 36 0.12	79.10	436 1.40	110.10	262 0.84
47.10 12 0.04	80.10	65 0.21	111.10	222 0.71
49.10 16 0.05	81.10	315 1.01	112.10	81 0.26
50.00 11163.59	82.10	280 0.90	113.10	81 0.26
51.10 495615.96	83.10	110 0.35	114.15	568 1.83
52.05 659 2.12	84.10	30 0.10	115.10	13374.31
53.00 148 0.48	85.10	272 0.88	115.70	78 0.25

116.65	541 1.74	175.20	65 0.21	223.10	83 0.27
117.65	13574.37	176.20	228 0.73	225.10	89 0.29
118.70	123 0.40	177.20	380 1.22	226.10	38 0.12
119.70	22 0.07	178.10	512 1.65	227.10	64 0.21
120.70	6 0.02	179.10	312 1.00	228.10	33 0.11
121.70	46 0.15	180.10	121 0.39	230.10	62 0.20
123.70	20 0.06	181.10	27 0.09	231.10	76 0.24
124.70	19 0.06	182.10	20 0.06	232.10	232 0.75
125.70	46 0.15	183.10	59 0.19	234.10	31051 100.00
126.70	67 0.22	184.10	60 0.19	235.15	967931.17
128.10	16835.42	186.10	137 0.44	236.15	19916.41
129.20	801 2.58	187.10	28 0.09	237.20	179 0.58
130.20	19026.13	188.10	137 0.44	239.20	41 0.13
131.50	576 1.86	189.10	192 0.62	240.20	24 0.08
132.80	552 1.78	190.10	452 1.46	242.20	9 0.03
133.80	3 0.01	191.05	750 2.42	243.20	3 0.01
134.80	99 0.32	192.10	304 0.98	245.20	57 0.18
135.80	8 0.03	193.10	283 0.91	246.10	16865.43
137.80	11 0.04	194.10	121 0.39	247.10	393 1.27
138.80	99 0.32	195.10	4 0.01	248.15	18626.00
140.80	35 0.11	196.10	28 0.09	249.10	403 1.30
142.80	56 0.18	197.10	91 0.29	250.10	540 1.74
143.80	49 0.16	201.10	100 0.32	251.10	147 0.47
144.80	94 0.30	202.10	203 0.65	252.10	3 0.01
146.80	192 0.62	203.10	289 0.93	253.10	531 1.71
147.80	43 0.14	204.10	859 2.77	254.10	115 0.37
149.80	118 0.38	205.00	582 1.87	255.10	160 0.52
150.80	91 0.29	206.15	11463.69	257.10	16 0.05
151.80	89 0.29	207.10	474215.27	258.10	96 0.31
153.80	11 0.04	208.05	986 3.18	261.10	20 0.06
158.10	412913.30	209.05	522 1.68	262.15	401612.93
159.10	443 1.43	210.00	84 0.27	<u>263.15</u>	<u>15621 50.31</u>
160.10	755 2.43	213.00	6 0.02	264.15	496515.99
161.10	128 0.41	215.00	35 0.11	<u>265.15</u>	<u>9841 31.69</u>
162.10	83 0.27	216.00	268 0.86	266.15	15565.01
163.10	409 1.32	217.00	120 0.39	267.10	473 1.52
164.10	440 1.42	218.10	792 2.55	268.10	75 0.24
165.15	871 2.81	219.10	945 3.04	269.10	48 0.15
166.20	168 0.54	220.10	587 1.89	270.10	14 0.05
167.20	116 0.37	221.10	467 1.50		
169.20	224 0.72	222.10	198 0.64		

(e) Data of *in situ* FTIR Analysis (Figure S2)

Substrate **1a**, IR : 1671, 1654, 1562 cm⁻¹.

Product **2a**, IR: 1688, 1659, 1634, 1593 cm⁻¹.

Product **3a**, IR: 1679, 1653, 1593 cm⁻¹.

Figure S2 Data of in situ FTIR Analysis.

(C) Data of *in situ* FTIR analysis of the reaction of **1a** in diglyme

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

The concentration of two peaks, 1975 cm⁻¹ and 2128 cm⁻¹, were increased among 0 - 1.5 h during the reaction of **1a** process using diglyme as the solvent (the results are consistent with the following Reaction Profiles in diglyme. See: Figure S3), but they were disappeared after quenching the reaction.

It is noteworthy that the two peaks, 1975 cm⁻¹ and 2128 cm⁻¹, are also found in THF after 1 h.

Generally, 1671 cm⁻¹ and 1654 cm⁻¹ are the C=O stretching vibration, and 1562 cm⁻¹ is the N-H bending vibration (diglyme as the solvent). According to the N-H bending vibration data of *in situ* FTIR analysis, the 1562 cm⁻¹ peak is increased among 0 - 4 h (The reason may be that the complexation of Ru with nitrogen atom takes place, see: intermediate **A** in Scheme 3), and decreased slowly after 4 h (The reason is that the N-H group links an aromatic group, also supporting by the following Reaction Profiles in diglyme. See: Figure S3 and *Structure Determination of Organic Compounds, Tables of Spectral Data*, 4 ed.; Pretsch, E. Bühlmannn, P.; Affolter, C. Eds.; Springer-Verlag: Berlin Heidelberg, 2009).

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

(A) Reaction profile of the reaction of 1a with RuCl₃, CuCl₂ and O₂ in THF.

(B) Reaction profile of the reaction of **1a** with RuCl₃, CuCl₂ and O₂ in diglyme.

The reaction profiles as outlined in Figure S3 show that substrate **1a** can be consumed completely at about 0.5 h in THF and 2 h in diglyme. However, the yields of products **2a**, **3a** and **4a** were changed slightly with time after 0.5 in THF: from decrease to increase for **2a**, decrease in the whole reaction for **3a**, and from increase to decrease for **4a**. In diglyme, the yields both products **2a** and **3a** did not changed after 2 h, but the yield of **4a** was enhanced to some extwnt throughout the reaction. It is noteworthy that the yield of product **3a** has a maximal peak at about 0.5 h in THF and 1 h in diglyme. The reason may be that some product **3a** is converted to product **2a** (Figure S3A and Scheme 2).

The above results of the reaction profiles also indicate that product **2a** is mainly generated form intermediate **C**, and product **4a** is not from product **3a** (Schemes 2 and 3). In THF, we find that in

THF the yield of 2a is contrary to the yield of 4a and has a maximal peak at about 1.5 h, suggesting that product 4a may be from the same intermediate (intermediate E) with product 2a, and the intermediate is stable to some extent among 0.5 h-1.5 h.

Notably, the rate of the reaction in diglyme is slower than that of in THF.

(B) Analytical data

2-Aetamido-N-methyl-N-(2-(phenylethynyl)phenyl)acetamide (1a)

Pale yellow oil, ¹H NMR (500 MHz) δ : 7.63 (d, *J* = 9.0 Hz, 1H), 7.48-7.35 (m, 7H), 7.27 (d, *J* = 6.5 Hz, 1H), 6.55 (s, 1H), 3.86 (d, *J* = 18.0 Hz, 1H), 3.69 (d, *J* = 17.5 Hz, 1H), 3.34 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.6, 142.7, 133.4, 131.7, 130.1, 129.0, 128.9, 128.4, 128.1, 122.6, 122.2, 95.0, 84.4, 42.2, 36.5, 22.9; IR (KBr, cm⁻¹): 1671, 1654, 1562; LRMS (EI 70 ev) *m*/z (%): 306 (M⁺, 8), 263 (100); HRMS (EI) for C₁₉H₁₈N₂O₂ (M⁺): calcd 306.1143, found 306.1140.

2-Acetamido-N-benzyl-N-(2-(phenylethynyl)phenyl)acetamide (1b)

Pale yellow solid, mp 148.2-150.4 °C (uncorrected); ¹H NMR (500 MHz) δ : 7.60 (d, *J* = 7.0 Hz, 1H), 7.47-7.45 (m, 2H), 7.36-7.33 (m, 4H), 7.25-7.20 (m, 6H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.54 (s, 1H), 5.53 (d, *J* = 9.5 Hz, 1H), 4.40 (d, *J* = 9.0 Hz, 1H), 3.85 (d, *J* = 18.0 Hz, 1H), 3.72 (d, *J* = 18.0 Hz, 1H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.6, 141.0, 136.4, 133.4, 131.7, 129.6, 129.4, 129.2, 129.0, 128.9, 128.4, 128.3, 127.6, 123.0, 122.3, 95.2, 84.7, 52.6, 42.4, 23.0; IR (KBr, cm⁻¹):

1654, 1499; LRMS (EI 70 ev) m/z (%): 382 (M⁺, 1), 283 (100); HRMS (EI) for C₂₅H₂₂N₂O₂ (M⁺):

calcd 382.1401, found 382.1403.

2-Acetamido-*N*-allyl-*N*-(2-(phenylethynyl)phenyl)acetamide (1c)

Pale yellow solid, mp 115.8-118.7 °C (uncorrected); ¹H NMR (500 MHz) δ : 7.63-7.61 (m, 1H), 7.48-7.46 (m, 2H), 7.41-7.38 (m, 2H), 7.36-7.34 (m, 3H), 7.22-7.20 (m, 1H), 6.52 (s, 1H), 5.93-5.87 (m, 1H), 5.14-5.10 (m, 2H), 4.75-4.70 (m, 1H), 4.09-4.05 (m, 1H), 3.84 (d, J = 18.0 Hz, 1H), 3.71 (d, J = 18.0 Hz, 1H), 1.96 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.3, 141.1, 133.3, 132.3, 131.6, 129.7, 129.2, 128.9, 128.8, 128.4, 123.1, 122.3, 118.7, 95.2, 84.9, 52.0, 42.4, 22.9; IR (KBr, cm⁻¹): 1650, 1499; LRMS (EI 70 ev) m/z (%): 332 (M⁺, 2), 232 (100); HRMS (EI) for C₂₁H₂₀N₂O₂ (M⁺): calcd 332.1278, found 332.1274.

N-methyl-N-(2-(phenylethynyl)phenyl)-2-(propylamino)acetamide (1d)

Pale yellow oil; ¹H NMR (500 MHz) δ : 7.63 (d, J = 7.0 Hz, 1H), 7.50-7.48 (m, 2H), 7.41-7.38 (m, 2H), 7.37-7.33 (m, 3H), 7.27-7.24 (m, 1H), 3.34 (s, 3H), 3.13 (d, J = 8.0 Hz, 2H), 2.91-2.39 (m, 2H), 1.44-1.40 (m, 2H), 0.79 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz) δ : 171.4, 143.9, 133.1, 131.7, 129.8, 128.8, 128.4, 128.4, 128.2, 122.7, 122.3, 94.9, 84.7, 51.5, 50.5, 36.3, 22.9, 11.5; IR (KBr, cm⁻¹): 1653; LRMS (EI 70 ev) m/z (%): 306 (M⁺, 5), 72 (100); HRMS (EI) for C₂₀H₂₂N₂O (M⁺): calcd 306.1485, found 306.1483.

2-Acetamido-N-methyl-N-(2-(p-tolylethynyl)phenyl)acetamide (1e)

Pale yellow solid, mp 130.2-132.7 °C (uncorrected); ¹H NMR (500 MHz) δ : 7.61-7.59 (m, 1H), 7.41-7.38 (m, 2H), 7.36 (d, *J* = 7.5 Hz, 2H), 7.28-7.25 (m, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.55 (s, 1H), 3.86 (d, *J* = 18.0 Hz, 1H), 3.72 (d, *J* = 18.0 Hz, 25.5H), 3.33 (s, 3H), 2.36 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.6, 142.7, 139.1, 133.2, 131.5, 130.6, 129.2, 128.9, 128.0, 122.8, 119.1, 95.2, 83.8, 42.1, 36.5, 22.9, 21.5; IR (KBr, cm⁻¹): 1654, 1511; LRMS (EI 70 ev) *m*/z (%): 320 (M⁺, 19), 220 (100); HRMS (EI) for C₂₀H₂₀N₂O₂ (M⁺): calcd 320.1283, found 320.1286.

2-Acetamido-N-methyl-N-(2-(m-tolylethynyl)phenyl)acetamide (1f)

Pale yellow oil; ¹H NMR (500 MHz) δ : 7.62-7.60 (m, 1H), 7.43-7.38 (m, 2H), 7.28-7.22 (m, 4H), 7.17 (d, J = 7.5 Hz, 1H), 6.60 (s, 1H), 3.86 (d, J = 17.5 Hz, 1H), 3.68 (d, J = 18.0 Hz, 1H), 3.34 (s, 3H), 2.35 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.5, 142.6, 138.0, 133.2, 131.9, 129.9, 129.7, 128.8, 128.7, 128.2, 127.9, 122.5, 121.9, 95.0, 83.9, 42.0, 36.3, 22.7, 21.0; IR (KBr, cm⁻¹): 1653, 1510; LRMS (EI 70 ev) m/z (%): 320 (M⁺, 19), 221 (100); HRMS (EI) for C₂₀H₂₀N₂O₂ (M⁺): calcd 320.1283, found 320.1280.

2-Acetamido-N-methyl-N-(2-(o-tolylethynyl)phenyl)acetamide (1g)

Pale yellow solid, mp 128.2-129.6 °C (uncorrected); ¹H NMR (500 MHz) δ : 7.65-7.63 (m, 1H), 7.46-7.39 (m, 3H), 7.27-7.24 (m, 3H), 7.22-7.15 (m, 1H), 6.55 (s, 1H), 3.85 (d, J = 17.5 Hz, 1H), 3.71 (d, J = 18.0 Hz, 1H), 3.34 (s, 3H), 2.43 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.3, 142.4, 140.1, 133.6, 132.2, 130.0, 129.5, 129.0, 128.9, 128.1, 125.6, 122.8, 122.1, 93.7, 88.2, 42.2, 36.4, 23.0, 20.7; IR (KBr, cm⁻¹): 1654, 1514; LRMS (EI 70 ev) m/z (%): 320 (M⁺, 13), 220 (100); HRMS (EI) for C₂₀H₂₀N₂O₂ (M⁺): calcd 320.1283, found 320.1282.

2-Acetamido-N-(2-((3,5-dimethylphenyl)ethynyl)phenyl)-N-methylacetamide (1h)

Pale yellow oil; ¹H NMR (500 MHz) δ : 7.61-7.59 (m, 1H), 7.42-7.37 (m, 2H), 7.28-7.24 (m, 1H), 7.10 (s, 2H), 7.00 (s, 1H), 6.64 (s, 1H), 3.87 (d, *J* = 18.0 Hz, 1H), 3.67 (d, *J* = 18.0 Hz, 1H), 3.34 (s, 3H), 2.30 (s, 6H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.5, 142.6, 137.9, 133.3, 130.8, 129.8, 129.2, 128.8, 128.0, 122.7, 121.8, 95.3, 83.6, 42.1, 36.4, 22.8, 21.0; IR (KBr, cm⁻¹): 1654, 1513; LRMS (EI 70 ev) *m*/z (%): 334 (M⁺, 19), 235 (100); HRMS (EI) for C₂₁H₂₂N₂O₂ (M⁺): calcd 334.1423, found 334.1420.

2-Acetamido-N-(2-((2,4-dimethylphenyl)ethynyl)phenyl)-N-methylacetamide (1i)

Pale yellow solid, mp 143.2-145.8 °C (uncorrected); ¹H NMR (500 MHz) δ : 7.63 (d, J = 8.5 Hz, 1H), 7.41-7.37 (m, 2H), 7.34 (d, J = 7.5 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 6.97 (d, J = 7.5 Hz, 1H), 6.71 (s, 1H), 3.82 (d, J = 18.0 Hz, 1H), 3.70 (d, J = 17.5 Hz, 1H), 3.33 (s, 3H), 2.39 (s, 3H), 2.32 (s, 3H), 1.96 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.3, 142.1, 139.8, 139.1, 133.3, 132.0, 130.2, 129.7, 128.8, 127.9, 126.3, 122.9, 118.9, 93.9, 87.5, 42.0, 36.3, 22.7, 21.3, 20.5; IR (KBr, cm⁻¹): 1653, 1516; LRMS (EI 70 ev) *m*/z (%): 334 (M⁺, 10), 43 (100); HRMS (EI) for C₂₁H₂₂N₂O₂ (M⁺): calcd 334.1423, found 334.1421.

2-Acetamido-N-(2-(mesitylethynyl)phenyl)-N-methylacetamide (1j)

Pale yellow solid, mp 166.2-168.8 °C (uncorrected); ¹H NMR (500 MHz) δ : 7.65-7.63 (m, 1H), 7.41-7.38 (m, 2H), 7.25-7.23 (m, 1H), 6.89 (s, 2H), 6.57 (s, 1H), 3.85 (d, *J* = 18.0 Hz, 1H), 3.72-3.69 (d, *J* = 18.0 Hz, 1H), 3.34 (s, 3H), 2.40 (s, 6H), 2.29 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.7, 168.1, 141.8, 140.3, 138.6, 133.6, 129.7, 128.9, 128.1, 127.7, 123.2, 119.0, 92.7, 92.1, 42.1, 36.4, 22.9, 21.3, 20.9; IR (KBr, cm⁻¹): 1655, 1518; LRMS (EI 70 ev) *m*/z (%): 348 (M⁺, 12), 249 (100); HRMS (EI) for C₂₂H₂₄N₂O₂ (M⁺): calcd 348.1563, found 348.1565.

2-Acetamido-N-methyl-N-(2-(naphthalen-1-ylethynyl)phenyl)acetamide (1k)

Pale yellow oil; ¹H NMR (500 MHz) δ : 8.26 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.72 (t, J = 7.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.44-7.41 (m, 3H), 7.29 (d, J = 1.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.44-7.41 (m, 3H), 7.29 (d, J = 1.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.44-7.41 (m, 3H), 7.29 (d, J = 1.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.44-7.41 (m, 3H), 7.29 (d, J = 1.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.44-7.41 (m, 3H), 7.29 (d, J = 1.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.44-7.41 (m, 3H), 7.29 (d, J = 1.0 Hz, 1H), 7.52 (t, J = 1.0 Hz, 1H), 7.52 (t, J = 1.0 Hz, 1H), 7.54 (t, J = 1.0 Hz, 1H), 7.55 (t, J =

8.0 Hz, 1H), 6.73 (s, 1H), 3.91 (d, *J* = 18.0 Hz, 1H), 3.76 (d, *J* = 18.0 Hz, 1H), 3.40 (s, 3H), 1.92 (s, 3H); ¹³C NMR (125 MHz) δ: 169.9, 168.4, 142.5, 133.5, 132.9, 132.8, 130.9, 130.1, 129.3, 128.9, 128.2, 128.1, 127.0, 126.4, 125.7, 125.1, 122.5, 119.7, 92.9, 89.1, 42.1, 36.5, 22.7; IR (KBr, cm⁻¹): 1654, 1544; LRMS (EI 70 ev) *m*/z (%): 356 (M⁺, 43), 256 (100); HRMS (EI) for C₂₃H₂₀N₂O₂ (M⁺): calcd 356.1267, found 356.1263.

2-Acetamido-N-(2-((4-methoxyphenyl)ethynyl)phenyl)-N-methylacetamide (11)

Pale yellow oil; ¹H NMR (500 MHz) δ : 7.60-7.57 (m, 1H), 7.42-7.37 (m, 4H), 7.27-7.24 (m, 1H), 6.89-6.86 (m, 2H), 6.56 (s, 1H), 3.86 (d, *J* = 18.0 Hz, 1H), 3.82 (s, 3H), 3.68 (d, *J* = 18.0 Hz, 1H), 3.33 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.6, 160.1, 142.5, 133.2, 133.1, 129.6, 128.9, 128.0, 122.9, 114.3, 114.1, 95.2, 83.2, 55.3, 42.1, 36.5, 22.9; IR (KBr, cm⁻¹): 1658, 1539; LRMS (EI 70 ev) *m*/*z* (%): 336 (M⁺, 8), 236 (100); HRMS (EI) for C₂₀H₂₀N₂O₃ (M⁺): calcd 336.1227, found 336.1225.

2-Acetamido-N-(2-((4-chlorophenyl)ethynyl)phenyl)-N-methylacetamide (1m)

Pale yellow solid, mp 103.9-105.8 °C (uncorrected); ¹H NMR (500 MHz) δ: 7.61-7.60 (m, 1H), 7.44-7.38 (m, 4H), 7.31-7.27 (m, 3H), 6.72 (s, 1H), 3.84 (d, *J* = 18.0 Hz, 1H), 3.73 (d, *J* = 18.0 Hz, 1H), 3.32 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ: 169.8, 168.5, 142.7, 134.8, 133.2, 130.2, 129.4, 128.8, 128.6, 128.0, 122.1, 120.5, 93.6, 85.2, 42.0, 36.4, 22.7; IR (KBr, cm⁻¹): 1654, 1520;

LRMS (EI 70 ev) m/z (%): 342 (M⁺+2, 7), 340 (M⁺, 18), 241 (100); HRMS (EI) for C₁₉H₁₇ClN₂O₂

(M⁺): calcd 340.0979, found 340.0974.

2-Acetamido-N-(2-(cyclohexenylethynyl)phenyl)-N-methylacetamide (1n)

Pale yellow oil; ¹H NMR (500 MHz) δ : 7.50 (d, J = 7.0 Hz, 1H), 7.37-7.33 (m, 2H), 7.23 (d, J = 7.0 Hz, 1H), 6.77 (s, 1H), 6.19 (s, 1H), 3.82 (d, J = 18.0 Hz, 1H), 3.61 (d, J = 18.0 Hz, 1H), 3.27 (s, 3H), 2.14 (s, 4H), 1.97 (s, 3H), 1.66-1.60 (m, 4H); ¹³C NMR (125 MHz) δ : 170.0, 168.6, 142.6, 136.6, 133.1, 129.5, 128.8, 127.9, 123.0, 120.2, 97.0, 81.9, 42.0, 36.3, 28.9, 25.7, 22.8, 22.1, 21.3; IR (KBr, cm⁻¹): 1657, 1548; LRMS (EI 70 ev) m/z (%): 310 (M⁺, 1), 238 (100), 210 (40); HRMS (EI) for C₁₉H₂₂N₂O₂ (M⁺): calcd 310.1434, found 310.1432.

2-Acetamido-N-methyl-N-(4-methyl-2-(phenylethynyl)phenyl)acetamide (1p)

Pale yellow oil; ¹H NMR (500 MHz) δ : 7.46-7.43 (m, 3H), 7.35 (s, 3H), 7.21 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 6.56 (s, 1H), 3.84 (d, J = 18.0 Hz, 1H), 3.68 (d, J = 17.5 Hz, 1H), 3.32 (s, 3H), 2.39 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.8, 168.7, 140.2, 139.1, 133.8, 131.6, 130.9, 128.8, 128.4, 127.7, 122.3, 122.1, 94.5, 84.6, 42.1, 36.5, 22.9, 20.9; IR (KBr, cm⁻¹): 1654, 1495; LRMS (EI 70 ev) *m*/z (%): 320 (M⁺, 14), 220 (100); HRMS (EI) for C₂₀H₂₀N₂O₂ (M⁺): calcd 320.1283, found 320.1287.

2-Acetamido-N-(4-fluoro-2-(phenylethynyl)phenyl)-N-methylacetamide (1q)

Pale yellow solid, mp 124.3-126.8 °C (uncorrected); ¹H NMR (500 MHz) δ : 7.48-7.46 (m, 2H), 7.40-7.37 (m, 3H), 7.35-7.30 (m, 1H), 7.27-7.24 (m, 1H), 7.14-7.10 (m, 1H), 6.52 (s, 2H), 3.85 (d, *J* = 18.0 Hz, 1H), 3.69 (d, *J* = 17.5 Hz, 1H), 3.32 (s, 3H), 1.97 (s, 3H); ¹³C NMR (125 MHz) δ : 169.3 (d, *J* = 144.4 Hz, 1C), 161.9 (d, *J* = 248.9 Hz, 1C), 139.0, 131.8, 129.9, 129.8, 129.2, 128.5, 124.6 (d, *J* = 10.6 Hz, 1C), 121.7, 119.9 (d, *J* = 24.3 Hz, 1C), 117.4 (d, *J* = 22.8 Hz, 1C), 96.0, 83.4 (d, *J* = 2.8 Hz, 1C), 42.1, 36.6, 22.9; IR (KBr, cm⁻¹): 1654, 1516; LRMS (EI 70 ev) *m*/z (%): 324 (M⁺, 11), 225 (100); HRMS (EI) for C₁₉H₁₇FN₂O₂ (M⁺): calcd 324.1049, found 324.1047.

N-(4-Benzoyl-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2a)

Hoar solid, mp 114.2-116.4 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.50 (s, 1H), 7.91 (d, *J* = 8.5 Hz, 2H), 7.57-7.49 (m, 2H), 7.44 (t, *J* = 8.0 Hz, 3H), 7.39 (d, *J* = 9.0 Hz, 1H), 7.13-7.10 (m, 1H), 3.87 (s, 3H), 2.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.0, 168.1, 158.2, 138.0, 136.1, 133.0, 129.4, 129.3, 128.5, 127.2, 123.8, 123.1, 118.7, 114.4, 30.9, 23.8; IR (KBr, cm⁻¹): 1686, 1659, 1634, 1593; LRMS (EI 70 ev) *m*/z (%): 320 (M⁺, 19), 278 (100); HRMS (EI) for C₁₉H₁₆N₂O₃ (M⁺): calcd 320.1161, found 320.1163.

N-(4-Benzoyl-1-benzyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2b)

Hoar solid, mp 254.2-256.3 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.55 (s, 1H), 7.95 (d, J = 8.5 Hz, 2H), 7.58-7.55 (m, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.38-7.33 (m, 5H), 7.29-7.24 (m, 3H), 7.07-7.04 (m, 1H), 5.67 (s, 2H), 2.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.0, 168.1, 158.5, 137.9, 135.5, 135.3, 133.1, 129.4, 129.3, 129.0, 128.5, 127.7, 127.3, 126.5, 123.7, 123.2, 119.0, 115.2, 47.5, 23.8; IR (KBr, cm⁻¹): 1667, 1634, 1601; LRMS (EI 70 ev) *m*/z (%): 396 (M⁺, 45), 354 (100); HRMS (EI) for C₂₅H₂₀N₂O₃ (M⁺): calcd 396.1474, found 396.1473.

N-(1-Allyl-4-benzoyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2c)

Hoar solid, mp 126.3-128.1 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.53 (s, 1H), 7.93 (d, *J* = 8.5 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.48-7.43 (m, 3H), 7.40-7.37 (m, 2H), 7.10 (t, *J* = 8.5 Hz, 1H), 6.04-5.96 (m, 1H), 5.31 (d, *J* = 10.5 Hz, 1H), 5.20 (d, *J* = 17.5 Hz, 1H), 5.07 (s, 2H), 2.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.0, 168.1, 157.9, 137.9, 135.3, 133.0, 130.8, 129.3, 129.2, 128.4, 127.2, 123.7, 123.1, 118.8, 117.8, 114.9, 46.0, 23.7; IR (KBr, cm⁻¹): 1671, 1634, 1601; LRMS (EI 70 ev) *m*/z (%): 346 (M⁺, 24), 304 (100); HRMS (EI) for C₂₁H₁₈N₂O₃ (M⁺): calcd 346.1317, found 346.1315.

N-(1-Methyl-4-(4-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2e)

Hoar solid, mp 138.3-140.2 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.47 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.43-7.38 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 3.86 (s, 3H), 2.40 (s, 3H), 2.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 191.9, 168.2, 158.3, 143.9, 136.1, 135.4, 129.4, 129.2, 127.2, 123.7, 123.0, 118.7, 114.3, 30.8, 23.7, 21.7; IR (KBr, cm⁻¹): 1667, 1634, 1601; LRMS (EI 70 ev) *m*/z (%): 334 (M⁺, 28), 292 (100); HRMS (EI) for C₂₀H₁₈N₂O₃ (M⁺): calcd 334.1317, found 334.1313.

N-(1-Methyl-4-(3-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2f)

Hoar solid, mp 120.3-122.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.50 (s, 1H), 7.78 (s, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.38-7.35 (m, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 3.87 (s, 3H), 2.38 (s, 3H), 2.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.2, 168.1, 158.2, 138.2, 137.9, 136.0, 133.9, 129.4, 128.3, 127.2, 126.9, 123.6, 123.1, 118.7, 114.3, 30.8, 23.7, 21.3; IR (KBr, cm⁻¹): 1670, 1638, 1601; LRMS (EI 70 ev) *m*/z (%): 334 (M⁺, 26), 292 (100); HRMS (EI) for C₂₀H₁₈N₂O₃ (M⁺): calcd 334.1317, found 334.1315.

N-(1-Methyl-4-(2-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2g)

Hoar solid, mp 190.6-192.3 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.36 (s, 1H), 7.55-7.46 (m, 3H), 7.42-7.37 (m, 2H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 2H), 3.84 (s, 3H), 2.73 (s, 3H), 2.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.5, 168.3, 158.4, 140.4, 136.3, 136.0, 132.2, 132.1, 129.4, 126.8, 125.4, 123.6, 123.1, 118.7, 114.3, 30.7, 23.6, 21.8; IR (KBr, cm⁻¹): 1667, 1637, 1601; LRMS (EI 70 ev) *m*/z (%): 334 (M⁺, 23), 292 (100); HRMS (EI) for C₂₀H₁₈N₂O₃ (M⁺): calcd 334.1317, found 334.1319.

N-(4-(3,5-Dimethylbenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2h)

Hoar solid, mp 191.6-193.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.54 (s, 1H), 7.52 (s, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.18 (s, 1H), 7.10 (t, J = 7.5 Hz, 1H), 3.87 (s, 3H), 2.31 (s, 6H), 2.07 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.4, 168.0, 158.2, 138.0, 137.9, 136.0, 135.0, 129.3, 127.2, 127.0, 123.5, 123.0, 118.7, 114.3, 30.8, 23.7, 21.2 (2C); IR (KBr, cm⁻¹): 1671, 1634, 1601; LRMS (EI 70 ev) m/z (%): 348 (M⁺, 38), 306 (100); HRMS (EI) for C₂₁H₂₀N₂O₃ (M⁺): calcd 348.1474, found 348.1471.

N-(4-(2,4-Dimethylbenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2i)

Hoar solid, mp 172.1-174.6 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.33 (s, 1H), 7.51-7.48 (m, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.5 Hz, 1H), 7.14 (s, 1H), 7.12 (d, J = 6.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 3.84 (s, 3H), 2.71 (s, 3H), 2.34 (s, 3H), 2.03 (s, 3H); ¹³C NMR

(125 MHz, CDCl₃) δ : 193.0, 168.0, 158.2, 142.6, 140.3, 136.0, 133.2, 132.8, 132.4, 129.1, 126.7, 125.9, 123.2, 122.8, 118.5, 114.0, 30.5, 23.4, 21.7, 21.2; IR (KBr, cm⁻¹): 1658, 1634, 1593; LRMS (EI 70 ev) *m*/z (%): 348 (M⁺, 36), 306 (100); HRMS (EI) for C₂₁H₂₀N₂O₃ (M⁺): calcd 348.1474, found 348.1473.

N-(1-Methyl-2-oxo-4-(2,4,6-trimethylbenzoyl)-1,2-dihydroquinolin-3-yl)acetamide (2j)

Hoar solid, mp 227.3-229.4 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 7.79 (d, *J* = 9.5 Hz, 1H), 7.73 (s, 1H), 7.57-7.54 (m, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.23-7.20 (m, 1H), 6.87 (s, 2H), 3.81 (s, 3H), 2.29 (s, 3H), 2.25 (s, 6H), 1.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 195.0, 169.0, 159.0, 141.2, 138.7, 137.6, 137.4, 134.8, 130.5, 130.0, 126.4, 124.4, 123.3, 117.8, 114.6, 30.7, 23.5, 22.0 (2C), 21.2; IR (KBr, cm⁻¹): 1659, 1634, 1595; LRMS (EI 70 ev) *m*/z (%): 362 (M⁺, 13), 303 (100); HRMS (EI) for C₂₂H₂₂N₂O₃ (M⁺): calcd 362.1630, found 362.1631.

N-(4-(1-Naphthoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2k)

Hoar solid, mp 203.4-205.7 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 9.27 (d, J = 8.5 Hz, 1H), 8.30 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.71-7.68 (m, 1H), 7.59-7.55 (m, 2H), 7.51 (t, J = 8.0 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 3.86 (s, 3H), 1.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.8, 168.6, 158.5, 136.5, 134.1, 134.0, 133.4, 132.4, 130.7, 129.6, 128.5, 128.4, 127.1, 126.5,

126.4, 124.2, 123.8, 123.2, 118.9, 114.4, 30.8, 23.5; IR (KBr, cm⁻¹): 1656, 1634, 1597; LRMS (EI 70 ev) m/z (%): 370 (M⁺, 30), 327 (100); HRMS (EI) for C₂₃H₁₈N₂O₃ (M⁺): calcd 370.1317, found 370.1316.

N-(4-(4-Methoxybenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2l)

Hoar solid, mp 161.3-162.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.38 (s, 1H), 7.89 (d, J = 8.5 Hz, 2H), 7.51 (t, J = 8.0 Hz, 1H), 7.42 (t, J = 7.0 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 191.0, 163.5, 158.4, 136.3, 131.7, 130.8, 129.5, 127.3 (2C), 123.7, 123.1 (2C), 118.7, 114.3, 113.8, 55.4, 30.8, 23.7; IR (KBr, cm⁻¹): 1638, 1593, 1507; LRMS (EI 70 ev) m/z (%): 350 (M⁺, 13), 271 (63), 40 (100); HRMS (EI) for C₂₀H₁₈N₂O₄ (M⁺): calcd 350.1266, found 350.1263.

N-(4-(4-Chlorobenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2m)

Hoar solid, mp 116.7-118.9 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.60 (s, 1H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.54-7.50 (m, 1H), 7.46-7.40 (m, 3H), 7.17 (d, *J* = 9.5 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 3.87 (s, 3H), 2.09 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 190.7, 168.2, 158.1, 139.4, 136.5, 136.0, 130.6, 129.5, 129.1, 128.8, 127.0, 123.8, 123.2, 118.5, 114.5, 30.9, 23.8; IR (KBr, cm⁻¹): 1667, 1638, 1597; LRMS (EI 70 ev) *m*/*z* (%): 356 (M⁺+2, 8), 354 (M⁺, 21), 312 (100); HRMS (EI) for C₁₉H₁₅ClN₂O₃ (M⁺): calcd 354.0771, found 354.0768.

N-(4-(Cyclohex-1-enecarbonyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2n)

Hoar solid, mp 184.6-186.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.30 (s, 1H), 7.54-7.52 (m, 2H), 7.40 (d, J = 8.5 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 6.60 (s, 1H), 3.82 (s, 3H), 2.47 (br, 2H), 2.19 (br, 2H), 2.15 (s, 3H), 1.71 (br, 2H), 1.65 (br, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.4, 168.6, 158.4, 144.1, 139.7, 136.4, 133.2, 129.7, 127.0, 123.4, 123.2, 118.9, 114.3, 30.7, 26.2, 25.7, 22.6, 21.9, 21.6; IR (KBr, cm⁻¹): 1642, 1597, 1503; LRMS (EI 70 ev) m/z (%): 324 (M⁺, 100), 239 (91); HRMS (EI) for C₁₉H₂₀N₂O₃ (M⁺): calcd 324.1474, found 324.1476.

N-(4-Benzoyl-1,6-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (20)

Hoar solid, mp 197.1-199.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.50 (s, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.32 (s, 2H), 7.19 (s, 1H), 3.84 (s, 3H), 2.23 (s, 3H), 2.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.1, 168.2, 158.0, 137.7, 134.2, 133.0, 132.7, 130.8, 129.2, 128.4, 126.8, 123.7, 118.5, 114.2, 30.8, 23.6, 20.8; IR (KBr, cm⁻¹): 1656, 1634, 1597; LRMS (EI 70 ev) *m*/z (%): 334 (M⁺, 21), 292 (100); HRMS (EI) for C₂₀H₁₈N₂O₃ (M⁺): calcd 334.1317, found 334.1312.

N-(4-Benzoyl-6-fluoro-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (20)

Hoar solid, mp 206.4-208.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.55 (s, 1H), 7.89 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.41-7.38 (m, 1H), 7.26-7.22 (m, 1H), 7.14-7.11 (m, 1H), 3.87 (s, 3H), 2.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 191.3, 168.1, 157.8, 137.6, 133.2, 129.2, 128.6, 124.8, 117.2 (d, *J* = 24.1 Hz, 1C), 115.9 (d, *J* = 8.6 Hz, 1C), 112.7 (d, *J* = 24.6 Hz, 1C), 31.2, 23.8; IR (KBr, cm⁻¹): 1667, 1638, 1503; LRMS (EI 70 ev) *m*/z (%): 338 (M⁺, 21), 296 (100); HRMS (EI) for C₁₉H₁₅FN₂O₃ (M⁺): calcd 338.1067, found 338.1065.

N-(4-Benzoyl-1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)acetamide (3a)

Hoar solid, mp 128.3-130.4 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 8.00 (d, J = 8.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.29-7.23 (m, 2H), 7.03 (d, J = 8.0 Hz, 1H), 6.97 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 5.0 Hz, 1H), 5.55 (d, J = 5.5 Hz, 1H), 4.85 (t, J = 5.5 Hz, 1H), 3.44 (s, 3H), 1.99 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 197.5, 170.7, 167.5, 140.0, 136.0, 133.8, 129.8, 129.1, 128.9, 128.8, 123.5, 121.6, 116.0, 50.9, 47.5, 30.4, 23.1; IR (KBr, cm⁻¹): 1679, 1654, 1593; LRMS (EI 70 ev) *m*/z (%): 322 (M⁺, 2), 159 (100); HRMS (EI) for C₁₉H₁₈N₂O₃ (M⁺): calcd 322.1317, found 322.1313.

4-Benzoyl-N-methylquinolin-2(1H)-one (4a)

Plae yellow solid, mp 118.1-120.5 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 7.96 (d, J = 9.5 Hz, 2H), 7.67-7.61 (m, 2H), 7.56 (d, J = 9.0 Hz, 1H), 7.51-7.46 (m, 3H), 7.20 (t, J = 8.0 Hz, 1H), 6.73 (s, 1H), 3.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.7, 161.2, 147.3, 140.4, 135.8, 134.5, 131.4, 130.2, 128.9, 127.0, 122.6, 120.5, 118.1, 114.7, 29.7; IR (KBr, cm⁻¹): 1659, 1585; LRMS (EI 70 ev) m/z (%): 263 (M⁺, 76), 234 (100); HRMS (EI) for C₁₇H₁₃NO₂ (M⁺): calcd 263.0946, found 263.0943.

(C) References

(1) Thorand, S.; Krause, N. J. Org. Chem. 1998, 63, 8551.

(D) Spectra

2-Aetamido-N-methyl-N-(2-(phenylethynyl)phenyl)acetamide (1a)

2-Acetamido-N-benzyl-N-(2-(phenylethynyl)phenyl)acetamide (1b)

2-Acetamido-N-benzyl-N-(2-(phenylethynyl)phenyl)acetamide (1b)

2-Acetamido-N-allyl-N-(2-(phenylethynyl)phenyl)acetamide (1c)

2-Acetamido-N-allyl-N-(2-(phenylethynyl)phenyl)acetamide (1c)

N-methyl-*N*-(2-(phenylethynyl)phenyl)-2-(propylamino)acetamide (1d)

N-methyl-*N*-(2-(phenylethynyl)phenyl)-2-(propylamino)acetamide (1d)

.

2-Acetamido-N-methyl-N-(2-(p-tolylethynyl)phenyl)acetamide (1e)

2-Acetamido-N-methyl-N-(2-(p-tolylethynyl)phenyl)acetamide (1e)

2-Acetamido-N-methyl-N-(2-(m-tolylethynyl)phenyl)acetamide (1f)

2-Acetamido-N-methyl-N-(2-(o-tolylethynyl)phenyl)acetamide (1g)

2-Acetamido-N-methyl-N-(2-(o-tolylethynyl)phenyl)acetamide (1g)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

2-Acetamido-N-(2-((3,5-dimethylphenyl)ethynyl)phenyl)-N-methylacetamide (1h)

2-Acetamido-N-(2-((3,5-dimethylphenyl)ethynyl)phenyl)-N-methylacetamide (1h)

2-Acetamido-N-(2-((2,4-dimethylphenyl)ethynyl)phenyl)-N-methylacetamide (1i)

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

2-Acetamido-N-(2-((2,4-dimethylphenyl)ethynyl)phenyl)-N-methylacetamide (1i)

2-Acetamido-N-(2-(mesitylethynyl)phenyl)-N-methylacetamide (1j)

2-Acetamido-N-(2-(mesitylethynyl)phenyl)-N-methylacetamide (1j)

2-Acetamido-N-methyl-N-(2-(naphthalen-1-ylethynyl)phenyl)acetamide (1k)

2-Acetamido-N-methyl-N-(2-(naphthalen-1-ylethynyl)phenyl)acetamide (1k)

2-Acetamido-N-(2-((4-methoxyphenyl)ethynyl)phenyl)-N-methylacetamide (11)

2-Acetamido-N-(2-((4-chlorophenyl)ethynyl)phenyl)-N-methylacetamide (1m)

2-Acetamido-N-(2-((4-chlorophenyl)ethynyl)phenyl)-N-methylacetamide (1m)

2-Acetamido-N-(2-(cyclohexenylethynyl)phenyl)-N-methylacetamide (1n)

2-Acetamido-N-(2-(cyclohexenylethynyl)phenyl)-N-methylacetamide (1n)

2-Acetamido-N-methyl-N-(4-methyl-2-(phenylethynyl)phenyl)acetamide (1p)

2-Acetamido-N-methyl-N-(4-methyl-2-(phenylethynyl)phenyl)acetamide (1p)

2-Acetamido-N-(4-fluoro-2-(phenylethynyl)phenyl)-N-methylacetamide (1q)

2-Acetamido-N-(4-fluoro-2-(phenylethynyl)phenyl)-N-methylacetamide (1q)

N-(4-benzoyl-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2a)

N-(4-benzoyl-1-benzyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2b)

N-(4-benzoyl-1-benzyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2b)

N-(1-allyl-4-benzoyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2c)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

N-(1-allyl-4-benzoyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2c)

N-(1-methyl-4-(4-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2e)

N-(1-methyl-4-(4-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2e)

N-(1-methyl-4-(3-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2f)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

N-(1-methyl-4-(3-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2f)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

N-(1-methyl-4-(2-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2g)

N-(1-methyl-4-(2-methylbenzoyl)-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2g)

N-(4-(3,5-dimethylbenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2h)

N-(4-(3,5-dimethylbenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2h)

N-(4-(2,4-dimethylbenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2i)

N-(4-(2,4-dimethylbenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2i)

N-(1-methyl-2-oxo-4-(2,4,6-trimethylbenzoyl)-1,2-dihydroquinolin-3-yl)acetamide (2j)

N-(1-methyl-2-oxo-4-(2,4,6-trimethylbenzoyl)-1,2-dihydroquinolin-3-yl)acetamide (2j)

N-(4-(1-naphthoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2k)

N-(4-(1-naphthoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2k)

N-(4-(4-methoxybenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2l)

N-(4-(4-methoxybenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2l)

N-(4-(4-chlorobenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2m)

N-(4-(4-chlorobenzoyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2m)

N-(4-(cyclohex-1-enecarbonyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2n)

S86

N-(4-(cyclohex-1-enecarbonyl)-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2n)

N-(4-benzoyl-1,6-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (20)

N-(4-benzoyl-1,6-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (20)

N-(4-benzoyl-6-fluoro-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2p)

N-(4-benzoyl-6-fluoro-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetamide (2p)

N-(4-benzoyl-1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)acetamide (3a)

N-(4-benzoyl-1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)acetamide (3a)

4-benzoyl-N-methylquinolin-2(1H)-one (4a)

4-benzoyl-N-methylquinolin-2(1H)-one (4a)

(E) The intermolecular kinetic isotope effect experiment

Typical Experimental Procedure for the intermolecular kinetic isotope effect experiments:

To a Schlenk tube were added **1a** (0.15 mmol), **1a**-*D2* (0.15 mmol), RuCl₃ (10 mol %), CuCl₂ (20 mol %), H₂O (6 equiv) and anhydrous THF (3 mL). Then the tube was charged with O₂ (1 atm), and was stirred at 120 °C (oil bath temperature) for 15 min. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in diethyl ether, and washed with brine. The aqueous phase was re-extracted with diethyl ether. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired products **1a**-*D2*, **2a** and **3a**-*D1*.

(F) The X-ray single-crystal diffraction analysis of product 2a

2a

Table 1. Crystal data and structure refinement for cd29238.

Identification code	cd29238
Empirical formula	C19 H16 N2 O3
Formula weight	320.34
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	
Volume	1625.8(4) A^3
Z, Calculated density	4, 1.309 Mg/m^3
Absorption coefficient	0.090 mm^-1
F(000)	672
Crystal size	0.397 x 0.361 x 0.201 mm
Theta range for data collection	2.03 to 25.99 deg.
Limiting indices	-12<=h<=12, -21<=k<=14, -11<=l<=11
Reflections collected / unique	8791 / 3203 [R(int) = 0.0779]
Completeness to theta = 25.99	100.0 %
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.77427
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3203 / 1 / 224
Goodness-of-fit on F^2	0.984
Final R indices [I>2sigma(I)]	R1 = 0.0524, wR2 = 0.1339
R indices (all data)	R1 = 0.0706, $wR2 = 0.1441$
Extinction coefficient	0.069(5)
Largest diff. peak and hole	0.215 and -0.215 e.A^-3

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for cd29238. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	y	Z	U(eq)
N(1)	9789 (1)	273(1)	7411(2)	44(1)
N(2)	7720(1)	1931 (1)	7452(2)	39(1)
O (1)	9757(1)	1466(1)	6449(2)	61(1)
O(2)	7546(1)	2150(1)	9806 (1)	53 (1)
O(3)	6248(1)	689 (1)	10053(1)	50 (1)
C(1)	9288(2)	996(1)	7139(2)	43(1)
C(2)	8144(2)	1172(1)	7681(2)	37(1)
C(3)	7542(2)	641 (1)	8317(2)	37(1)
C(4)	8092(2)	-113(1)	8575(2)	39(1)
C(5)	7525(2)	-693(1)	9223(2)	48 (1)
C(6)	8070(2)	-1403(1)	9447(2)	57(1)
C (7)	9205(2)	-1554(1)	9029(2)	59(1)
C(8)	9784(2)	-1007(1)	8383(2)	53(1)
C(9)	9230(2)	-284(1)	8123(2)	41(1)
C(10)	7455(2)	2380(1)	8532(2)	40(1)
C(11)	7018(2)	3168(1)	8048(2)	64(1)
C(12)	6306(2)	816(1)	8775(2)	40(1)
C(13)	5140(2)	1108(1)	7579(2)	43(1)
C(14)	4949(2)	951(1)	6067(2)	60(1)
C(15)	3798(2)	1198(1)	4998(3)	76(1)
C(16)	2864(2)	1600(1)	5462(3)	75(1)
C(17)	3067(2)	1768(1)	6951(3)	74(1)
C(18)	4184(2)	1520(1)	8015(3)	57(1)
C(19)	10975(2)	91(1)	6930(2)	60(1)

N(1)-C(1)	1.373(2)
N(1)-C(9)	1.397(2)
N(1)-C(19)	1.469(2)
N(2)-C(10)	1.357(2)
N(2)-C(2)	1.405(2)
N(2)-H(2)	0.886(14)
O(1)-C(1)	1.228(2)
O(2)-C(10)	1.2152(19)
O(3)-C(12)	1.212(2)
C(1)-C(2)	1.457(2)
C(2)-C(3)	1.350(2)
C(3)-C(4)	1.440(2)
C(3)-C(12)	1.505(2)
C(4)-C(5)	1.397(2)
C(4)-C(9)	1.404(2)
C(5)-C(6)	1.366(3)
C(5)-H(5)	0.9300
C(6)-C(7)	1.377(3)
C(6)-H(6)	0.9300
C(7)-C(8)	1.362(3)
C(7)-H(7)	0.9300
C(8)-C(9)	1.391(3)
C(8)-H(8)	0.9300
C(10)-C(11)	1.489(3)
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-C(13)	1.483(2)
C(13)-C(14)	1.373(3)
C(13)-C(18)	1.386(3)
C(14)-C(15)	1.391(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.370(4)
C(15)-H(15)	0.9300
C(16)-C(17)	1.355(4)
C(16)-H(16)	0.9300
C(17)-C(18)	1.366(3)
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600
C(19)-H(19C)	0.9600
C(1)-N(1)-C(9)	123.11(15)
C(1)-N(1)-C(19)	117.43(16)
C(9)-N(1)-C(19)	119.46(15)
C(10)-N(2)-C(2)	124.59(15)
C(10)-N(2)-H(2)	115.4(12)
C(2)-N(2)-H(2)	119.2(12)
O(1)-C(1)-N(1)	122.01(16)

Table 3.Bond lengths [A] and angles [deg] for cd29238.

O(1) - C(1) - C(2)	121 49(17)
N(1)-C(1)-C(2)	116 48(16)
C(3)- $C(2)$ - $N(2)$	123 79(15)
C(3)-C(2)-C(1)	123.77(15)
N(2)-C(2)-C(1)	122.07(10) 114 13(15)
R(2) - C(2) - C(1) C(2) - C(3) - C(4)	114.13(13) 110.73(16)
C(2) - C(3) - C(4) C(2) - C(3) - C(12)	117.73(10) 121.70(15)
C(2)- $C(3)$ - $C(12)$	121.70(15) 119 57(15)
C(4)-C(3)-C(12) C(5) C(4) C(0)	110.57(15) 117.00(16)
C(5) - C(4) - C(3)	117.99(10) 122.07(16)
C(3)-C(4)-C(3)	123.07(10) 118.02(16)
C(9) - C(4) - C(3)	110.92(10) 121.50(18)
C(0)-C(5)-C(4)	121.50(10)
C(0)-C(5)-H(5)	119.2
C(4)-C(5)-H(5)	119.2
C(5)-C(6)-C(7)	119.59(19)
C(5)-C(6)-H(6)	120.2
C(7)- $C(6)$ - $H(6)$	120.2
C(8) - C(7) - C(6)	120.78(19)
C(8)-C(7)-H(7)	119.6
C(6)-C(7)-H(7)	119.6
C(7)-C(8)-C(9)	120.43(19)
C(7)-C(8)-H(8)	119.8
C(9)-C(8)-H(8)	119.8
C(8)-C(9)-N(1)	120.81(17)
C(8)-C(9)-C(4)	119.66(17)
N(1)-C(9)-C(4)	119.53(15)
O(2)-C(10)-N(2)	122.07(16)
O(2)-C(10)-C(11)	122.11(16)
N(2)-C(10)-C(11)	115.80(16)
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(3)-C(12)-C(13)	121.47(16)
O(3)-C(12)-C(3)	121.16(16)
C(13)-C(12)-C(3)	117.28(15)
C(14)-C(13)-C(18)	119.17(19)
C(14)-C(13)-C(12)	122.05(17)
C(18)-C(13)-C(12)	118.70(17)
C(13)-C(14)-C(15)	119.8(2)
C(13)-C(14)-H(14)	120.1
C(15)-C(14)-H(14)	120.1
C(16)-C(15)-C(14)	119.8(2)
C(16)-C(15)-H(15)	120.1
C(14)-C(15)-H(15)	120.1
C(17)-C(16)-C(15)	120.4(2)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(16)-C(17)-C(18)	120.4(2)
C(16)-C(17)-H(17)	119.8
C(18)-C(17)-H(17)	119.8
C(17)-C(18)-C(13)	120.4(2)

C(17)-C(18)-H(18)	119.8
C(13)-C(18)-H(18)	119.8
N(1)-C(19)-H(19A)	109.5
N(1)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
N(1)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4.	Anisotropic displacement parameters (A ² x 10 ³) for cd29238.
The aniso	tropic displacement factor exponent takes the form:
-2 pi^2 [k	n^2 a*^2 U11 + + 2 h k a* b* U12]

	U11	U22	U33	U2	23	U13	U12
N(1)	37(1)	52(1)	43 (1)	-4(1)	9(1)	5(1)	
N(2)	46(1)	41(1)	32(1)	3(1)	13(1)	1(1)	
O (1)	55(1)	65 (1)	71(1)	17(1)	31(1)	7(1)	
O(2)	81(1)	46(1)	36(1)	-2(1)	23(1)	0(1)	
O(3)	54(1)	57(1)	41(1)	3(1)	18(1)	0(1)	
C(1)	40(1)	51(1)	36(1)	-2(1)	8(1)	1(1)	
C(2)	38(1)	42(1)	29(1)	-1(1)	5(1)	2(1)	
C(3)	36(1)	42(1)	29(1)	-4(1)	3(1)	-1(1)	
C(4)	40(1)	41(1)	31(1)	-5(1)	1(1)	0(1)	
C(5)	53(1)	45(1)	45(1)	-1(1)	11(1)	-1(1)	
C(6)	67 (1)	43 (1)	59(1)	2(1)	13(1)	-1(1)	
C(7)	64(1)	43 (1)	62(1)	1(1)	2(1)	8(1)	
C(8)	45(1)	52(1)	55(1)	-6(1)	3(1)	8(1)	
C(9)	37(1)	47(1)	34(1)	-4(1)	-1(1)	1(1)	
C(10)	43(1)	41(1)	37(1)	-1(1)	14(1)	-4(1)	
C(11)	93(2)	47(1)	58(1)	2(1)	33(1)	9(1)	
C(12)	41(1)	36(1)	40(1)	-3(1)	9(1)	-4(1)	
C(13)	37(1)	41(1)	47(1)	1(1)	8(1)	-5(1)	
C(14)	54(1)	64(1)	53(1)	-10(1)	-1(1)	3(1)	
C(15)	72(2)	79(2)	55(1)	-8(1)	-15(1)	-5(1)	
C(16)	46(1)	72(2)	88(2)	15(1)	-11(1)	4(1)	
C(17)	50(1)	80(2)	90(2)	18(1)	16(1)	18(1)	
C(18)	49(1)	62(1)	62(1)	10(1)	18(1)	8(1)	
C(19)	45(1)	72(1)	64(1)	-3(1)	20(1)	12(1)	

	x	У	Z	U(eq)
H(5)	6759	-593	9508	58
H(6)	7678	-1781	9880	69
H(7)	9581	-2036	9189	71
H(8)	10554	-1116	8114	64
H(11A)	6121	3240	8085	95
H(11B)	7061	3249	7029	95
H(11C)	7592	3524	8718	95
H(14)	5588	681	5757	72
H(15)	3662	1091	3973	91
H(16)	2087	1757	4751	90
H(17)	2441	2055	7251	89
H(18)	4304	1628	9037	68
H(19A)	11213	522	6422	90
H(19B)	10789	-334	6248	90
H(19C)	11698	-33	7805	90
H(2)	7745(19)	2166(10)	6608(18)	51(6)

Table 5. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters (A² x 10³) for cd29238.

$\begin{array}{ccccc} C(9)-N(1)-C(1)-O(1) & & -176.5\\ C(19)-N(1)-C(1)-O(1) & & 3.5\\ C(9)-N(1)-C(1)-C(2) & & 2.6\\ C(19)-N(1)-C(1)-C(2) & & -177.5\\ C(10)-N(2)-C(2)-C(3) & & 49.6\\ C(10)-N(2)-C(2)-C(3) & & 49.6\\ O(1)-C(1)-C(2)-C(3) & & 173.5\\ N(1)-C(1)-C(2)-C(3) & & -4.7\\ O(1)-C(1)-C(2)-C(3) & & -4.7\\ O(1)-C(1)-C(2)-N(2) & & 5.6\\ \end{array}$	53(17) 9(3) 0(2)
$\begin{array}{cccccccc} C(19)-N(1)-C(1)-O(1) & & & & & & \\ C(9)-N(1)-C(1)-C(2) & & & & & \\ C(19)-N(1)-C(1)-C(2) & & & & & \\ C(10)-N(2)-C(2)-C(3) & & & & & \\ O(1)-C(1)-C(2)-C(3) & & & & & \\ N(1)-C(1)-C(2)-C(3) & & & & & \\ N(1)-C(1)-C(2)-C(3) & & & & & \\ O(1)-C(1)-C(2)-C(3) & & & & \\ O(1)-C(1)-C(2)-C(3) & & & & \\ O(1)-C(1)-C(2)-C($	9(3) 0(2)
$\begin{array}{cccc} C(9)-N(1)-C(1)-C(2) & 2.0 \\ C(19)-N(1)-C(1)-C(2) & -177.5 \\ C(10)-N(2)-C(2)-C(3) & 49.0 \\ C(10)-N(2)-C(2)-C(1) & -131.8 \\ O(1)-C(1)-C(2)-C(3) & 173.0 \\ N(1)-C(1)-C(2)-C(3) & -4.7 \\ O(1)-C(1)-C(2)-N(2) & 5.6 \\ \end{array}$	0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccc} C(10) - N(2) - C(2) - C(3) & 49.4 \\ C(10) - N(2) - C(2) - C(1) & -131.8 \\ O(1) - C(1) - C(2) - C(3) & 173.4 \\ N(1) - C(1) - C(2) - C(3) & -4.7 \\ O(1) - C(1) - C(2) - N(2) & 54.4 \\ \end{array}$	59(15)
$\begin{array}{cccc} C(10) - N(2) - C(2) - C(1) & -131.8 \\ O(1) - C(1) - C(2) - C(3) & 173.3 \\ N(1) - C(1) - C(2) - C(3) & -4.7 \\ O(1) - C(1) - C(2) - N(2) & 54 \\ \end{array}$	4(2)
$\begin{array}{c} O(1)-C(1)-C(2)-C(3) & 173. \\ N(1)-C(1)-C(2)-C(3) & -4.7 \\ O(1)-C(1)-C(2)-N(2) & 54 \\ \end{array}$	84(17)
N(1)-C(1)-C(2)-C(3) -4.7	81(17)
O(1) - C(1) - C(2) - N(2) 54	7(2)
V(1) - V(2) - V(2) - V(2) - 3.0	0(2)
N(1)-C(1)-C(2)-N(2) 176.4	45(15)
N(2)-C(2)-C(3)-C(4) -176.8	30(15)
C(1)-C(2)-C(3)-C(4) 4.1	5(2)
N(2)-C(2)-C(3)-C(12) 2.5	9(2)
C(1)-C(2)-C(3)-C(12) -175.7	74(15)
C(2)-C(3)-C(4)-C(5) -179.8	30(16)
C(12)-C(3)-C(4)-C(5) 0.4	5(2)
C(2)-C(3)-C(4)-C(9) -1.5	5(2)
C(12)-C(3)-C(4)-C(9) 178.'	72(14)
C(9)-C(4)-C(5)-C(6) 1.4	5(3)
C(3)-C(4)-C(5)-C(6) 179.	78(17)
C(4)-C(5)-C(6)-C(7) 0.0	0(3)
C(5)-C(6)-C(7)-C(8) -0.5	5(3)
C(6)-C(7)-C(8)-C(9) -0.5	5(3)
C(7)-C(8)-C(9)-N(1) -177.6	58(17)
C(7)-C(8)-C(9)-C(4) 2.	1(3)
C(1)-N(1)-C(9)-C(8) -179.4	16 (17)
C(19)-N(1)-C(9)-C(8) 0.	1(3)
C(1)-N(1)-C(9)-C(4) 0.5	8(2)
C(19)-N(1)-C(9)-C(4) -179.6	54(1 5)
C(5)-C(4)-C(9)-C(8) -2.5	5(2)
C(3)-C(4)-C(9)-C(8) 179.	11(16)
C(5)-C(4)-C(9)-N(1) 177.	25(15)
C(3)-C(4)-C(9)-N(1) -1.1	l(2)
C(2)-N(2)-C(10)-O(2) -1.3	3(3)
C(2)-N(2)-C(10)-C(11) 179.9	95(17)
C(2)-C(3)-C(12)-O(3) -126.4	47(18)
C(4) - C(3) - C(12) - O(3) 52	3(2)
J. J	9(2)
C(4)-C(3)-C(12)-C(13) 55.	
C(4)-C(3)-C(12)-C(13) = 55. $C(2)-C(3)-C(12)-C(13) = 56.$ $C(4)-C(3)-C(12)-C(13) = -123.3$	38(17)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) \\ C(2) - C(3) - C(12) - C(13) \\ C(4) - C(3) - C(12) - C(13) \\ O(3) - C(12) - C(13) - C(14) \\ \end{array}$	38(17) 77(19)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) \\ C(2) - C(3) - C(12) - C(13) \\ C(4) - C(3) - C(12) - C(13) \\ O(3) - C(12) - C(13) - C(14) \\ C(3) - C(12) - C(13) - C(14) \\ \end{array}$	38(17) 77(19) 9(2)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) \\ C(2) - C(3) - C(12) - C(13) \\ C(4) - C(3) - C(12) - C(13) \\ C(3) - C(12) - C(13) - C(14) \\ C(3) - C(12) - C(13) - C(14) \\ O(3) - C(12) - C(13) - C(18) \\ \end{array}$	38(17) 77(19) 9(2) 0(3)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) \\ C(2) - C(3) - C(12) - C(13) \\ C(4) - C(3) - C(12) - C(13) \\ O(3) - C(12) - C(13) - C(14) \\ C(3) - C(12) - C(13) - C(14) \\ O(3) - C(12) - C(13) - C(18) \\ C(3) - C(12) - C(13) - C(18) \\ C(3) - C(12) - C(13) - C(18) \\ \end{array}$	38(17) 77(19) 9(2) 0(3) 36(16)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) \\ C(2) - C(3) - C(12) - C(13) \\ C(4) - C(3) - C(12) - C(13) \\ O(3) - C(12) - C(13) - C(14) \\ C(3) - C(12) - C(13) - C(14) \\ O(3) - C(12) - C(13) - C(18) \\ C(3) - C(12) - C(13) - C(18) \\ C(3) - C(12) - C(13) - C(18) \\ C(13) - C(13) - C(14) - C(15) \\ \end{array}$	38(17) 77(19) 9(2) 0(3) 36(16) 9(3)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) \\ C(2) - C(3) - C(12) - C(13) \\ C(4) - C(3) - C(12) - C(13) \\ O(3) - C(12) - C(13) - C(14) \\ C(3) - C(12) - C(13) - C(14) \\ O(3) - C(12) - C(13) - C(18) \\ C(3) - C(12) - C(13) - C(18) \\ C(3) - C(12) - C(13) - C(18) \\ C(13) - C(13) - C(14) - C(15) \\ C(12) - C(13) - C(14) - C(15) \\ C(12) - C(13) - C(14) - C(15) \\ \end{array}$	38(17) 77(19) 9(2) 0(3) 36(16) 9(3) 90(19)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) & 55. \\ C(2) - C(3) - C(12) - C(13) & 56. \\ C(4) - C(3) - C(12) - C(13) & -123. \\ O(3) - C(12) - C(13) - C(14) & -150. \\ C(3) - C(12) - C(13) - C(14) & 25. \\ O(3) - C(12) - C(13) - C(18) & 26. \\ C(3) - C(12) - C(13) - C(18) & -157. \\ C(13) - C(13) - C(14) - C(15) & -0. \\ C(12) - C(13) - C(14) - C(15) & 175. \\ C(13) - C(14) - C(15) - C(16) & 0. \\ \end{array}$	38(17) 77(19) 9(2) 0(3) 36(16) 9(3) 90(19) 4(4)
$\begin{array}{c} C(4) - C(3) - C(12) - C(13) & 55. \\ C(2) - C(3) - C(12) - C(13) & 56. \\ C(4) - C(3) - C(12) - C(13) & -123. \\ O(3) - C(12) - C(13) - C(14) & -150. \\ C(3) - C(12) - C(13) - C(14) & 25. \\ O(3) - C(12) - C(13) - C(18) & 26. \\ C(3) - C(12) - C(13) - C(18) & -157. \\ C(13) - C(13) - C(14) - C(15) & -0. \\ C(12) - C(13) - C(14) - C(15) & -0. \\ C(12) - C(13) - C(14) - C(15) & -0. \\ C(13) - C(14) - C(15) - C(16) & 0. \\ C(14) - C(15) - C(16) - C(17) & 1. \\ \end{array}$	38(17) 77(19) 9(2) 0(3) 36(16) 0(3) 90(19) 4(4) 1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38(17) 77(19) 9(2) 0(3) 36(16) 9(3) 90(19) 4(4) 1(4) 0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38(17) 77(19) 9(2) 0(3) 36(16) 9(3) 90(19) 4(4) 1(4) 0(4) 5(4)

Table 6.Torsion angles [deg] for cd29238.

C(12)-C(13)-C(18)-C(17)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for Cu29256 [A and de	Table 7.	Hydrogen	bonds	for	cd29238	[A	and	deg.]
---	----------	----------	-------	-----	---------	----	-----	-------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(11)-H(11B)O(3)#1	0.96	2.58	3.317(3)	134.1
C(11)-H(11B)O(2)#1	0.96	2.35	3.227(2)	152.2
N(2)-H(2)O(2)#1	0.886(14)	2.009(15)	2.8820(19)	168.3(17)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z-1/2