Supporting Information

A Solid Solution Approach to 2D Coordination Polymers for CH_4/CO_2 and CH_4/C_2H_6 Gas Separation: Equilibrium and Kinetic Studies

Satoshi Horike, Yasutaka Inubushi, Takashi Hori, Tomohiro Fukushima and Susumu Kitagawa*

Experimental

 $[Zn(5NO_2-ip)(bpy)]_n$ (CID-5, $5NO_2-ip = 5$ -nitroisophthalate), $[Zn(5MeO-ip)(bpy)]_n$ (CID-6, 5MeO-ip = 5-methoxyisophthalate), and their ligand-base solid solution compounds $[Zn(5NO_2-ip)_{1-x}(5MeO-ip)_x(bpy)]_n$ (CID-5/6, x = 0.1, 0.2, 0.4) were synthesized according to reported procedures.¹ Characterization of these compounds was performed by powder X-ray diffraction data collected on a Rigaku RINT-2200HF (Ultima) diffractometer with CuK α radiation and ¹H NMR measured with a JEOL JNM-A 500 FT NMR system. Equilibrium gas adsorption and desorption isotherms were measured by a BEL HP instrument. All measurements were executed at 273 K, at a pressure range of 0.0~1.0 MPa and an equilibrium time for each pressure point was set for 500 seconds.

Breakthrough curve measurements were performed using a hand-made gas flowing system. Sample cell was filled with sample powders and temperatures of the cell were controlled by a refrigerant circulating system. For CH_4/CO_2 mixture gas, the gas fraction was $CH_4:CO_2 = 60:40$ (*vol*) and the measurements were executed at 0.80 MPa of total pressure at 273 K with a space velocity of 6 min⁻¹. The relative pressure of CO_2 was 0.32 MPa. For CH_4/C_2H_6 , the gas fraction was $CH_4:C_2H_6 = 90:10$ (*vol*) and the measurements were executed at 0.80 MPa of total pressure at 273 K with a space velocity of 6 min⁻¹. The relative pressure of CO_2 was 0.32 MPa. For CH_4/C_2H_6 , the gas fraction was $CH_4:C_2H_6 = 90:10$ (*vol*) and the measurements were executed at 0.80 MPa of total pressure at 273 K with a space velocity of 6 min⁻¹. The relative pressure of C_2H_6 was 0.08 MPa.

1. T. Fukushima, S. Horike, Y. Inubushi, K. Nakagawa, Y. Kubota, M. Takata and S. Kitagawa, *Angew. Chem. Int. Ed.*, 2010, **49**, 4820-4824.