Supplementary Information for

Asymmetric Dearomatization of Pyrroles via Ir-Catalyzed Allylic Substitution Reaction: Enantioselective Synthesis of Spiro-2*H*-pyrroles

Chun-Xiang Zhuo, Wen-Bo Liu, Qing-Feng Wu and Shu-Li You*

State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China

E-mail: slyou@sioc.ac.cn

Table of Contents

General methods	S2
Experimental details and characterization data	S3-22
X-ray of 3g	S23-24
Copies of NMR, NOE, COSY, HSQC and HPLC Spectra	S25-109

General methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use.

¹H and ¹³C NMR spectra were recorded on a Varian instrument (300, 400 MHz and 75, 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

The phosphoramidite ligands¹, the substituted 2-(1H-pyrrole-2yl) ethanamines² and (*E*)-4-bromo-but-2-enyl methyl ester³ were prepared according to the reported procedures.

⁽¹⁾ W.-B. Liu, H. He, L.-X. Dai and S.-L. You, Synthesis., 2009, 2076.

^{(2) (}a) D. B. C. Martin and C. D. Vanderwal, J. Am. Chem. Soc., 2009, 131, 3472; (b) J. Leonard, A. B. Hague and M. F. Jones, *Tetrahedron Lett.*, 1997, 38, 3071; (c) P. R. Jenkins, J. Wilson, D. Emmerson, M. D. Garcia, M. R. Smith, S. J. Gray, R. G. Britton, S. Mahale and B. Chaudhuri, *Bioorg. Med. Chem.*, 2008, 16, 7728; (d) W. Chen, E. K. Stephenson, M. P. Cava and Y. A. Jackson, *Org. Syn.*, 1992, 70, 151; (e) L. H. Thoresen, H. Kim, M. B. Welch, A. Burghart and K. Burgess, *Synlett*, 1998, 1276.

⁽³⁾ B. M. Trost, K. L. Sacchi, G. M. Schroeder and N. Asakawa, Org. Lett., 2002, 4, 3427.

General Procedure for the Synthesis of Substituted Allylic Carbonates:

To a solution of the substituted 2-(1H-pyrrole-2yl) ethanamines² (2 mmol, 1.0 equiv) and Et₃N (0.4 mL, 2.4 mmol) in dry THF (25 mL), carbonic acid (*E*)-4-bromo-but-2-enyl methyl ester³ (832 mg, 4 mmol) was added at 0 °C. The ice bath was removed and the reaction mixture was stirred at rt for 6-12 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtrated with celite and washed with EtOAc. The solvents were removed under reduced pressure. Then the residue was purified by silica gel column chromatography (PE/EA = 2/1) to afford the desired product **2**.

Brown oil, yield 75%. ¹H NMR (300 MHz, CDCl₃) δ 9.97 (s, 1H), 7.41 (d, J = 7.5 Hz, 2H), 7.36-7.24 (m, 7H), 7.16 (t, J = 6.9 Hz, 1H), 6.40 (t, J = 3.0 Hz, 1H), 5.93-5.77 (m, 3H), 4.57 (d, J = 6.0 Hz, 2H), 3.74 (s, 3H), 3.67 (s, 2H), 3.21 (d, J = 5.4 Hz, 2H), 2.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 138.4, 133.1, 133.0, 131.9, 130.6, 129.2, 128.7, 128.4, 127.3, 127.2, 125.4, 123.2, 106.9, 105.3, 67.7, 58.2, 54.8, 54.5, 53.6, 24.3. IR (thin film): v_{max} (cm⁻¹) = 3026, 2953, 2813, 1747, 1604, 1513, 1449, 1260, 1028, 756, 695; MS (ESI): 405 [M+H]⁺; HRMS (MALDI) calcd for C₂₅H₂₉N₂O₃ [M+H]⁺: 405.2185, Found: 405.2173.

Brown oil, yield 90%. ¹H NMR (300 MHz, CDCl₃) δ 10.03 (s, 1H), 7.42 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.40 (t, J = 3.3 Hz, 1H), 5.94-5.79 (m, 4H), 5.23-5.16 (m, 2H), 4.59 (d, J = 5.7 Hz, 2H), 3.74 (s, 3H), 3.22 (d, J = 6.6 Hz, 2H), 3.20 (d, J = 7.2 Hz, 2H), 2.78 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 155.5, 134.7, 133.2, 132.0, 130.4, 128.7, 127.0, 125.3, 123.1, 118.4, 106.8, 105.3, 67.7, 56.5, 54.79, 54.75, 53.1, 24.2. IR (thin film): v_{max} (cm⁻¹) = 3025, 2954, 2814, 1747, 1605, 1513, 1443, 1259, 1039, 755, 693; MS (ESI): 355 [M+H]⁺; HRMS (MALDI) calcd for C₂₁H₂₇N₂O₃ [M+H]⁺: 355.2023, Found: 355.2016.

Brown oil, yield 71%. ¹H NMR (300 MHz, CDCl₃) δ 9.65 (s, 1H), 7.41-7.30 (m, 6H), 7.17-7.13 (m, 3H), 6.40 (t, J = 2.7 Hz, 1H), 5.93-5.74 (m, 3H), 4.57 (d, J = 5.7 Hz, 2H), 3.73 (s, 3H), 3.58 (s, 2H), 3.17 (d, J = 6.3 Hz, 2H), 2.83-2.76 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 137.7, 133.1, 132.8, 131.8, 131.6, 130.8, 130.7, 128.9, 127.4, 125.6, 123.3, 121.1, 107.2, 105.5, 67.7, 57.7, 54.9, 54.6, 53.5, 24.6. IR (thin film): v_{max} (cm⁻¹) = 3025, 2954, 2814, 1747, 1605, 1513, 1443, 1259, 1039, 755, 693; MS (ESI): 483 [M+H]⁺; HRMS (MALDI) calcd for C₂₅H₂₈N₂O₃Br [M+H]⁺: 483.1284, Found: 483.1278.

Brown oil, yield 70%. ¹H NMR (300 MHz, CDCl3) δ 10.15 (s, 1H), 7.35 (d, J = 7.5 Hz, 2H), 7.24 (t, J = 7.2 Hz, 2H), 7.05 (t, J = 7.5 Hz, 1H), 6.31 (t, J = 3.3 Hz, 1H), 5.85-5.70 (m, 3H), 4.52 (d, J = 5.7 Hz, 2H), 3.67 (s, 3H), 3.05 (d, J = 6.0 Hz, 2H), 2.74 (t, J = 6.3 Hz, 2H), 2.63 (t, J = 6.0 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (75 MHz, CDCl3) δ 155.4, 133.0, 132.9, 131.8, 130.4, 128.6, 127.1, 125.2, 123.0, 106.7, 105.1, 67.5, 59.0, 56.9, 54.7, 41.3, 24.1. IR (thin film): vmax (cm⁻¹) = 3025, 2954, 2814, 1748, 1606, 1513, 1445, 1262, 1040, 758, 694; MS (ESI): 329 [M+H]⁺; HRMS (MALDI) calcd for C₁₉H₂₅N₂O₃ [M+H]⁺: 329.1859, Found: 329.1860.

Brown oil, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.29-7.12 (m, 7H), 7.11 (d, J = 8.0 Hz, 2H), 6.31 (t, J = 2.8 Hz, 1H), 5.69-5.88 (m, 3H), 4.53 (d, J = 6.0 Hz, 2H), 3.71 (s, 3H), 3.65 (s, 2H), 3.17 (d, J = 6.4 Hz, 2H), 2.81 (m, 4H), 2.31 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 155.5, 138.1, 135.0, 132.4, 131.6, 130.7, 130.4, 129.4, 129.2, 128.5, 127.3, 123.2, 106.7, 104.6, 67.7, 58.1, 54.8, 54.4, 53.4, 24.3, 21.0. IR (thin film): vmax (cm⁻¹) = 3026, 2954, 2852, 1748, 1525, 1443, 1261, 1038, 771, 700; MS (EI): 418 [M]⁺; HRMS (EI) calcd for C₂₆H₃₀N₂O₃ [M]⁺: 418.2256, Found: 418.2253.

Brown oil, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.35-7.24 (m, 7H), 6.89-6.87 (m, 2H), 6.27 (t, *J* = 3.2 Hz, 1H), 5.91-5.71 (m, 3H), 4.56 (d, *J* = 6.0 Hz, 2H), 3.80 (s, 3H), 3.73 (s, 3H), 3.65 (s, 2H), 3.19 (d, *J* = 6.4 Hz, 2H), 2.83-2.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 155.6, 138.6, 132.3, 132.1, 130.7, 129.2, 128.5, 127.3, 127.1, 126.4, 124.7, 114.3, 106.7, 104.2, 67.8, 58.2, 55.3, 54.8, 54.6, 53.6, 24.5. IR (thin film): vmax (cm⁻¹) = 3027, 2954, 2834, 1747, 1523, 1442, 1259, 1029, 771, 700; MS (ESI): 435 [M+H]⁺; HRMS (MALDI) calcd for C₂₆H₃₁N₂O₄ [M+H]⁺: 435.2291, Found: 435.2278.

Brown oil, yield 65%. ¹H NMR (300 MHz, CDCl₃) δ 9.55 (s, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 8.7 Hz, 1H), 6.32 (t, J = 3.3 Hz, 1H), 5.95-5.74 (m, 3H), 4.62 (d, J = 5.7 Hz, 2H), 3.85 (s, 3H), 3.79 (s, 3H), 3.62 (s, 2H), 3.21 (d, J = 6.0 Hz, 2H), 2.87-2.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 155.5, 137.6, 131.9, 131.8, 131.5, 130.7, 130.6, 127.3, 126.2, 124.6, 121.0, 114.2, 106.9, 104.3, 67.7, 57.5, 55.3, 54.8, 54.5, 53.5, 24.6. IR (thin film): v_{max} (cm⁻¹) = 2953, 2833, 1746, 1522, 1485, 1441, 1259, 1030, 770, 735; MS (ESI): 513 [M+H]⁺; HRMS (ESI) calcd for C₂₆H₂₉N₂BrNaO₄ [M+Na]⁺: 535.1212, Found: 535.1203.

Brown oil, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.31-7.22 (m, 5H), 6.97-6.94 (m, 2H), 6.84 (d, J = 8.4 Hz, 1H), 6.29 (d, J = 2.8 Hz, 1H), 5.92-5.74 (m, 3H), 4.54 (d, J = 6.4 Hz, 2H), 3.87 (s, 3H), 3.84 (s, 3H), 3.72 (s, 3H), 3.65 (s, 2H), 3.18 (d, J = 6.4 Hz, 2H), 2.84-2.81 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 149.1, 147.1, 138.3, 132.3, 131.8, 130.6, 129.1, 128.4, 127.2, 126.7, 115.5, 111.5, 107.3, 106.6, 104.3, 67.6, 58.0, 55.8, 55.7, 54.7, 54.5, 53.5, 24.3. IR (thin film): v_{max} (cm⁻¹) = 3025, 2960, 2835, 1747, 1591, 1442, 1261, 1025, 765, 700; MS (ESI): 465 [M+H]⁺; HRMS (MALDI) calcd for C₂₇H₃₃N₂O₅ [M+H]⁺: 465.2390, Found: 465.2384.

Brown oil, yield 73%. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.32-7.24 (m, 9H), 6.38 (t, J = 3.2 Hz, 1H), 5.93-5.76 (m, 3H), 4.57 (d, J = 5.6 Hz, 2H), 3.74 (s, 3H), 3.66 (s, 2H), 3.19 (d, J = 6.4 Hz, 2H), 2.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 138.2, 133.4, 131.6, 130.5, 129.3, 129.1, 128.7, 128.4, 127.24, 127.18, 124.2, 107.1, 105.7, 67.5, 58.0, 54.7, 54.3, 53.3, 24.1. IR (thin film): v_{max} (cm⁻¹) = 3025, 2955, 2818, 1747, 1602, 1443, 1261, 1029, 772, 699; MS (ESI): 439 [M+H]⁺; HRMS (MALDI) calcd for C₂₅H₂₈N₂O₃Cl [M+H]⁺: 439.1787, Found: 439.1783.

Yellow oil, yield 73%. ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.34-7.22 (m, 7H), 7.00 (t, J = 8.8 Hz, 2H), 6.29 (t, J = 3.2 Hz, 1H), 5.90-5.69 (m, 3H), 4.55 (d, J = 5.6 Hz, 2H), 3.72 (s, 3H), 3.64 (s, 2H), 3.18 (d, J = 6.4 Hz, 2H), 2.81 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 161.0 (d, J = 243.0 Hz), 155.5, 138.4, 133.1, 131.8, 129.7, 129.5, 129.2, 128.8, 128.5, 128.2, 127.3 (d, J = 4.0 Hz), 124.8 (d, J = 7.4 Hz), 115.6 (d, J = 21.2 Hz), 106.9, 105.1, 67.7, 58.2, 54.8, 54.4, 53.4, 24.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -117.80 (m, 1F). IR (thin film): v_{max} (cm⁻¹) = 3028, 2957, 2811, 1748, 1576, 1444, 1261, 1026, 792, 700; MS (ESI): 423 [M+H]⁺; HRMS (MALDI) calcd for C₂₅H₂₈N₂O₃F [M+H]⁺: 423.2080, Found: 423.2079.

Brown oil, yield 63%. ¹H NMR (300 MHz, CDCl₃) δ 9.03 (s, 1H), 7.36-7.29 (m, 5H), 5.92-5.63 (m, 4H), 4.65 (d, J = 5.7 Hz, 2H), 3.82 (s, 3H), 3.67 (s, 2H), 3.21 (d, J = 6.0 Hz, 2H), 2.81 (m, 4H), 2.63 (q, J = 7.5 Hz, 2H), 1.28 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 155.6, 138.77, 138.76, 132.7, 132.6, 129.8, 129.1, 128.4, 127.2, 126.8, 104.7, 103.4, 67.9, 58.3, 54.8, 54.7, 53.5, 24.5, 20.9, 13.8. IR (thin film): v_{max} (cm⁻¹) = 3027, 2962, 2806, 1749, 1590, 1450, 1263, 1027, 794, 700; MS (ESI): 357.0 [M+H]⁺; HRMS (MALDI) calcd for C₂₁H₂₉N₂O₃ [M+H]⁺: 357.2182, Found: 357.2173.

Brown oil, yield 63%. ¹H NMR (300 MHz, CDCl₃) δ 9.21 (s, 1H), 7.48-7.38 (m, 5H), 6.75 (m, 1H), 6.24 (m, 1H), 6.03-5.84 (m, 3H), 4.72 (d, *J* = 5.7 Hz, 2H), 3.88 (s, 3H), 3.76 (s, 2H), 3.28 (d, *J* = 5.7 Hz, 2H), 2.93-2.86 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 138.8, 132.8, 131.2, 129.1, 128.4, 127.2, 126.8, 116.8, 107.8, 105.2, 67.9, 58.2, 54.9, 54.8, 53.5, 24.7. IR (thin film): v_{max} (cm⁻¹) = 3027, 2962, 2806, 1749, 1590, 1450, 1263, 1027, 794, 700; MS (ESI): 329 [M+H]⁺; HRMS (ESI) calcd for C₁₉H₂₅N₂O₃ [M+H]⁺: 329.1862, Found: 329.1860.

2m

Red oil, yield 58 %. ¹H NMR (300 MHz, CDCl₃) δ 8.95 (s, 1H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.16 (d, *J* = 7.2 Hz, 1H), 6.37 (m, 1H), 5.92 (m, 1H), 5.67-5.62 (m, 2H), 4.53 (d, *J* = 4.5 Hz, 2H), 3.76 (s, 3H), 3.69 (s, 6H), 3.18 (s, 2H), 2.68 (d, *J* = 5.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 155.5, 132.7, 131.4, 130.0, 128.7, 128.1, 127.0, 125.7, 123.3, 110.0, 105.6, 67.7, 58.8, 54.7, 52.6, 36.7, 32.2. IR (thin film): v_{max} (cm⁻¹) = 3003, 2954, 2850, 1732, 1606, 1441, 1266, 1048, 793, 694; MS (MALDI): 416 [M+H]⁺; HRMS (MALDI) calcd for C₂₂H₂₅NO₇ [M+H]⁺: 416.1707, Found: 416.1704.

General Procedure for Iridium-Catalyzed Enantioselective Allylic Alkylation of Pyrroles:

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

A flame-dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added [Ir(cod)Cl]₂ (1.4 mg, 0.002 mmol, 2 mol%), phosphoramidite ligand **1f** (1.9 mg, 0.004 mmol, 4 mol%), THF (0.5 mL) and propylamine (0.3 mL). The reaction mixture was heated at 50°C for 30 min and then the volatile solvents and reagents were removed *in vacuo* to give white solid. After that, allylic carbonate **2** (0.10 mmol, dissolved in 1.0 mL THF), cesium carbonate (0.10 mmol, 100 mol%) were added. The reaction mixture was heated at 50°C overnight. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtrated with celite and washed with DCM. The solvents were removed under reduced pressure. The diastereomeric ratio was determined by ¹H NMR of the crude reaction mixture. Then the residue was purified by silica gel column chromatography (PE/Acetone = 1/1) to afford the desired product **3**. The characterization of the major isomers are summarized below.

Yellow oil, yield 80%. dr = 99/1, 93% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 4.97 min, t (major) = 10.82 min]; $[\alpha]_D^{20} = +71.6$ (c = 0.5, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.84-7.81 (m, 2H), 7.54 (d, *J* = 5.1 Hz, 1H), 7.34-7.16 (m, 8H), 6.80 (d, *J* = 5.1 Hz, 1H), 5.17 (m, 1H), 4.82 (d, *J* = 17.4 Hz, 1H), 4.69 (d, *J* = 11.1 Hz, 1H), 3.61 (AB, *J*_{AB} = 13.5 Hz, 1H), 3.54 (BA, *J*_{BA} = 13.2 Hz, 1H), 3.01-2.90 (m, 3H), 2.29-2.22

(m, 3H), 1.25-1.17 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.2, 155.5, 138.4, 135.0, 134.0, 130.2, 128.9, 128.5, 128.2, 127.6, 127.0, 126.5, 116.1, 84.2, 62.8, 56.7, 52.2, 45.8, 33.0. IR (thin film): v_{max} (cm⁻¹) = 3064, 3028, 2922, 1719, 1640, 1576, 1026, 758, 695; MS (ESI): 329 [M+H]⁺; HRMS (MALDI) calcd for C₂₃H₂₅N₂ [M+H]⁺: 329.2013, Found: 329.2012.

Brown oil, yield 85%. dr = 95/5, 86% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 0.6 mL · min⁻¹, $\lambda = 254$ nm, t (minor) = 12.21 min, t (major) = 13.21 min]; $[\alpha]_D^{20} = +70.6$ (c = 1.0, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.94-7.91 (m, 2H), 7.65 (d, J = 5.4 Hz, 1H), 7.66-7.64 (m, 3H), 6.91 (d, J = 4.8 Hz, 1H), 5.89-6.02 (m, 1H), 5.27-5.20 (m, 3H), 4.94 (d, J = 16.8 Hz, 1H), 4.80 (d, J = 10.8 Hz, 1H), 3.17-3.07 (m, 5H), 2.48-2.25 (m, 3H), 1.39-1.34 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 155.2, 135.2, 134.8, 134.0, 130.2, 128.6, 127.6, 126.7, 117.8, 116.1, 84.2, 61.7, 56.7, 52.4, 45.7, 33.1. IR (thin film): v_{max} (cm⁻¹) = 3075, 2923, 2790, 1642, 1605, 1576, 1494, 1448, 785, 693; MS (ESI): 279 [M+H]⁺; HRMS (MALDI) calcd for C₁₉H₂₃N₂ [M+H]⁺: 279.1867, Found: 279.1856.

Yellow oil, yield 79%. dr = 96/4, 90% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 5.88 min, t (major) = 17.07 min]; $[\alpha]_D^{20} = +50.9$ (c = 1.0, acetone). ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.92 (m, 2H), 7.64 (d, J = 4.8 Hz, 1H), 7.48-7.43 (m, 5H), 7.27 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 5.2 Hz, 1H), 5.27 (m, 1H), 4.92 (d, J = 17.2 Hz, 1H), 4.80 (d, J = 11.2 Hz, 1H), 3.64 (AB, $J_{AB} = 13.6 \text{ Hz}$, 1H), 3.58 (BA, $J_{BA} = 13.2 \text{ Hz}$, 1H), 3.06-2.98

(m, 3H), 2.38-2.28 (m, 3H), 1.43-1.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 155.5, 137.6, 135.0, 134.0, 131.4, 130.6, 130.3, 128.6, 127.7, 126.6, 120.8, 116.2, 84.2, 62.2, 56.8, 52.3, 45.8, 33.0. IR (thin film): v_{max} (cm⁻¹) = 3077, 2922, 2801, 1736, 1605, 1575, 1486, 1362, 796, 692; MS (ESI): 407 [M+H]⁺; HRMS (MALDI) calcd for C₂₃H₂₄N₂Br [M+H]⁺: 407.1116, Found: 407.1117.

Brown solid, mp = 54.1-56.5 °C, yield 77%. dr > 99/1, 94% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 70/30, v = 0.5 mL · min⁻¹, $\lambda = 254$ nm, t (minor) = 9.23 min, t (major) = 20.38 min]; $[\alpha]_D^{20} = +25.6$ (c = 0.5, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.94-7.90 (m, 2H), 7.64 (d, J = 4.8 Hz, 1H), 7.45-7.43 (m, 3H), 6.91 (d, J = 4.8 Hz, 1H), 5.24 (m, 1H), 4.95 (d, J = 17.4 Hz, 1H), 4.81 (d, J = 10.5 Hz, 1H), 3.10-3.00 (m, 3H), 2.60-2.20 (m, 3H), 2.42 (s, 3H), 1.36-1.25 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 155.8, 135.5, 134.6, 130.9, 129.2, 128.2, 127.4, 116.8, 84.4, 59.6, 55.2, 46.9, 46.3, 33.8. IR (thin film): v_{max} (cm⁻¹) = 3075, 2923, 2790, 1642, 1605, 1576, 1494, 1448, 785, 693; MS (ESI): 253 [M+H]⁺; HRMS (MALDI) calcd for C₁₇H₂₁N₂ [M+H]⁺: 253.1700, Found: 253.1699.

Brown oil, yield 83%. dr = 93/7, 84% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, $v = 0.5 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 9.96 min, t (major) = 21.38 min]; $[\alpha]_D^{20} = +40.0$ (c = 0.5, acetone). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2H), 7.65 (d, J = 4.8 Hz, 1H), 7.38-7.22 (m, 7H), 6.87 (d, J = 4.8 Hz, 1H), 5.24 (m, 1H), 4.89 (d, J = 17.2 Hz, 1H), 4.76 (d, J = 9.6 Hz, 1H), 3.68 (AB, $J_{AB} = 13.2$ Hz, 1H), 3.63 (BA, $J_{BA} = 12.8$ Hz, 1H), 3.08-2.99 (m, 3H),

2.38-2.30 (m, 6H), 1.32-1.24 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.0, 155.2, 140.4, 138.4, 135.1, 131.2, 129.2, 128.9, 128.2, 127.5, 126.9, 126.5, 115.9, 84.0, 62.8, 56.7, 52.2, 45.7, 33.0, 21.4. IR (thin film): v_{max} (cm⁻¹) = 3063, 3027, 2922, 2803, 1716, 1640, 1569, 1071, 1019, 771, 698; MS (EI): 342 [M]⁺; HRMS (EI) calcd for C₂₄H₂₆N₂ [M]⁺: 342.2096, Found: 342.2098.

White solid, mp = 98.2-102.7 °C, yield 88%. dr = 97/3, 95% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL · min⁻¹, $\lambda = 254$ nm, t (minor) = 6.66 min, t (major) = 14.34 min]; $[\alpha]_D^{20} = +80.5$ (c = 1.0, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 5.1 Hz, 1H), 7.40-7.26 (m, 5H), 6.95 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 4.8 Hz, 1H), 5.25 (m, 1H), 4.90 (d, J = 17.4 Hz, 10.5 Hz, 1H), 4.78 (d, J = 10.5 Hz, 1H), 3.83 (s, 3H), 3.70 (AB, $J_{AB} = 13.5$ Hz, 1H), 3.63 (BA, $J_{BA} = 13.5$ Hz, 1H), 3.09-2.99 (m, 3H), 2.37-2.26 (m, 3H), 1.38-1.26 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 169.5, 161.3, 155.1, 138.4, 135.0, 129.2, 128.9, 128.3, 127.0, 126.7, 126.5, 116.0, 113.9, 84.0, 62.9, 56.8, 55.3, 52.3, 45.8, 33.2. IR (thin film): v_{max} (cm⁻¹) = 3066, 3023, 2925, 2805, 1712, 1606, 1501, 1067, 1028, 773, 696; MS (ESI): 359 [M+H]⁺; HRMS (MALDI) calcd for C₂₄H₂₇N₂O[M+H]⁺: 359.2121, Found: 359.2118.

White solid, mp = 137.3-139.4 °C, yield 82%. dr = 97/3, 95% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 8.68 min, t (major) = 21.29 min]; $[\alpha]_D^{20} = +495.5$ (c = 0.5, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 5.1 Hz,

1H), 7.47 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 5.4 Hz, 1H), 5.27 (m, 1H), 4.91 (d, J = 17.1 Hz, 2H), 4.79 (d, J = 10.8 Hz, 1H), 3.85 (s, 3H), 3.64 (AB, $J_{AB} = 19.2$ Hz, 1H), 3.61 (BA, $J_{BA} = 13.5$ Hz, 1H), 3.06-2.97 (m, 3H), 2.37-2.30 (m, 3H), 1.37-1.27 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 169.5, 161.3, 155.0, 137.6, 135.1, 131.3, 130.5, 129.2, 126.7, 126.5, 120.7, 116.0, 113.9, 83.8, 62.1, 56.7, 55.3, 52.3, 45.8, 33.1. IR (thin film): v_{max} (cm⁻¹) = 3076, 2925, 2805, 1637, 1606, 1501, 1069, 1029, 793, 773; MS (ESI): 437 [M+H]⁺; HRMS (MALDI) calcd for C₂₄H₂₆N₂BrO [M+H]⁺: 437.1227, Found: 437.1223.

Brown oil, yield 82%. dr = 94/6, 91% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 0.5 mL · min⁻¹, $\lambda = 254$ nm, t (minor) = 23.88 min, t (major) = 27.38 min]; $[\alpha]_D^{20} = +59.5$ (c = 1.0, acetone). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 4.8 Hz, 1H), 7.56 (s, 1H), 7.39-7.23 (m, 6H), 6.98-6.85 (m, 2H), 5.24 (m, 1H), 4.88 (d, J = 17.2 Hz, 1H), 4.76 (d, J = 10.8 Hz, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 3.67 (AB, $J_{AB} = 13.2$ Hz, 1H), 3.61 (BA, $J_{BA} = 13.2$ Hz, 1H), 3.07-2.97 (m, 3H), 2.53-2.26 (m, 3H), 1.39-1.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 155.0, 150.9, 149.2, 138.5, 135.2, 128.9, 128.2, 127.1, 127.0, 126.5, 121.2, 115.9, 110.5, 109.9, 84.1, 62.9, 56.8, 56.1, 55.9, 52.3, 45.7, 33.3. IR (thin film): v_{max} (cm⁻¹) = 3080, 3001, 2925, 2804, 1736, 1604, 1523, 1267, 1024, 775, 699; MS (ESI): 389 [M+H]⁺; HRMS (MALDI) calcd for C₂₅H₂₉N₂O₂ [M+H]⁺: 389.2218, Found: 389.2224.

Yellow oil, yield 88%. dr = 92/8, 86% ee [Daicel Chiralpak IC (0.46 cm x 25 cm), *n*-hexane/2-propanol = 70/30, v = 0.5 mL · min⁻¹, $\lambda = 254$ nm, t (minor) = 10.29 min, t (major) = 11.38 min]; $[\alpha]_D^{20} = +32.2$ (c = 1.0, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.88-7.84 (m, 2H), 7.66 (d, J = 5.4 Hz, 1H), 7.42-7.26 (m, 7H), 6.86 (d, J = 5.1 Hz, 1H), 5.27 (m, 1H), 4.90 (d, J = 17.1 Hz, 1H), 4.88 (d, J = 11.4 Hz, 1H), 3.70 (AB, $J_{AB} = 13.2$ Hz, 1H), 3.64 (BA, $J_{BA} = 13.2$ Hz, 1H), 3.09-3.04 (m, 3H), 2.38-2.27 (m, 3H), 1.36-1.26 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 169.4, 156.4, 138.7, 136.5, 135.2, 132.7, 129.2, 129.1, 128.5, 127.3, 126.4, 116.5, 84.8, 63.2, 57.1, 52.5, 46.1, 33.2. IR (thin film): v_{max} (cm⁻¹) = 3081, 3028, 2923, 1641, 1603, 1567, 1091, 772, 699; MS (ESI): 363 [M+H]⁺; HRMS (MALDI) calcd for C₂₃H₂₄N₂Cl [M+H]⁺: 363.1619, Found: 363.1623.

Yellow oil, yield 90%. dr = 92/8, 89% ee [Daicel Chiralpak IC (0.46 cm x 25 cm), *n*-hexane/2-propanol = 70/30, v = 0.5 mL · min⁻¹, $\lambda = 254$ nm, t (minor) = 9.97 min, t (major) = 11.13 min]; $[\alpha]_D^{20} = +33.0$ (c = 1.0, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.94-7.89 (m, 2H), 7.65 (d, J = 5.1 Hz, 1H), 7.40-7.25 (m, 5H), 7.12 (t, J = 8.7 Hz, 1H), 6.86 (d, J = 5.1 Hz, 1H), 5.24 (m, 1H), 4.91 (d, J = 17.1 Hz, 2H), 4.79 (d, J = 13.5 Hz, 1H), 3.67 (AB, $J_{AB} = 13.5$ Hz, 1H), 3.64 (BA, $J_{BA} = 13.5$ Hz, 1H), 3.09-3.00 (m, 3H), 2.38-2.27 (m, 3H), 1.40-1.34 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 164.0 (d, J = 248.7 Hz), 155.9, 138.4, 135.0, 130.3 (d, J = 2.9 Hz), 129.6 (d, J = 8.6 Hz), 128.9, 128.3, 127.0, 126.3, 116.2, 115.6 (d, J = 21.7 Hz), 84.4, 62.9, 56.8, 52.3, 45.9, 33.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -110.69 (m, 1F). IR (thin film): v_{max} (cm⁻¹) = 3066, 3028, 2962, 1640, 1605, 1586, 1094, 774, 699; MS (ESI): 347 [M+H]⁺; HRMS (MALDI) calcd for C₂₃H₂₄N₂F[M+H]⁺: 347.1913, Found: 347.1918.

Brown solid, mp = 43.2-45.9 °C, yield 83%. dr = 90/10, 96% ee [Daicel Chiralpak IC (0.46 cm x 25 cm), *n*-hexane/2-propanol = 80/20, $v = 0.7 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 214 \text{ nm}$, t (minor) = 9.72 min, t (major) = 16.46 min]; $[\alpha]_D^{20} = +40.8$ (c = 0.5, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 4.8 Hz, 1H), 7.30-7.18 (m, 5H), 6.28 (d, J = 4.8 Hz, 1H), 5.09 (m, 1H), 4.82 (d, J = 17.1 Hz, 1H), 4.73(d, J = 10.8 Hz, 1H), 3.59 (AB, $J_{AB} = 12.9 \text{ Hz}$, 1H), 3.53 (BA, $J_{BA} = 13.2 \text{ Hz}$, 1H), 3.96-2.87 (m, 3H), 2.46 (q, J = 7.8 Hz, 2H), 2.23-2.16 (m, 3H), 1.13-1.08 (m, 1H), 1.11 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 154.2, 138.2, 134.8, 128.8, 128.3, 128.1, 126.8, 115.8, 82.7, 62.7, 56.7, 52.2, 45.3, 32.7, 25.7, 11.6. IR (thin film): v_{max} (cm⁻¹) = 3079, 2974, 2918, 2803, 1644, 1611, 1522, 1366, 1071, 783, 698; MS (ESI): 281 [M+H]⁺; HRMS (MALDI) calcd for C₁₉H₂₅N₂ [M+H]⁺: 281.2015, Found: 281.2012

White solid, mp = 58.2-61.2 °C, yield 61%. dr = 97/3, 96% ee [Daicel Chiralpak OD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 0.7 mL · min⁻¹, $\lambda = 230$ nm, t (minor) = 11.56 min, t (major) = 13.62 min]; $[\alpha]_D^{20} = +80.5$ (c = 0.5, acetone). ¹H NMR (300 MHz, CDCl₃) δ 8.03 (s, 1H), 7.55 (d, J = 5.1 Hz, 1H), 7.40-7.26 (m, 5H), 6.44 (d, J = 5.1 Hz, 1H), 5.26 (m, 1H), 4.92 (d, J = 17.1 Hz, 1H), 4.85 (d, J = 10.8 Hz, 1H), 3.72 (AB, $J_{AB} = 12.9$ Hz, 1H), 3.63 (BA, $J_{BA} = 12.9$ Hz, 1H), 3.08-2.99 (m, 3H), 2.37-2.31 (m, 3H), 1.35-1.25 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 162.3, 154.9, 138.2, 134.7, 128.9, 128.2, 127.4, 126.9, 116.3, 84.3, 62.9, 56.8, 52.3, 45.4, 32.2. IR (thin film): v_{max} (cm⁻¹) = 3056, 2924, 2853, 2807, 1751, 1644, 1589, 1497, 1072, 770, 700; MS (ESI): 253 [M+H]⁺; HRMS (ESI) calcd for C₁₇H₂₁N₂ [M+H]⁺: 253.1703, Found: 253.1699

General Procedure for the Pd/C catalyzed hydrogenation:

To a solution of **3l** (25.2 mg, 0.1 mmol, 93% ee) in anhydrous MeOH (2.0 mL), Pd/C (5.0 mg) was added. The reaction mixture was stirred under H₂ atmosphere (1 atm) at rt for 12 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtrated with celite and washed with EtOAc. The solvents were removed under reduced pressure. Then the residue was purified by silica gel column chromatography (PE/Acetone = 1/1) to afford the desired product 6. Pale yellow oil, yield 65%, 91% ee [Daicel Chiralpak IC (0.46 cm x 25 cm), n-hexane/2-propanol = 80/20, v = 0.5 mL · min⁻¹, $\lambda = 214$ nm, t (major) = 25.37 min, t (minor) = 37.80 min]; $[\alpha]_D^{20} = +2.0$ (c = 0.25, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.54 (s, 1H), 7.35-7.27 (m, 5H), 3.65 (AB, J_{AB} = 13.2 Hz, 1H), 3.47 (BA, J_{BA} = 12.6 Hz, 1H), 3.02 (d, J = 8.7 Hz, 1H), 2.86-2.82 (m, 1H), 2.65-2.40 (m, 2H), 2.06-1.62 (m, 7H),1.48-1.28 (m, 2H), 0.84 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.2, 138.1, 129.1, 128.1, 126.9, 79.0, 63.4, 55.1, 50.5, 45.5, 37.9, 37.2, 24.8, 19.7, 12.1. IR (thin film): v_{max} (cm⁻¹) = 3002, 2960, 2932, 2874, 2756, 1715, 1627, 1457, 1290, 1220, 802, 743; MS (ESI): 257 [M+H]⁺; HRMS (ESI) calcd for C₁₇H₂₅N₂ [M+H]⁺: 257.2012, Found: 257.2012.

To a solution of **31** (25.2 mg, 0.1 mmol, 93% ee) in anhydrous MeOH (2 mL), Pd/C (5.0 mg) was added. The reaction mixture was stirred under H_2 atmosphere (600

psi) at rt for 12 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtrated with celite and washed with EtOAc. The solvents were removed under reduced pressure. Then the residue was purified by silica gel column chromatography (DCM/MeOH = 10/1) to afford the desired product **7**. Pale yellow oil, yield 75%, $[\alpha]_D^{20} = +17.0$ (c = 0.5, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.25 (m, 5H), 3.58 (AB, $J_{AB} = 12.9$ Hz, 1H), 3.41 (BA, $J_{BA} = 12.9$ Hz, 1H), 3.00-2.97 (m, 3H), 2.76-2.64 (m, 2H), 2.21(m, 1H), 1.97 (m, 1H), 1.77-1.49 (m, 8H), 1.22 (m, 1H), 0.86 (t, J = 7.2, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 138.6, 128.9, 128.1, 126.8, 64.3, 63.0, 55.0, 51.1, 47.1, 45.9, 37.1, 31.1, 25.6, 20.4, 12.6. IR (thin film): v_{max} (cm⁻¹) = 2957, 2927, 2856, 1647, 1460, 1377, 1292, 802, 761, 699; MS (ESI): 259 [M+H]⁺; HRMS (ESI) calcd for C₁₇H₂₇N₂ [M+H]⁺: 259.2161, Found: 259.2169.

Compound 7 was transformed to compound 9 to determine its ee.

To a solution of **7** (19.0 mg, 0.07 mmol) and NaH (5.0 mg, 0.21 mmol) in dry THF (2.0 mL) was stirred at rt for 0.5 h, *p*-toluenesulfonyl chloride (29.2 mg, 0.15 mmol) was added at rt. The reaction mixture was stirred at rt for 18 h, then heated to 50°C for 35 h. The crude reaction mixture was quenched by water and extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. Then the residue was purified by silica gel column chromatography (PE/EA = 1/1) to afford the desired product **9**. Viscous pale yellow oil, yield 27%, 92% ee [Daicel Chiralcel AD-H (0.46 cm x 15 cm), *n*-hexane/2-propanol = 85/15, v = 0.5 mL · min⁻¹, $\lambda = 214$ nm, t (minor) = 11.28 min, t (major) = 14.78 min]; $[\alpha]_D^{20} = +64.0$ (c = 0.5, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 8.1 Hz, 2H), 7.35-7.25 (m, 7H), 3.62 (AB, $J_{AB} = 13.2$ Hz, 1H), 3.45 (BA, $J_{BA} = 13.2$ Hz, 1H), 3.36-3.34 (m, 2H), 3.00 (d, J = 11.4 Hz, 1H), 2.81 (d, J = 11.7 Hz,

1H), 2.72-2.67 (m, 2H), 2.40 (s, 3H), 2.04-1.79 (m, 4H), 1.75-1.66 (m, 4H), 1.52-1.47 (m, 1H), 1.34-1.25 (m, 1H), 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 138.9, 138.4, 129.3, 129.0, 128.1, 127.1, 126.9, 71.9, 62.5, 56.5, 51.3, 49.7, 45.0, 36.7, 31.6, 23.1, 21.4, 20.4, 12.0. IR (thin film): v_{max} (cm⁻¹) = 3062, 3029, 2961, 2874, 2804, 1494, 1454, 1262, 1155, 1070, 813, 748, 700; MS (ESI): 413 [M+H]⁺; HRMS (MALDI) calcd for C₂₄H₃₃N₂O₂S [M+H]⁺: 413.2259, Found: 413.2257.

Procedure for Oxidation of Compound 31:

A solution of sodium chlorite (27.0 mg, 0.3 mmol) and sodium dihydrogen orthophosphate hydrate (32.0 mg, 0.27 mmol) in water (0.5 mL) was added dropwise to a stirring solution of spiro-2H-pyrrole **3l** (18.0 mg, 0.07mmol, 96% ee) in *tert*-butyl alcohol (1.0 mL) and 2-methyl-2-butene (0.14 mL) at 0 °C. The solution was stirred for 14 h and then concentrated in vacuo. The product was partitioned between water and Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo to give a colorless oil. The crude material was dissolved in MeOH (2 mL), and sodium borohydride (7.5 mg, 0.19 mmol) was added slowly. The solution was stirred for 1 h and then concentrated in vacuo to give a colorless oil. The product was partitioned between water and Et₂O, the layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were dried over MgSO₄ and concentrated in vacuo to give a colorless oil. The crude material was purified by column chromatography using petroleum ether and EtOAc (1:1) to give 5. Colorless oil, yield 75%, 95% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 220 \text{ nm}$, t (major) = 20.00 min, t (minor) = 62.63 min]; $[\alpha]_D^{20}$ = -24.3 (c = 0.5, acetone). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.25 (m, 5H), 6.23 (s, 1H), 5.76-5.72 (m, 1H), 5.18 (dd, J = 10, 0.8 Hz, 1H), 5.12 (d, J = 17.2 Hz, 1H), 3.87 (t, J = 2.4 Hz, 1H), 3.57 (s, 2H), 3.53 (t, J = 2.4 Hz, 1H), 2.88 (d, J = 10.4 Hz, 1H), 2.82-2.79 (m, 1H), 2.58-2.52 (m, 1H), 2.42-2.32 (m, 2H), 2.05 (dt, J = 13.2, 3.2 Hz, 1H), 1.72 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 137.8, 133.0, 128.9, 128.3, 127.2, 119.5, 62.7, 59.9, 54.1, 53.7, 50.7, 47.9, 31.8. IR (thin film): v_{max} (cm⁻¹) = 3065, 3030, 2961, 2927, 2808, 2767, 1712, 1495, 1397, 1219, 1097, 804, 700; MS (ESI): 285 [M+H]⁺; HRMS (ESI) calcd for C₁₇H₂₁N₂O₂ [M+H]⁺: 285.1599, Found: 285.1598.

Procedure for the reduction of 31:

To a solution of **3l** (31 mg, 0.12 mmol, 96% ee) in MeOH (2 mL), NaBH₄ (7 mg, 0.18 mmol) was added. The reaction mixture was stirred at rt for 11 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was concentrated in vacuo, then quenched with water. The product was partitioned between water and DCM. The layers were separated, and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude material was purified by column chromatography using DCM/MeOH (10:1) to give **4**. Yellow oil, yield 90%, 96% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol/Et₃N = 90/10/0.0001, v = 0.5 mL · min⁻¹, $\lambda = 230$ nm, t (major) = 9.30 min, t (minor) = 13.63 min]; [α]_D²⁰ = +38.6 (c = 1.0, acetone). ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.25 (m, 5H), 6.00 (d, J = 5.4 Hz, 1H), 5.90 (d, J = 6.9 Hz, 1H), 5.67 (m, 1H), 5.12 (d, J = 17.7 Hz, 1H), 5.05 (d, J = 12.3 Hz, 1H), 3.68 (s, 2H), 3.58 (AB, $J_{AB} = 13.5$ Hz, 1H), 3.51 (BA, $J_{BA} = 13.5$ Hz, 1H), 2.79-2.75 (m, 2H), 2.42-2.35 (m, 1H), 2.27-2.18 (m, 3H), 1.79-1.74 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 138.3, 137.4, 131.0, 129.6, 129.0,

128.2, 127.0, 117.5, 70.3, 62.9, 56.7, 53.2, 51.4, 51.0, 39.1. IR (thin film): v_{max} (cm⁻¹) = 3066, 3027, 2921, 2847, 2800, 1639, 1495, 1392, 1259, 1073, 800, 737; MS (ESI): 255 [M+H]⁺; HRMS (ESI) calcd for C₁₇H₂₃N₂ [M+H]⁺: 255.1856, Found: 255.1856.

Procedure for Reduction of Compound 3g:

To a solution of 3g (69 mg, 0.16 mmol, 95% ee) in acetic acid (2 mL), NaBH₃CN (32 mg, 0.47 mmol) was added. The reaction mixture was stirred at rt for 22 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was quenched with sat. Na₂CO₃. The product was partitioned between water and DCM. The layers were separated, and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude material was purified by column chromatography using DCM/MeOH (25:1) to give 8. Pale yellow oil, yield 92%, 94% ee [Phenomenex Lux 5u Celluloxe-2 PC-2 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, v = 0.5mL · min⁻¹, $\lambda = 214$ nm, t (minor) = 10.50 min, t (major) = 11.53 min]; $[\alpha]_D^{20} = +13.4$ (c = 1.0, acetone). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.29 (d, J =8.8 Hz, 2H), 7.20 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 6.05-5.94 (m, 1H), 5.15 (dd, J = 10.4, 1.2 Hz, 1H), 5.10 (d, J = 17.6 Hz, 1H), 4.15 (m, 1H), 3.78 (s, 3H), 3.48 (AB, J_{AB} = 13.6 Hz, 1H), 3.43 (BA, J_{BA} = 13.2 Hz, 1H), 2.80-2.67 (m, 2H), 2.40 (t, J = 10.0 Hz, 1H), 2.12-2.07 (m, 4H), 1.89-1.82 (m, 2H), 1.73-1.66 (m, 1H),1.55-1.53 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 137.6, 135.8, 131.3, 130.6, 127.7, 120.7, 117.3, 113.7, 62.5, 62.2, 60.6, 56.3, 55.3, 51.0, 49.5, 39.4, 35.9, 31.9. IR (thin film): v_{max} (cm⁻¹) = 3072, 2998, 2850, 2802, 1665, 1611, 1512, 1487, 1299, 878,

802; MS (ESI): 441 [M+H]⁺; HRMS (ESI) calcd for C₂₄H₃₀N₂OBr [M+H]⁺: 441.1529, Found: 441.1536.

X-ray of **3g**

Table 1. Crystal data and structure refinement for p212121.

Identification code	p212121
Empirical formula	C24 H25 Br N2 O
Formula weight	437.37
Temperature	133(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$
Unit cell dimensions	a = 7.4734(19) A alpha = 90 deg.
	b = 46.036(12) A beta = 90 deg.
	c = 6.1199(16) A gamma = 90 deg.
Volume	2105.5(9) A^3
Z, Calculated density	4, 1.380 Mg/m^3
Absorption coefficient	1.969 mm^-1
F(000)	904
Crystal size	0.40 x 0.05 x 0.02 mm
Theta range for data collection	0.88 to 25.99 deg.
Limiting indices	-9<=h<=9, -56<=k<=45, -7<=l<=7

Reflections collected / unique	13525 / 4128 [R(int) = 0.0737]
Completeness to theta $= 25.99$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9617 and 0.5064
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4128 / 18 / 255
Goodness-of-fit on F^2	1.004
Final R indices [I>2sigma(I)]	R1 = 0.0750, wR2 = 0.1864
R indices (all data)	R1 = 0.0819, wR2 = 0.1938
Absolute structure parameter	0.12(2)
Largest diff. peak and hole	1.305 and -1.565 e.A^-3

S27

NMR Spectra of 2c

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

S31

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

S33

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

S43

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

NMR Spectra and HPLC Spectra of 3a

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	5.015	340005.375	2938940.250	50.0110
2	11.132	110938.625	2937651.250	49.9890
Total		450944.000	5876591.500	100.0000

NMR Spectra and HPLC Spectra of **3b**

ΡРМ

0

2

ŝ

4

ŝ

ی .

00

Ş

No. I	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1	1	Unknown	12.005	340256.1	6635495.5	49. 5479	
2	2	Unknown	13.092	323838.8	6756584.9	50. 4521	
Total				664094.8	13392080.4	100. 0000	

No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	12.210	33304.0	741890.6	7.0652
2	2	Unknown	13.210	438555.0	9758728.6	92. 9348
Total	l			471859.0	10500619. 2	100. 0000

NMR Spectra and HPLC Spectra of 3c

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	5.847	266449.781	3297470.250	49.8699
2	16.978	85271.219	3314675.500	50.1301
Total		351721.000	6612145.750	100.0000

Total

Ph

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	8.793	447429.3	15575594.1	50. 4314
2	2	Unknown	20.127	275851.3	15309141.7	49.5686
Total				723280.6	30884735.8	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	$\frac{1}{2}$	Unknown Unknown	9. 227 20. 377	8436. 5 224454. 5	407453.5 12696836.9	3. 1093 96. 8907
Total				232891.0	13104290.4	100.0000

NMR Spectra and HPLC Spectra of 3e

No. F	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	9.960	193981.6	3585739.8	51.9907
2	2	Unknown	21.460	79555.1	3311148.0	48.0093
Total				273536.7	6896887.8	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHe i ght	PeakArea	PerCent
1	1	Unknown	9.960 21.377	10414.4	202102.1	7.8136
2	2	UIIKIIOWII	21.511	57450.4	2301119. 9	52, 1004
Total				67904.8	2586552.0	100.0000

NMR Spectra and HPLC Spectra of 3f

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	6.562	91235.070	1595230.250	50.0635
2	14. 288	43046.316	1591185.000	49.9365
Total		134281.387	3186415.250	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	6.658	2359.758	39910.699	2.4667
2	14.343	43305.121	1578065.875	97.5333
Total		45664.879	1617976.574	100.0000

No. F	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	9.627	145639.1	3053137.3	49.8282
2	2	Unknown	21.377	63532.6	3074185.6	50.1718
Total				209171.7	6127322.9	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHe i ght	PeakArea	PerCent
1	1	Unknown	8.678	5705.4	135209.4	2.6503
2	2	Unknown	21.293	96233.6	4966489.1	97.3497
Total				101939.0	5101698.5	100.0000

NMR Spectra and HPLC Spectra of 3h

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	21.627	199793.2	21010160.2	49.7160
2	2	Unknown	26.877	163617.4	21250161.2	50. 2840
Total	l			363410.6	42260321.4	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2	Unknown Unknown	23. 877 27. 377	7841.8 110515.3	694302.9 13983800.4	4. 7302 95. 2698
Total	-			118357.1	14678103.3	100.0000

NMR Spectra and HPLC Spectra of 3i

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	10.460	545520.8	7521739.9	50. 1769
2	2	Unknown	11.710	459842.5	7468703.6	49.8231
Total				1005363.3	14990443.5	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2	Unknown Unknown	10. 293 11. 377	48390.5 639819.3	769132.2 10097325.8	7. 0780 92. 9220
Total				688209.8	10866457.9	100.0000

NMR Spectra and HPLC Spectra of 3j

ç

No. F	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	10.355	901061.2	11989441.0	49.8478
2	2	Unknown	11.627	769747.1	12062652.6	50. 1522
Total				1670808.2	24052093.6	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
$\frac{1}{2}$	$\frac{1}{2}$	Unknown Unknown	9.967 11.127	104138.3 1775549.9	1494706.8 26264158.2	5. 3846 94. 6154
Total				1879688.2	27758865.0	100.0000

No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1 2	1 2	Unknown Unknown	9. 793 16. 877	136060.6 88136.9	2550130.3 2479821.5	50. 6989 49. 3011	
Total	l			224197.5	5029951.8	100.0000	

1 1 Unknown 9.722 4688.3 103161.2 1.8137	PerCent	PeakArea	PeakHeight	R.Time	ID. Name	PeakNo	No.
2 2 Unknown 16.460 197408.5 5584740.4 98.1863	1.8137 98.1863	103161.2 5584740.4	4688.3 197408.5	9. 722 16. 460	Unknown Unknown	1 2	1 2
Total 202006.8 5687001.6 100.0000	 100,0000	5687901_6	202096 8				Total

NMR Spectra and HPLC Spectra of 31

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	11. 432	237176.969	5635360.000	49.5057
2	13.910	133858.797	5747888.500	50.4943
Total		371035.766	11383248.500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	11.562	22435.457	516012.094	2.1437
2	13.623	514500.500	23554528.000	97.8562
Total		536935.957	24070540.094	100.0000

NMR Spectra and HPLC Spectra of 6

ē

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	24.718	15140.635	2973290.000	50.9010
2	30.835	14909.321	2868029.250	49.0990
Total		30049.956	5841319.250	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	25.370	141491.797	27071610.000	95.6141
2	37.795	14735.577	1241794. 500	4.3859
Total		156227.374	28313404.500	100.0000

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

NMR Spectra of 7

S92

NMR Spectra and HPLC Spectra of 9

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2011

No.	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
1 2	1 2	10.977 14.877	504062.9 401386.5	14171868.4 14458696.3	49. 4991 50. 5009	
Total	L		905449.3	28630564.7	100.0000	

No.	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
1	1	11.277	11763.7	402894.9	4.0853	
2	2	14.777	248814.6	9459057.6	95.9147	
Total			260578.3	9861952.4	100.0000	

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20.777	310876.469	11838062.000	50.2554
2	66.433	76084. 422	11717746.000	49.7446
Total		386960.891	23555808.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20.007	343577.156	12288929.000	97.5150
2	62. 632	2291.010	313156.875	2.4850
Total		345868.166	12602085.875	100.0000

NMR Spectra and HPLC of 4

ç

S102

4

No.	PeakNo	R.Time	PeakHeight	PeakArea	PerCent	
1 2	1 2	9.750 13.457	128334. 1 112765. 8	4829520.1 4785825.5	50. 2272 49. 7728	
Tota	1		241099.9	9615345.6	100. 0000	

No.	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
1	1	9.295	707816.7	35092109.2	98.2715	
2	2	13.627	14990.4	617228.5	1.7285	
Tota	1		722807.1	35709337.7	100. 0000	

NMR Spectra, NOE, COSY, HSQC Spectra and HPLC of 8

No.	PeakNo	R.Time	PeakHeight	PeakArea	PerCent	
1	1	10.322	950703.2	14902965.1	49.6771	
2	2	11.327	856159.5	15096698.0	50.3229	
Total	l		1806862.7	29999663.1	100. 0000	

No.	PeakNo	R.Time	PeakHeight	PeakArea	PerCent	
1	1	10.497	54384.7	828761.1	2.8572	
2	2	11.527	1596559.8	28176844.2	97.1428	
Total	L		1650944.5	29005605.4	100. 0000	